

Maxim > Design Support > Technical Documents > Application Notes > T/E Carrier and Packetized > APP 403

Keywords: T1 E1 J1, single chip transceiver, SCT, octal framer, compatible, replacement, software comparison, migration, register, T1, E1, J1

APPLICATION NOTE 403

DS2155 and DS26401 Software Comparison

Jun 06, 2003

Abstract: Application Note 403 describes the software considerations when migrating an existing design based on the DS2155 T1/E1/J1 single chip transceiver (SCT) to the DS26401 T1/E1/J1 octal framer. In comparison, the Dallas Semiconductor DS26401 octal framer uses a completely revised architecture, contains eight independent framers, and the device package is only 50% larger in area than the DS2155. While the DS2155 does include an integrated line interface unit (LIU), the DS26401 will seamlessly interface will all Dallas Semiconductor T1/E1/J1 LIU devices. Any designer who is thinking of migrating an existing design to use the DS26401 should read this application note. The application note contains detailed information for software migration such as: register location changes, how individual functions have changed from the DS2155 to the DS26401, and which new functions are available on the DS26401. In the end, the designer should have enough information to easily migrate an existing design to the DS26401.

Introduction

This application note describes the differences between the DS2155 and the DS26401. The DS2155 contains both a line interface unit (LIU) and a T1/E1 framer, while the DS26401 is only a T1/E1 framer. Therefore, none of the LIU functions are present in the DS26401.

While the DS2155 is available in 1-port and 4-port devices, the DS26401 is an 8-port device. Each port in these devices is programmed and operates independently of the others.

Indirect Registers

The DS2155 uses indirect registers for the following "per-channel" functions. The DS26401 uses direct registers for these functions. The only use of indirect registers in the DS26401 is for loading repetitive patterns, up to 512 bytes, in the BERT.

DS2155 Indirect Register Function	DS26401 Direct Register	Comments
Per-Channel Transmit Idle Code	TIDR1 to TIDR24	
Per-Channel Receive Idle Code	RIDR1 to RIDR24	
Bert Transmit Channel Select	TBCS1 to TBCS4	
Transmit Fractional Channel Select	TGCCS1 to TGCCS4	
Payload Error Insert Channel Select		Not Supported

Transmit Hardware Signaling Channel Select	SSIE1 to SSIE4	
Bert Receive Channel Select	RBCS1 to RBCS4	
Receive Fractional Channel Select	RGCCS1 to RGCCS4	
Receive Signaling Reinsertion Channel Select	RSI1 to RSI4	
Receive Signaling All-Ones Insertion Channel Select	RSAOI1 to RSAOI3	T1 Mode Only

Terminology

Some terminology in the DS26401 data sheet is different from previous T1/E1 data sheets from Dallas Semiconductor. As an example, previous data sheets used the acronym RLOS to refer to receive loss of sync. In the DS26401 data sheet RLOS more correctly refers to receive loss of signal. The table below shows the differences.

Condition	DS26401 Data Sheet	Previous Data Sheets
Loss of In-Bound Signal	RLOS (Receive Loss Of Signal)	RCL (Receive Carrier Loss)
Loss of Synchronization	RLOF (Receive Loss Of Framing)	RLOS (Receive Loss Of Synchronization)
In-Bound All Ones	AIS (Alarm Indication Signal) T1 and E1 Modes	AIS for E1 Mode; Blue Alarm for T1 Mode
Remote Alarm	RAI (Remote Alarm Indication) T1 and E1 Modes	RAI for E1 Mode; Yellow Alarm for T1 Mode

Register Mapping

For each of the 8 ports in the DS26401, most of the functions are independently programmed. Therefore, there are eight separate but identical registers for each port. In the following tables only the base address is shown for each register. The full address for each port is found by the following.

Base Address + $(0x200 \times n)$, where n = 0 to 7 for Ports 1 through 8

The only functions that are shared by all 8 ports are the Global and BERT Functions. The Global Function registers are GCR1, GCR2, GSR1, GSR2 and the IDR register. All addresses are shown in hexadecimal.

Direct Register Mapping

The following registers in the DS2155 can be mapped directly to registers in the DS26401.

DS2155		DS26401		DS2155 Register Description	
Address	Name	Address	Name	D32133 Register Description	
08	SSIE1	118	SSIE1	Software Signaling Insertion Enable 1	
09	SSIE2	119	SSIE2	Software Signaling Insertion Enable 2	
0A	SSIE3	120	SSIE3	Software Signaling Insertion Enable 3	
0B	SSIE4	121	SSIE4	Software Signaling Insertion Enable 4	

0C	T1RDMR1	03C	RDMWE1	T1 Receive Digital Milliwatt Enable Register 1
0D	T1RDMR2	03D	RDMWE2	T1 Receive Digital Milliwatt Enable Register 2
0E	T1RDMR3	03E	RDMWE3	T1 Receive Digital Milliwatt Enable Register 3
0F	IDR	0F8	IDR	Device Identification Register
38	RSINFO1	098	RSS1	Receive Signaling Change of State Information 1
39	RSINFO2	099	RSS2	Receive Signaling Change of State Information 2
3A	RSINFO3	09A	RSS3	Receive Signaling Change of State Information 3
3B	RSINFO4	09B	RSS4	Receive Signaling Change of State Information 4
3C	RSCSE1	0A8	RSCSE1	Receive Signaling Change of State Interrupt Enable 1
3D	RSCSE2	0A9	RSCSE2	Receive Signaling Change of State Interrupt Enable 2
3E	RSCSE3	0AA	RSCSE3	Receive Signaling Change of State Interrupt Enable 3
3F	RSCSE4	0AB	RSCSE4	Receive Signaling Change of State Interrupt Enable 4
42	LCVCR1	050	LCVCR1	Line Code Violation Count Register 1
43	LCVCR2	051	LCVCR2	Line Code Violation Count Register 2
44	PCVCR1	052	PCVCR1	Path Code Violation Count Register 1
45	PCVCR2	053	PCVCR2	Path Code Violation Count Register 2
46	FOSCR1	054	FOSCR1	Frames Out-of-Sync Count Register 1
47	FOSCR2	055	FOSCR2	Frames Out-of-Sync Count Register 2
48	EBCR1	056	EBCR1	E-Bit Count Register 1
49	EBCR2	057	EBCR2	E-Bit Count Register 2
4B	PCLR1	1D0	PCL1	Per-Channel Loopback Enable Register 1
4C	PCLR2	1D1	PCL2	Per-Channel Loopback Enable Register 2
4D	PCLR3	1D2	PCL3	Per-Channel Loopback Enable Register 3
4E	PCLR4	1D3	PCL4	Per-Channel Loopback Enable Register 4
50	TS1	140	TS1	Transmit Signaling Register 1
51	TS2	141	TS2	Transmit Signaling Register 2
52	TS3	142	TS3	Transmit Signaling Register 3
53	TS4	142	TS4	Transmit Signaling Register 4
54	TS5	144	TS5	Transmit Signaling Register 5
55	TS6	145	TS6	Transmit Signaling Register 6
56	TS7	146	TS7	Transmit Signaling Register 7
57	TS8	147	TS8	Transmit Signaling Register 8
58	TS9	148	TS9	Transmit Signaling Register 9
59	TS10	149	TS10	Transmit Signaling Register 10
5A	TS11	14A	TS11	Transmit Signaling Register 11
5B	TS12	14B	TS12	Transmit Signaling Register 12
5C	TS13	14C	TS13	Transmit Signaling Register 13
5D	TS14	14D	TS14	Transmit Signaling Register 14
5E	TS15	14E	TS15	Transmit Signaling Register 15
5F	TS16	14F	TS16	Transmit Signaling Register 16

60	RS1	040	RS1	Receive Signaling Register 1
61	RS2	041	RS2	Receive Signaling Register 2
62	RS3	042	RS3	Receive Signaling Register 3
63	RS4	043	RS4	Receive Signaling Register 4
64	RS5	044	RS5	Receive Signaling Register 5
65	RS6	045	RS6	Receive Signaling Register 6
66	RS7	046	RS7	Receive Signaling Register 7
67	RS8	047	RS8	Receive Signaling Register 8
68	RS9	048	RS9	Receive Signaling Register 9
69	RS10	049	RS10	Receive Signaling Register 10
6A	RS11	04A	RS11	Receive Signaling Register 11
6B	RS12	04B	RS12	Receive Signaling Register 12
6C	RS13	04C	RS13	Receive Signaling Register 13
6D	RS14	04D	RS14	Receive Signaling Register 14
6E	RS15	04E	RS15	Receive Signaling Register 15
6F	RS16	04F	RS16	Receive Signaling Register 16
74	TDS0SEL	189	TDS0SEL	Transmit Channel Monitor Select
75	TDS0M	1BB	TDS0M	Transmit DS0 Monitor Register
76	RDS0SEL	012	RDS0SEL	Receive Channel Monitor Select
77	RDS0M	060	RDS0M	Receive DS0 Monitor Register
80	TCICE1	150	TCICE1	Transmit Idle Code Enable Register 1
81	TCICE2	151	TCICE2	Transmit Idle Code Enable Register 2
82	TCICE3	152	TCICE3	Transmit Idle Code Enable Register 3
83	TCICE4	153	TCICE4	Transmit Idle Code Enable Register 4
84	RCICE1	0D0	RCICE1	Receive Idle Code Enable Register 1
85	RCICE2	0D1	RCICE2	Receive Idle Code Enable Register 2
86	RCICE3	0D2	RCICE3	Receive Idle Code Enable Register 3
87	RCICE4	0D3	RCICE4	Receive Idle Code Enable Register 4
88	RCBR1	0C4	RCBR1	Receive Channel Blocking Register 1
89	RCBR2	0C5	RCBR2	Receive Channel Blocking Register 2
8A	RCBR3	0C6	RCBR3	Receive Channel Blocking Register 3
8B	RCBR4	0C7	RCBR4	Receive Channel Blocking Register 4
8C	TCBR1	1C4	TCBR1	Transmit Channel Blocking Register 1
8D	TCBR2	1C5	TCBR2	Transmit Channel Blocking Register 2
8E	TCBR3	1C6	TCBR3	Transmit Channel Blocking Register 3
8F	TCBR4	1C7	TCBR4	Transmit Channel Blocking Register 4
B7	TCD1	1AC	TCD1	Transmit Code Definition Register 1
B8	TCD2	1AD	TCD2	Transmit Code Definition Register 2
B9	RUPCD1	0AC	RUPCD1	Receive Up Code Definition Register 1
BA	RUPCD2	0AD	RUPCD2	Receive Up Code Definition Register 2

BB	RDNCD1	0AE	RDNCD1	Receive Down Code Definition Register 1
ВС	RDNCD2	0AF	RDNCD2	Receive Down Code Definition Register 2
BE	RSCD1	09C	RSPCD1	Receive Spare Code Definition Register 1
BF	RSCD2	09D	RSPCD2	Receive Spare Code Definition Register 2
C0	RFDL	062	RFDL	Receive FDL Register
C1	TFDL	162	TFDL	Transmit FDL Register
C6	RSF	064	RAF	Receive Align Frame Register
C7	RNAF	065	RNAF	Receive Nonalign Frame Register
C8	RSiAF	066	RSiAF	Receive Si Align Frame
C9	RSiNAF	067	RSiNAF	Receive Si Nonalign Frame
CA	RRA	068	RRA	Receive Remote Alarm Bits
СВ	RSa4	069	RSa4	Receive Sa4 Bits
CC	RSa5	06A	RSa5	Receive Sa5 Bits
CD	RSa6	06B	RSa6	Receive Sa6 Bits
CE	RSa7	06C	RSa7	Receive Sa7 Bits
CD	RSa8	06D	RSa8	Receive Sa8 Bits
D0	TAF	164	TAF	Transmit Align Frame Register
D1	TNAF	165	TNAF	Transmit Nonalign Frame Register
D2	TSiAF	166	TSiAF	Transmit Si Align Frame
D3	TSiNAF	167	TSiNAF	Transmit Si Nonalign Frame
D4	TRA	168	TRA	Transmit Remote Alarm Bits
D5	TSa4	169	TSa4	Transmit Sa4 Bits
D6	TSa5	16A	TSa5	Transmit Sa5 Bits
D7	TSa6	16B	TSa6	Transmit Sa6 Bits
D8	TSa7	16C	TSa7	Transmit Sa7 Bits
D9	TSa8	16D	TSa8	Transmit Sa8 Bits
DA	TSACR	114	TSACR	Transmit Sa Bit Control Register

NS = not supported

Bit-Level Mapping

Although the following DS2155 registers do not have direct mappings to registers in the DS26401, this table shows how to map the individual bits of the DS2155 registers into the individual bit in the DS26401 registers.

			DS26401 BIT	
ADDRESS	NAME	FUNCTION	LOCATION; 2155 BIT = 26401 REG. BIT	COMMENTS
			0 = RMMR.1 & TMMR.1 1 = RMMR.0 & TMMR.0	

00	MSTRREG	Master Mode Register	2 = 3 = 4 =	
			5 = 6 = 7 =	
01	IOCR1	I/O Configuration Register 1	0 = TCR3.7 1 = TIOCR.2 2 = TIOCR.0 3 = TIOCR.1 4 = RIOCR.2 5 = RIOCR.0 6 = RIOCR.1 7 = RIOCR.3	
02	IOCR2	I/O Configuration Register 2	0 = RIOCR.4 1 = TIOCR.4 2 = RIOCR.5 3 = TIOCR.5 4 = TIOCR.4 5 = RIOCR.6 6 = TIOCR.7 7 = RIOCR.7	
03	T1RCR1	T1 Receive Control Register 1	0 = RCR1.0 1 = RCR1.1 2 = RCR1.7 3 = RCR1.3 4 = RCR2.2 5 = RCR2.3 6 = RCR1.4 7 =	
04	T1RCR2	T1 Receive Control Register 2	0 = RCR2.0 1 = RCR1.2 2 = NS * 3 = NS ** 4 = RCR2.4 5 = RCR1.6 6 = RCR1.5 7 =	* ZBTSI not supported in the DS26401 ** Information available in the HDLC section
05	T1TCR1	T1 Transmit Control Register 1	0 = TCR1.0 1 = TCR1.1 2 = TCR2.7 3 = TCR1.3 4 = TCR1.4 5 = TCR1.5 6 = TCR1.6 7 = TCR1.7	
06	T1TCR2	T1 Transmit Control	0 = TCR2.0 1 = NS * 2 = TCR2.2 3 = TCR2.3	* ZBTSI not supported in the DS26401

		Register 2	4 = TCR2.4 5 = NS ** 6 = TCR2.6 7 = TCR1.2	Information available in the HDLC section
07	T1CCR1	T1 Common Control Register 1	0 = TCR3.0 1 = TCR2.1 2 = TCR3.2 3 = TCR4.2 4 = TCR4.3 5 = 6 = 7 =	
10	INFO1	Information Register 1	0 = RLS2.0 * 1 = RLS2.1 * 2 = RLS2.2 * 3 = RLS2.3 * 4 = RLS2.4 * 5 = RLS2.5 * 6 = TLS1.3 * 7 = RLS2.7 *	* T1 Mode Only
11	INFO2	Information Register 2	0 = NS * 1 = NS * 2 = NS * 3 = NS * 4 = NS * 5 = NS * 6 = NS ** 7 = BER.0 ***	* LIU functions are not supported ** Specific BOC function not supported *** Information available in BERT section
12	INFO3	Information Register 3	0 = RLS2.5 * 1 = RLS2.4 * 2 = RLS2.6 * 3 = 4 = 5 = 6 = 7 =	* E1 Mode Only
13		UNUSED		
14	IIR1	Interrupt Information Register 1		Contact RIIR and TIIR DS26401 registers
15	IIR2	Interrupt Information Register 2		Contact RIIR and TIIR DS26401 registers
16	SR1	Status Register 1	0 = NS * 1 = NS * 2 = NS * 3 = NS * 4 = NS * 5 = RLS4.3 6 = RLS4.1	* LIU functions are not supported

			7 = NS *		
17	IMR1	Interrupt Mask Register 1	0 = NS * 1 = NS * 2 = NS * 3 = NS * 4 = NS * 5 = RIM4.3 6 = RIM4.1 7 = NS *	* LIU functions are not sup	pported
18	SR2	Status Register 2	0 = RLS1.0 * 1 = RLS1.1 ** 2 = RLS1.2 3 = RLS1.3 *** 4 = RLS1.4 5 = RLS1.5 6 = RLS1.6 7 = RLS1.7 ***	* The DS2155 data sheet acronym RLOS (Receive L Synchronization) to refer to (Receive Loss of Frame) ** The DS2155 data sheet acronym RCL (Receive Cato refer to RLOS (Receive Signal) *** T1 Mode Only	used the
19	IMR2	Interrupt Mask Register 2	0 = RIM1.0 1 = RIM1.1 2 = RIM1.2 3 = RIM1.3 4 = RIM1.4 5 = RIM1.5 6 = RIM1.6 7 = RIM1.7	TT Mode Only	
1A	SR3	Status Register 3	0 = RLS1.3 * 1 = RLS3.0 ** 2 = RLS3.1 ** 3 = RLS3.3 ** 4 = TLS1.0 ** 5 = RLS3.0 ** 6 = RLS3.1 ** 7 = RLS3.2 **	* E1 Mode Only ** The DS26401 uses sepainterrupt clear bits, while the uses a double polled interrupt and clear bits. ** DS26401 interrupt and clear bits. ** The DS26401 uses sepainterrupt clear bits, while the uses a double polled interrupt and clear bits. ** DS26401 interrupt and clear bits. ** RLS3.0 RLS3.1 RLS3.1 RLS3.1 RLS3.2 RLS3.1 RLS3.2 RLS3.1 RLS3.2	ear bits 6401 Clear 1.7 8.5 8.7 .1 1.4
1B	IMR3	Interrupt Mask Register 3	0 = RIM1.0 1 = RIM3.1 2 = RIM3.2 3 = RIM3.3 4 = RIM1.4		

			5 - DIM2 5	
			5 = RIM3.5 6 = RIM3.6 7 = RIM3.7	
1C	SR4	Status Register 4	0 = RLS2.0 1 = RLS2.1 2 = RLS4.0 3 = TLS1.3 4 = TLS1.2 5 = RLS2.2 6 = RLS2.3 7 = RLS7.4	
1D	IMR4	Interrupt Mask Register 4	0 = RIM2.0 1 = RIM2.1 2 = RIM4.0 3 = TIM1.3 4 = TIM1.1 5 = RIM2.2 6 = RIM2.3 7 = RIM7.4	
1E	SR5	Status Register 5	0 = RLS4.5 1 = RLS4.6 2 = RLS4.7 3 = TLS1.5 4 = TLS1.6 5 = TLS1.7 6 = 7 =	
1D	IMR5	Interrupt Mask Register 5	0 = RIM2.0 1 = RIM2.1 2 = RIM4.0 3 = TIM1.3 4 = TIM1.2 5 = RIM2.2 6 = 7 =	
20	SR6	Status Register 6		Information available in HDLC section
21	IMR6	Interrupt Mask Register 6		Information available in HDLC section
22	SR7	Status Register 7		Information available in HDLC section
23	IMR7	Interrupt Mask Register 7		Information available in HDLC section
24	SR8	Status Register 8	0 = RLS7.0 1 = NS * 2 = TLS2.4 3 = RLS7.2 4 = NS * 5 = RLS7.1	

			0	
			6 = 7 =	
25	IMR8	Interrupt Mask Register 8	0 = RIM7.0 1 = 2 = TIM2.4 3 = RIM7.2 4 = TIM1.2 5 = RIM7.1 6 = 7 =	
26	SR9	Status Register 9		Information available in BERT section
27	IMR9	Interrupt Mask Register 9		Information available in BERT section
28	PCPR	Per-Channel Pointer Register		Information is in Indirect Register section
29	PCDR1	Per-Channel Data Register 1		Information is in Indirect Register section
2A	PCDR2	Per-Channel Data Register 2		Information is in Indirect Register section
2B	PCDR3	Per-Channel Data Register 3		Information is in Indirect Register section
2C	PCDR4	Per-Channel Data Register 4		Information is in Indirect Register section
2D	INFO4	Information Register 4		Information available in HDLC section
2E	INFO5	Information Register 5		Information available in HDLC section
2F	INFO6	Information Register 6		Information available in HDLC section
30	INFO7	Information Register 7	0 = RRTS7.2 1 = RRTS7.1 2 = RRTS7.0 3 = RRTS7.3 4 = RRTS7.4 5 = RRTS7.5 6 = RRTS7.6 7 = RRTS7.7	
31	H1RC	HDLC #1 Receive Control		Information available in HDLC section
32	H2RC	HDLC #2 Receive Control		Unsupported function in the DS26401
33	E1RCR1	E1 Receive Control	0 = RCR1.0 1 = RCR1.1 2 = RCR1.2 3 = RCR1.3	

		Register 1	4 = RCR1.4 5 = RCR1.6 6 = RCR1.5 7 = RCR3.5	
34	E1RCR2	E1 Receive Control Register 2	0 = RCR2.0 1 = 2 = NS * 3 = NS * 4 = NS * 5 = NS * 6 = NS * 7 = NS *	* The RLINK and RLCLK functions are not supported on the DS26401
35	E1RCR1	E1 Transmit Control Register 1	0 = TCR1.0 1 = TCR1.5 2 = TCR1.2 3 = TCR1.3 4 = TCR1.4 5 = TCR1.1 6 = TCR1.6 7 = TCR1.7	
36	E1TCR2	E1 Transmit Control Register 2	0 = TCR2.5 1 = TCR2.6 2 = TCR2.7 3 = NS * 4 = NS * 5 = NS * 6 = NS * 7 = NS *	* The TLINK and TLCLK functions are not supported on the DS26401
37	BOCC	BOC Control Register	0 = THC2.6 1 = RBOCC.1 2 = RBOCC.2 3 = RBOCC.7 4 = NS * 5 = 6 = 7 =	* The DS26401 has a dedicated receieve BOC message register
40	SIGCR	Signaling Control Register	0 = RFSA1.4 * 1 = 2 = 3 = RSIGC.2 4 = RSIGC.1 5 = 6 = 7 = NS **	* The DS26401 forces signaling to all ones on a per channel basis using the RSAOI1 - RSAOI4 registers ** THe DS26401 selects signaling reinsertion on a per channel basis using the SRI1 - SRI4 registers
41	ERCNT	Error Count Configuration Register	0 = ERCNT.0 * 1 = ERCNT.1 2 = ERCNT.2 3 = ERCNT.0 4 = ERCNT.3 5 = ERCNT.4	* T1 Mode ** E1 Mode

			6 = ERCNT.5 7 = -	
4A	LBCR	Loopback Control Register	0 = RCR3.0 1 = RCR3.1 2 = RCR3.2 3 = NS * 4 = NS * 5 = - 6 = - 7 = -	* LIU functions are not supported
4F	ESCR	Elastic Store Control Register	0 = RESCR.0 1 = RESCR.1 2 = RESCR.2 3 = RESCR.3 4 = TESCR.0 5 = TESCR.1 6 = TESCR.2 7 = TESCR.3	
70	CCR1	Common Control Register 1	0 = TCR3.3 1 = TCR3.4 2 = TCR3.5 3 = NS * 4 = TCR3.6 5 = RSIGC.0 6 = TCR3.0 7 = NS *	* The DS26401 does not use Indirect Registers ** LIU functions are not supported
71	CCR2	Common Control Register 2	0 = NS * 1 = GCR2.4 2 = GCR2.5 3 = 4 = 5 = 6 = 7 =	
72	CCR3	Common Control Register 3	0 = RESCR.6 1 = RESCR.7 2 = TESCR.6 3 = TESCR.7 4 = 5 = 6 = GCR1.0 7 = NS *	* Unsupported function in the DS26401
73	CCR4	Common Control Register 4	0 = NS * 1 = NS * 2 = NS * 3 = NS * 4 = NS ** 5 = NS ** 6 = NS ** 7 = NS **	* The DS26401 does not have user definable output pins ** LIU functions are not supported

78	LIC1	Line Interface Control 1	Unsupported function in the DS26401
79	LIC2	Line Interface Control 2	Unsupported function in the DS26401
7A	LIC3	Line Interface Control 3	Unsupported function in the DS26401
7B	LIC4	Line Interface Control 4	Unsupported function in the DS26401
7C		UNUSED	
7D	TLBC	Transmit Line Build-Out Control	Unsupported function in the DS26401
7E	IAAR	Idle Array Address Register	The DS26401 does not use Direct Registers
7F	PCICR	Per-Channel Idle Code Value Register	The DS26401 does not use Direct Registers
90-9F	HDLC1	HDLC #1 Functions Registers	Information available in HDLC section
A0-AF	HDLC2	HDLC#2 Functions Registers	Unsupported function in the DS26401
В0	ESIBCR1	Extended System Information Bus Control Register 1	Unsupported function in the DS26401
B1	ESIBCR2	Extended System Information Bus Control Register 2	Unsupported function in the DS26401
B2	ESIB1	Extended System Information Bus Register 1	Unsupported function in the DS26401
В3	ESIB2	Extended System Information Bus Control Register 1	Unsupported function in the DS26401
B4	ESIB3	Extended System Information Bus Register 3	Unsupported function in the DS26401

B5	ESIB4	Extended System Information Bus Register 4		Unsupported func	tion in the DS26401
B6	IBCC	In-Band Code Control Register	0 = RIBCC.0 1 = RIBCC.1 2 = RIBCC.2 3 = RIBCC.3 4 = RIBCC.4 5 = RIBCC.5 6 = TCR4.0 7 = TCR4.1		
BD	RSCC	In-Band Receive Spare Control Register	0 = RSCC.0 1 = RSCC.1 2 = RSCC.2 3 = 4 = 5 = 6 = 7 =		
C2	RFDLM1	Receive FDL Match Register 1		Unsupported Fund	ction in the DS26401
C3	RFDLM2	Receive FDL Match Register 2		Unsupported Fund	ction in the DS26401
C4		Unused		Unused	
				The DS26401 Inte Operation function receive and transr	
C5	IBOC	Interleave Bus Operation Control Register		DS26401 Address 084 188	Function Receive IBO Control Transmit IBO Control
DB-E1	BERT	BERT Functions Registers		Information availa	ble in BERT section
E2		Unused		Unused	
E3-EF	BERT	BERT Functions Registers		Information availa	ble in BERT section
F0-FF	TEST	Test Register		Unsupported func	tion in the DS26401

HDLC Controller

The DS26401 has a single HDLC controller that may be mapped to any time slot or to the FDL (T1 mode) or any combinations of Sa bits (E1 mode). The table below list the differences between the DS2155's and the DS26401's HDLC function.

FUNCTION	DS2155	DS26401
Number of Controllers	2	1
FIFO Size	128 bytes	64 bytes
Channel Assignment	Any combination of channels; Facilities Data Link bit stream; Any combination of Sa bits	Facilities Data Link bit stream;
SS7 Support	Yes	No

DS2155			DS26401	
ADDRESS	NAME	FUNCTION	BIT LOCATION; 2155 BIT = 26401 REG. BIT	COMMENTS
31	H1RC	HDLC #1 Receive Control	0 = NS * 1 = 2 = 3 = 4 = 5 = 6 = RHC1.5 7 = RHC1.6	* The DS26401 does not have support for Signaling System 7 (SS7)
32	H2RC	HDLC #2 Receive Control		Unsupported function in the DS26401
90	H2RC	HDLC #2 Receive Control	0 = THC1.0 1 = THC1.1 2 = THC1.2 3 = THC1.3 4 = THC1.4 5 = THC1.5 6 = THC1.6 7 = THC1.7	
91	H1FC	HDLC #1 FIFO Control		* The HDLC FIFO is only 64 bytes deep on the DS26401
92	H1RCS1	HDLC #1 Receive Channel Select 1		The DS26401 uses the RHC register
93	H1RCS2	HDLC #2 Receive Channel Select 2		to select the channel to receive HDLC data

94	H1RCS3	HDLC #2 Receive Channel Select 3		The DS26401 can only receive HDLC
95	H1RCS4	HDLC #2 Receive Channel Select 4		data in a single DSO channel
96	H1RTSBS	HDLC #1 Receive Time Slot Bits/Sa Bits Select		
97	H1TCS1	HDLC #1 Transmit Channel Select 1		The DS26401 uses the THC2 register
98	H1TCS2	HDLC #1 Transmit Channel Select 2		to select the channel to transmit HDLC data
99	H1TCS3	HDLC #1 Transmit Channel Select 3		The DS26401 can only transmit
9A	H1TCS4	HDLC #1 Transmit Channel Select 4		HDLC data in a single DSO channel
9B	H1TTSBS	HDLC #1 Transmit Time Slot Bits/Sa Bits Select		
9C	H1RPBA	HDLC #1 Receive Packet Bytes Available	0B5 RHPBA	
9D	H1TF	HDLC #1 Transmit FIFO	1B4 THF	
9E	H1RF	HDLC #1 Receive FIFO	0B6 RHF	
9F	H1TFBA	HDLC #1 Transmit FIFO Buffer Available	1B3 TFBA	
A0	H2TC	HDLC #2 Transmit Control		Unsupported function in the DS26401
A1	H2FC	HDLC #2 FIFO Control		Unsupported function in the DS26401
A2	H2RCS1	HDLC #2 Receive Channel Select 1		Unsupported function in the DS26401
А3	H2RCS2	HDLC #2 Receive Channel Select 2		Unsupported function in the DS26401
A4	H2RCS3	HDLC #2 Receive Channel Select 3		Unsupported function in the DS26401
A5	H2RCS4	HDLC #2 Receive Channel Select 3		Unsupported function in the DS26401
A6	H2RTSBS	HDLC #2 Receive Time Slot Bits/Sa Bits Select		Unsupported function in the DS26401
A7	H2TCS1	HDLC #2 Transmit Channel Select 1		Unsupported function in the DS26401
A8	H2TCS2	HDLC #2 Transmit Channel Select 2		Unsupported function in the DS26401

A9	H2TCS3	HDLC #2 Transmit Channel Select 3	Unsupported function in the DS26401
AA	H2TCS4	HDLC #2 Transmit Channel Select 4	Unsupported function in the DS26401
AB	H2TTSBS	HDLC #2 Transmit Time Slot Bits/Sa Bits Select	Unsupported function in the DS26401
AC	H2RPBA	HDLC #2 Receive Packet bytes Available	Unsupported function in the DS26401
AD	H2TF	HDLC #2 Transmit FIFO	Unsupported function in the DS26401
AE	H2RF	HDLC #2 Receive FIFO	Unsupported function in the DS26401
AF	H2TFBA	HDLC #2 Transmit FIFO Buffer Available	Unsupported function in the DS26401

BERT Functions

The DS26401 BERT functions are more full featured than the DS2155, therefore a direct register mapping is not possible. The DS26401 pseudorandom patterns are fully programmable over 32 bits compared to the fixed set of pseudorandom patterns found in the DS2155. Also, large repetitive patterns up to 512 bytes may be loaded via an indirect register. The BERT register set for the DS2155 is below but the DS26401 data sheet should be consulted for all BERT functions.

DS2155			COMMENTS
ADDRESS	NAME	FUNCTION	COMMENTS
DB	BAWC	BERT Alternating Word Count Rate	Consult DS26401 Data Sheet
DC	BRP1	BERT Repetitive Pattern Set Register 1	Consult DS26401 Data Sheet
DD	BRP2	BERT Repetitive Pattern Set Register 2	Consult DS26401 Data Sheet
DE	BRP3	BERT Repetitive Pattern Set Register 3	Consult DS26401 Data Sheet
DF	BRP4	BERT Repetitive Pattern Set Register 4	Consult DS26401 Data Sheet
E0	BC1	BERT Control Register 1	Consult DS26401 Data Sheet
E1	BC2	BERT Control Register 2	Consult DS26401 Data Sheet
E2		Unused	Unused
E3	BBC1	BERT Bit Count Register 1	Consult DS26401 Data Sheet
E4	BBC2	BERT Bit Count Register 2	Consult DS26401 Data Sheet
E5	BBC3	BERT Bit Count Register 3	Consult DS26401 Data Sheet
E6	BBC4	BERT Bit Count Register 4	Consult DS26401 Data Sheet
E7	BEC1	BERT Error Count Register 1	Consult DS26401 Data Sheet
E8	BEC2	BERT Error Count Register 2	Consult DS26401 Data Sheet
E9	BEC3	BERT Error Count Register 3	Consult DS26401 Data Sheet
EA	BIC	BERT Interface Control Register	Consult DS26401 Data Sheet
EB	ERC	Error Rate Control Register	Consult DS26401 Data Sheet

EC	NOE1	Number-of-Errors 1	Consult DS26401 Data Sheet
ED	NOE2	Number-of-Errors 3	Consult DS26401 Data Sheet
EE	NOEL1	Number-of-Errors Left 1	Consult DS26401 Data Sheet
EF	NOEL2	Number-of-Errors Left 2	Consult DS26401 Data Sheet

Featured Exclusive to the DS26401

The DS26401 has many new features, which are summarized below.

Transmit-Side Synchronizer

The DS26401 has a basic synchronizer on the transmit side. This function allows the transmitter to align to the data stream present at TSER when there is no externally supplied frame sync signal available.

TSYNCC.0: Resynchronize (RESYNC). When toggled from low to high, a resynchronization of the transmit side framer is initiated. Must be cleared and set again for a subsequent resync.

TSYNCC.1: Sync Enable (SYNCE)
0 = Automatic resync enabled
1 = Automatic resync disabled

TSYNCC.2: Transmit Synchronizer Enable (TSEN)

0 = Transmit-Side Synchronizer Disabled1 = Transmit-Side Synchronizer Enabled

TLS3.0: Loss-of-Frame Synchronization Detect (LOFD). This is a latched bit which is set when the transmit synchronizer is searching for the sync pattern in the incoming data stream.

TLS3.1: Loss of Frame (LOF). A real-time status bit which indicates that the transmit side synchronizer is searching for the synchronization pattern in the incoming data stream.

Other Functions Exclusive to the DS26401

A low-to-high transition on this bit latches the framer performance monitor counters, and the internal BERT counters (only when enabled). Each framer as well as the BERT can be independently enabled to accept this input. Must be cleared and set again to perform another counter latch.

GCR1.2: Bulk Write Enable (BWE). When this bit is set, a port write to one of the octal ports will be mapped into all eight ports. Useful for device initialization.

0 = Normal operation

1 = Bulk write is enabled

GCR1.3: Reference Clock Frequency Select (REFCLKS). This bit sets the divider ratio of the internal clock generator depending on the frequency of the reference clock input.

 $0 = REF_CLK is 1.544MHz$

 $1 = REF_CLK is 2.048MHz$

GCR1.4: Ganged IBO Enable (GIBO). This bit is used to select either the internal MUX for IBO operation or externally "wire-or" operation. Normally this bit should be set = 0 and the internal

MUX used.

0 = Use internal IBO mux.

1 = Externally "wire-or" TSER pins and RSER pins for IBO operation.

GCR1.5: Receive Loss-of-Frame/Loss-of-Transmit Clock indication Select (RLOFLTS)

0 = RLOF/LOTCx pins indicate receive loss of frame

1 = RLOF/LOTCx pins indicate loss of transmit clock

GCR1.6: BERT Loss-of-Sync Interrupt Mask (BLOSIM)

0 = DS26401 will not generate an interrupt on INT for a BERT LOS

1 = DS26401 will generate an interrupt on INT for a BERT LOS

GCR1.7: BERT Bit Error Detect Interrupt Mask (BBEDIM)

0 = DS26401 will not generate an interrupt on INT for a BERT bit error detect

1 = DS26401 will generate an interrupt on INT for a BERT bit error detect

GCR2. 0: Receive Channel Block/Clock Select (RCBCS)

This bit controls the function of all eight RCHBLK/CLK pins.

0 = RCHBLK/CLK pins output RCHBLK(1-8) (Receive Channel Block)

1 = RCHBLK/CLK pins output RCHCLK(1-8) (Receive Channel Clock)

GCR2.1: Transmit Channel Block/Clock Select (TCBCS).

This bit controls the function of all eight TCHBLK/CLK pins.

0 = TCHBLK/CLK pins output TCHBLK(1-8) (Transmit Channel Block)

1 = TCHBLK/CLK pins output TCHCLK(1-8) (Transmit Channel Clock)

GCR2.2: Receive Frame/Multiframe Sync Select (RFMSS).

This bit controls the function of all eight RF/RMSYNC pins.

0 = RF/RMSYNC pins output RFSYNC(1-8) (Receive Frame Sync)

1 = RF/RMSYNC pins output RMSYNC(1-8) (Receive Multiframe Sync)

GCR2.3: Receive Loss-of-Signal/Signaling Freeze Select (RLOSSFS). This bit controls the function of all eight RLOS/RSIGF pins.

0 = RLOS/RSIGF pins output RLOS(1-8) (receive loss of signal)

1 = RLOS/RSIGF pins output RSIGF(1-8) (receive signaling freeze)

GCR2.6 and GCR2.7: Interleave Bus Operation Mode Select 0-1 (IBOMS0/1). These bits determine the configuration of the IBO (interleaved bus) multiplexer. These bits should be with the Rx and Tx IBO control registers within each of the framer units. Additional information concerning the IBO mux is given in the data sheet.

IBOMS1	IBOMS0	IBO Mode
0	0	IBO Mux Disabled
0	1	4.096MHz (2 per)
1	0	8.192MHz (4 per)
1	1	16.384MHz (8 per)

RCR.1: Receive RAI Integration Enable (RAIIE). In T1 ESF mode, the RAI indication can be interrupted for a period not to exceed 100ms per interruption as stated in ANSI T1.403. In T1 ESF mode, setting RAIIE will cause the RAI status from the DS26401 to be integrated for 200ms.

- 0 = RAI detects when 16 consecutive patterns of 00FF appear in the FDL. RAI clears when 14 or less patterns of 00FF hex out of 16 possible appear in the FDL
- 1 = RAI detects when the condition has been present for greater than 200ms. RAI clears when the condition has been absent for greater than 200ms.

RCR3.7: Input Data Format (IDF)

- 0 = Bipolar data is expected at RPOS and RNEG (either AMI or B8ZS)
- 1 = NRZ data is expected at RPOS. The BPV counter will be disabled and RNEG will be ignored by the DS26401.
- RRTS1.0: Receive Loss-of-Frame Condition (RLOF). Set when the DS26401 is not synchronized to the received data stream.
- RRTS1.1: Receive Loss-of-Signal Condition (RLOS). Set when 255 (or 2048 if RCR2.0 = 1) consecutive zeros have been detected at RPOS and RNEG.
- RRTS1.2: Receive Alarm Indication Signal Condition (RAIS). Set when an unframed all one's code is received at RPOS and RNEG.
- RRTS1.3: Receive Remote Alarm Indication Condition (RRAI). Set when a remote alarm is received at RPOS and RNEG.
- RRTS3.0:(T1 MODE) Loop-Up Code Detected Condition (LUP). Set when the loop-up code as defined in the RUPCD1/2 register is being received.
- RRTS3.0:(E1 MODE) Receive Distant MF Alarm Condition (RDMA). Set when bit-6 of time slot 16 in frame 0 has been set for two consecutive multiframes. This alarm is not disabled in the CCS signaling mode.
- RRTS3.1:(T1 MODE) Loop-Down Code Detected Condition (LDN). Set when the loop-down code as defined in the RDNCD1/2 register is being received.
- RRTS3.1: (E1 MODE) V5.2 Link Detected Condition (V52LNK). Set on detection of a V5.2 link identification signal (G.965).
- RRTS3.2: Spare Code Detected Condition (LSP). Set when the spare code as defined in the RSCD1/2 registers is being received.
- RRTS3.3: Loss-of-Receive Clock Condition (LORC). Set when the RCLK pin has not transitioned for one channel time.
- RLS4.2: One-Second Timer (1SEC). Set every one-second interval based on RCLK.
- *RLS7.3: Receive SLC-96 Alignment Event (RSLC96).* Set when a valid SLC-96 alignment pattern is detected in the Fs bit stream, and the RSLCx registers have data available for retrieval. (Section 11.12)
- *RLS7.5:* Receive RAI-CI Detect (RRAI-CI). Set when an RAI-CI pattern has been detected by the receiver (see Section 11.5.1). This bit is active in ESF framing mode only, and will set only if an RAI condition is being detected (RRTS1.3). When the host reads (and clears) this bit, it will set again each time the RAI-CI pattern is detected (approximately every 1.1 seconds).

ERCNT.6: Manual Counter Update Select (MCUS). When manual update mode is enabled with EAMS, this bit can be used to allow the GLCE bit in GCR1 to latch all counters. Useful for synchronously latching counters of multiple framers.

0 = MECU is used to manually latch counters.

1 = GLCE is used to manually latch counters.

ERCNT.7: One-Second Select (1SECS). When timed update is enabled by EAMS, setting this bit for a specific framer will allow that framer's counters to latch on the 1 second reference from framer #1. Note that this bit should always be clear for framer #1.

0 = Use internally generated 1 second timer.

1 = Use 1 second timer from framer #1.

RESCR.4: Receive Slip Zone Select (RSZS). This bit determines the minimum distance allowed between the elastic store read and write pointers before forcing a controlled slip. This bit is only applies during T1 to E1 or E1 to T1 conversion applications.

0 = force a slip at 9 bytes or less of separation (used for clustered blank channels)

1 = force a slip at 2 bytes or less of separation (used for distributed blank channels)

RBOCC.4 to RBOCC.5: Receive BOC Disintegration bits (RBD0, RBD1). The BOC Disintegration filter sets the number of message bits that must be received without a valid BOC in order to set the BC bit indicating that a valid BOC is no longer being received.

RBD1	RBD0	CONSECUTIVE MESSAGE BITS FOR BOC CLEAR IDENTIFICATION
0	0	16
0	1	32
1	0	48
1	1	64

TCR3.1: Insert BPV (IBPV). A 0-to-1 transition on this bit will cause a single bipolar violation (BPV) to be inserted into the transmit data stream. Once this bit has been toggled from a 0 to a 1, the device waits for the next occurrence of three consecutive ones to insert the BPV. This bit must be cleared and set again for a subsequent error to be inserted.

TIOCR.3: TSSYNC Mode Select (TSSM). Selects frame or multiframe mode for the TSSYNC pin. 0 = frame mode

1 = multiframe mode

TLS1.4: Transmit SLC96 Multiframe Event (TSLC96). When enabled by TCR2.6, this bit will set once per SLC96 multiframe (72 frames) to alert the host that new data may be written to the TSLC1-TSLC3 registers.

TESCR.4: Transmit Slip Zone Select (TSZS). This bit determines the minimum distance allowed between the elastic store read and write pointers before forcing a controlled slip. This bit only affects the elastic stores when used in T1 to E1 or E1 to T1 conversion applications.

0 = force a slip at 9 bytes or less of separation (used for clustered blank channels)

1 = force a slip at 2 bytes or less of separation (used for distributed blank channels)

For More Information

Download the DS2155 and DS26401 data sheets on our website at

www.maximintegrated.com/telecom.

Related Parts				
DS21455	Quad T1/E1/J1 Transceivers	Free Samples		
DS21458	Quad T1/E1/J1 Transceivers	Free Samples		
DS2155	T1/E1/J1 Single-Chip Transceiver	Free Samples		
DS21Q55	Quad T1/E1/J1 Transceiver			
DS26401	Octal T1/E1/J1 Framer	Free Samples		

More Information

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 403: http://www.maximintegrated.com/an403

APPLICATION NOTE 403, AN403, AN 403, APP403, Appnote403, Appnote 403

Copyright © by Maxim Integrated Products

Additional Legal Notices: http://www.maximintegrated.com/legal