# **MOSFET** – Power, Single, N-Channel with ESD Protection, SOT-723

# 20 V, 890 mA

#### **Features**

- N-Channel Switch with Low R<sub>DS(on)</sub>
- 44% Smaller Footprint and 38% Thinner than SC89
- Low Threshold Levels Allowing 1.5 V R<sub>DS(on)</sub> Rating
- Operated at Low Logic Level Gate Drive
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

#### **Applications**

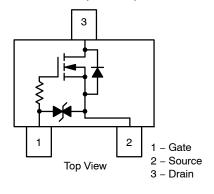
- Load/Power Switching
- Interface Switching
- Logic Level Shift
- Battery Management for Ultra Small Portable Electronics

#### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise stated)

| Parameter                                                         |                        |                                   | Symbol          | Value | Unit |
|-------------------------------------------------------------------|------------------------|-----------------------------------|-----------------|-------|------|
| Drain-to-Source Voltage                                           |                        |                                   | $V_{DSS}$       | 20    | V    |
| Gate-to-Source Volt                                               | Gate-to-Source Voltage |                                   |                 | ±8    | V    |
| Continuous Drain                                                  | Steady<br>State        | T <sub>A</sub> = 25°C             | I <sub>D</sub>  | 890   | mA   |
| Current (Note 1)                                                  | State                  | T <sub>A</sub> = 85°C             |                 | 640   |      |
|                                                                   | t ≤ 5 s                | T <sub>A</sub> = 25°C             |                 | 990   |      |
| Power Dissipation (Note 1)                                        | Steady<br>State        | T <sub>A</sub> = 25°C             | P <sub>D</sub>  | 450   | mW   |
|                                                                   | t ≤ 5 s                |                                   |                 | 550   |      |
| Continuous Drain                                                  | Steady<br>State        | T <sub>A</sub> = 25°C             | I <sub>D</sub>  | 750   | mA   |
| Current (Note 2)                                                  | State                  | T <sub>A</sub> = 85°C             |                 | 540   |      |
| Power Dissipation (Note 2)                                        |                        | T <sub>A</sub> = 25°C             | P <sub>D</sub>  | 310   | mW   |
| Pulsed Drain<br>Current                                           | t <sub>p</sub> = 10 μs |                                   | I <sub>DM</sub> | 1.8   | Α    |
| Operating Junction and Storage<br>Temperature                     |                        | T <sub>J</sub> , T <sub>STG</sub> | –55 to<br>150   | °C    |      |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s) |                        |                                   | TL              | 260   | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 2. Surface mounted on FR4 board using the minimum recommended pad size




# ON Semiconductor®

#### www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> TYP | I <sub>D</sub> Max |  |
|----------------------|-------------------------|--------------------|--|
| 20 V                 | 0.20 Ω @ 4.5 V          | 890 mA             |  |
|                      | 0.26 Ω @ 2.5 V          | 790 mA             |  |
|                      | 0.43 Ω @ 1.8 V          | 700 mA             |  |
|                      | 0.56 Ω @ 1.5 V          | 200 mA             |  |

#### SOT-723 (3-LEAD)





#### SOT-723 CASE 631AA STYLE 5

#### MARKING DIAGRAM



KF = Specific Device Code M = Date Code

#### **ORDERING INFORMATION**

| Device      | Package | Shipping <sup>†</sup> |  |
|-------------|---------|-----------------------|--|
| NTK3134NT1G | SOT-723 | 4000 / Tape & Reel    |  |
| NTK3134NT5G | SOT-723 | 8000 / Tape & Reel    |  |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

#### THERMAL RESISTANCE RATINGS

| Parameter                                               | Symbol        | Max | Unit |
|---------------------------------------------------------|---------------|-----|------|
| Junction-to-Ambient - Steady State (Note 3)             | $R_{	hetaJA}$ | 280 | °C/W |
| Junction-to-Ambient - t = 5 s (Note 3)                  | $R_{	hetaJA}$ | 228 |      |
| Junction-to-Ambient - Steady State Minimum Pad (Note 4) | $R_{	hetaJA}$ | 400 |      |

- 3. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
  4. Surface mounted on FR4 board using the minimum recommended pad size

# $\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise specified})$

| Parameter                                                    | Symbol                               | Test Condition Min                                                           |                        | Min  | Тур  | Max  | Unit  |
|--------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|------------------------|------|------|------|-------|
| OFF CHARACTERISTICS                                          | •                                    |                                                                              |                        | 1    |      |      | •     |
| Drain-to-Source Breakdown<br>Voltage                         | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$ 20                            |                        |      |      | V    |       |
| Drain-to-Source Breakdown<br>Voltage Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | I <sub>D</sub> = 250 μA, Reference to 25°C                                   |                        |      | 18   |      | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | V <sub>GS</sub> = 0 V,<br>V <sub>DS</sub> = 16 V                             |                        |      |      | 1.0  | μΑ    |
|                                                              |                                      | V <sub>DS</sub> = 16 V                                                       | T <sub>J</sub> = 125°C |      |      | 2.0  | 1     |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | $V_{DS} = 0 \text{ V}, V_{GS} = \pm$                                         | 4.5 V                  |      |      | ±0.5 | μΑ    |
| ON CHARACTERISTICS (Note 5)                                  |                                      |                                                                              |                        | •    |      |      | -     |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | $V_{GS} = V_{DS}$ , $I_D = 2$                                                | 50 μΑ                  | 0.45 |      | 1.2  | V     |
| Negative Threshold Temperature<br>Coefficient                | V <sub>GS(TH)</sub> /T <sub>J</sub>  |                                                                              |                        |      | 2.4  |      | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                  | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 890 mA                             |                        |      | 0.20 | 0.35 | Ω     |
|                                                              |                                      | V <sub>GS</sub> = 2.5 V, I <sub>D</sub> = 780 mA                             |                        |      | 0.26 | 0.45 |       |
|                                                              |                                      | V <sub>GS</sub> = 1.8 V, I <sub>D</sub> = 700 mA                             |                        |      | 0.43 | 0.65 | 1     |
|                                                              |                                      | V <sub>GS</sub> = 1.5 V, I <sub>D</sub> = 200 mA                             |                        |      | 0.56 | 1.2  | 1     |
| Forward Transconductance                                     | 9 <sub>FS</sub>                      | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 800 mA                              |                        |      | 1.6  |      | S     |
| CHARGES, CAPACITANCES AND                                    | GATE RESISTAN                        | ICE                                                                          |                        |      |      |      |       |
| Input Capacitance                                            | C <sub>ISS</sub>                     | $V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = 16 \text{ V}$            |                        |      | 79   | 120  | pF    |
| Output Capacitance                                           | C <sub>OSS</sub>                     |                                                                              |                        |      | 13   | 20   |       |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                     |                                                                              |                        |      | 9.0  | 15   |       |
| SWITCHING CHARACTERISTICS,                                   | V <sub>GS</sub> = <b>4.5 V</b> (Note | e 6)                                                                         |                        |      |      |      |       |
| Turn On Delay Time                                           | t <sub>d(ON)</sub>                   | $V_{GS}$ = 4.5 V, $V_{DS}$ = 10 V, $I_{D}$ = 500 mA, $R_{G}$ = 10 $\Omega$   |                        |      | 6.7  |      | ns    |
| Rise Time                                                    | t <sub>r</sub>                       |                                                                              |                        |      | 4.8  |      |       |
| TurnOff Delay Time                                           | t <sub>d(OFF)</sub>                  |                                                                              |                        |      | 17.3 |      |       |
| Fall Time                                                    | t <sub>f</sub>                       |                                                                              |                        |      | 7.4  |      |       |
| DRAIN SOURCE DIODE CHARACT                                   | ERISTICS                             |                                                                              |                        |      |      |      |       |
| Forward Diode Voltage                                        | $V_{SD}$                             | $V_{GS} = 0 \text{ V}, I_{S} = 350 \text{ mA}$                               | T <sub>J</sub> = 25°C  |      | 0.75 | 1.2  | V     |
| Reverse Recovery Time                                        | t <sub>RR</sub>                      | $V_{GS} = 0 \text{ V}, d_{ SD}/d_t = 1$<br>$I_S = 1.0 \text{ A}, V_{DD} = 1$ | 00 A/μs,               |      | 8.1  |      | ns    |
| Charge Time                                                  | t <sub>a</sub>                       | I <sub>S</sub> = 1.0 A, V <sub>DD</sub> = 20 V                               |                        |      | 6.4  |      | 1     |
| Discharge Time                                               | t <sub>b</sub>                       |                                                                              |                        |      | 1.7  |      |       |
| Reverse Recovery Charge                                      | Q <sub>RR</sub>                      |                                                                              |                        |      | 3.0  |      | nC    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 5. Pulse Test: pulse width = 300 μs, duty cycle = 2%
- 6. Switching characteristics are independent of operating junction temperatures

#### **TYPICAL CHARACTERISTICS**

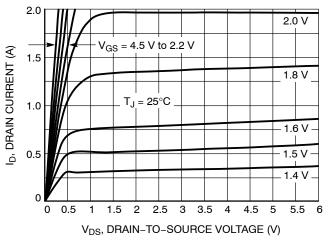



Figure 1. On-Region Characteristics

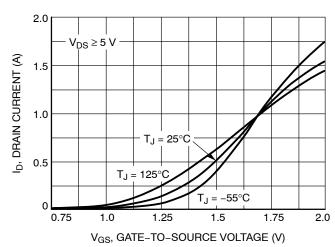



Figure 2. Transfer Characteristics

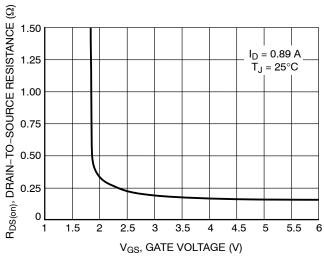



Figure 3. On-Resistance vs. Gate-to-Source Voltage

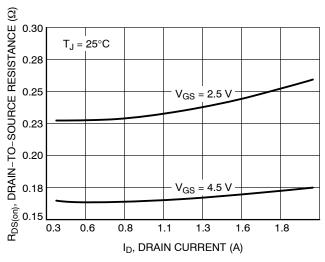



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

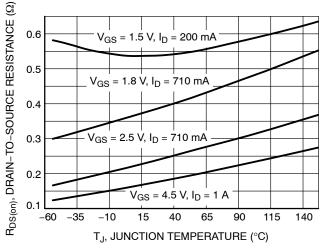



Figure 5. On–Resistance Variation with Temperature

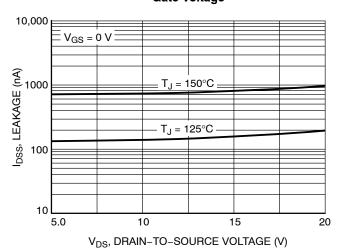



Figure 6. Drain-to-Source Leakage Current vs. Voltage

# **TYPICAL CHARACTERISTICS**

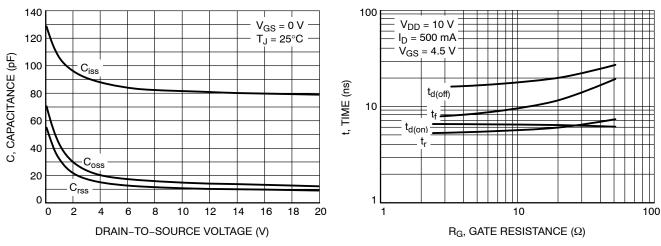



Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

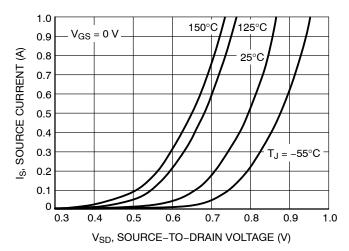



Figure 9. Diode Forward Voltage vs. Current



SOT-723 CASE 631AA-01 ISSUE D

**DATE 10 AUG 2009** 

# NOTES:

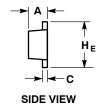
- NOTES.

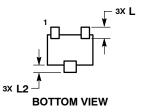
  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

  2. CONTROLLING DIMENSION: MILLIMETERS.

  3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
- FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

|     | MILLIMETERS |      |      |  |
|-----|-------------|------|------|--|
| DIM | MIN         | NOM  | MAX  |  |
| Α   | 0.45        | 0.50 | 0.55 |  |
| b   | 0.15        | 0.21 | 0.27 |  |
| b1  | 0.25        | 0.31 | 0.37 |  |
| С   | 0.07        | 0.12 | 0.17 |  |
| D   | 1.15        | 1.20 | 1.25 |  |
| E   | 0.75        | 0.80 | 0.85 |  |
| е   | 0.40 BSC    |      |      |  |
| ΗE  | 1.15        | 1.20 | 1.25 |  |
| L   | 0.29 REF    |      |      |  |
| 12  | 0.15        | 0.20 | 0.25 |  |

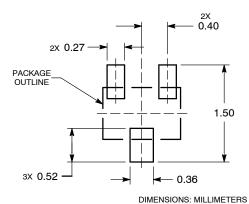

# **L2** 0.15 0.20 0.25 **GENERIC** MARKING DIAGRAM\*




= Specific Device Code XX Μ = Date Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

# -X-2X b ⊕ 0.08 X Y **TOP VIEW**






STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

**RECOMMENDED SOLDERING FOOTPRINT\*** 



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON12989D Electronic versions are uncontrolled except when accessed directly from the Document Reposit<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |             |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|
| DESCRIPTION:     | SOT-723                                                                                                                                                                                     |  | PAGE 1 OF 1 |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales