onsemi

MOSFET – N-Channel POWERTRENCH[®]

75 V, 100 A, 3.7 m Ω

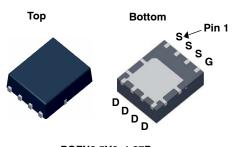
FDMS037N08B

Description

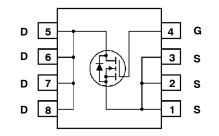
This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been tailored to minimize the on-state resistance and while maintaining superior switching performance.

Features

- $R_{DS(on)} = 3.01 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$
- Low FOM R_{DS(on)}*Q_G
- Low Reverse Recovery Charge, $Q_{rr} = 80 \text{ nC}$
- Soft Reverse Recovery Body Diode
- Enables Highly Efficiency in Synchronous Rectification
- Fast Switching Speed
- 100% UIL Tested
- These Device is Pb-Free and RoHS Compliant


Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection circuit
- DC Motor Drives and Uninterruptible Power Supplies


MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Symbol	Parameter	Value	Unit
V _{DSS}	Drain to Source Voltage	75	V
V _{GSS}	Gate to Source Voltage	±20	V
ID	Drain Current – Continuous (T _C = 25°C) – Continuous (T _C = 25°C, Silicon Limited) – Continuous (T _A = 25°C) (Note 1a)	100 128 19.9	A
I _{DM}	Drain Current – Pulsed (Note 2)	400	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	180.6	mJ
PD	P_D Power Dissipation (T _C = 25°C)		W
	Power Dissipation ($T_A = 25^{\circ}C$) (Note 1a)	0.83	
T _J , T _{stg}	Operating and Storage Junction Temperature Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

PQFN8 5X6, 1.27P (Power 56) CASE 483AE

MARKING DIAGRAM

- &Z = Assembly Plant Code
- &3 = Numeric Date Code
- &K = 2-Digit Lot Code
- FDMS037N08B = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMS037N08B	PQFN-8	3000 /
	(Pb-Free)	Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit	
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max	1.2		
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max (Note 1a)	50	°C/W	

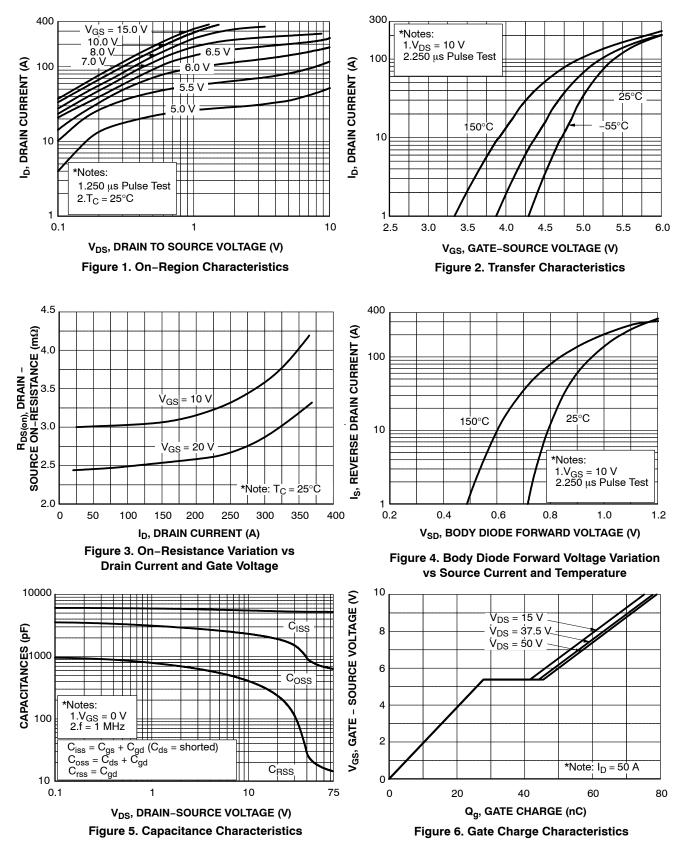
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Charac	cteristics		-	-		
BV _{DSS}	Drain to Source Breakdown Voltage	I_D = 250 μ A, V _{GS} = 0 V	75	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C	-	39	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 60 V, V _{GS} = 0 V	-	-	1	μΑ
I _{GSS}	Gate to Body Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V	-	-	±100	nA
On Charac	teristics	-	•	•		
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	2.5	-	4.5	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 50 A	-	3.01	3.7	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 50 A	-	108	-	S
Dynamic C	Characteristics					
C _{iss}	Input Capacitance	V_{DS} = 37.5 V, V_{GS} = 0 V, f = 1 MHz	-	4550	5915	pF
Coss	Output Capacitance	7	_	1060	1380	pF
C _{rss}	Reverse Transfer Capacitance	7	_	30.2	45	pF
C _{oss} (er)	Energy Releted Output Capacitance	$V_{DS} = 37.5 \text{ V}, V_{GS} = 0 \text{ V}$	-	1702	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 37.5 \text{ V}, \text{ I}_{D} = 50 \text{ A}$	-	76.8	100	nC
Q _{gs}	Gate to Source Gate Charge	$V_{GS} = 0 V$, to 10 V (Note 4)	-	27.5	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		_	17.4	-	nC
V _{plateau}	Gate to Drain Plateau Voltage	7	_	5.1	-	V
Q _{sync}	Total Gate Charge Sync	V _{DS} = 0 V, I _D = 50 A	-	66.3	-	nC
Q _{oss}	Output Charge	$V_{DS} = 37.5 \text{ V}, V_{GS} = 0 \text{ V}$	-	74.6	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	_	1.28	-	Ω
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 37.5 \text{ V}, \text{ I}_{D} = 50 \text{ A},$	-	34.9	80	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{G} = 4.7 \Omega \text{ (Note 4)}$	-	20.1	50	ns
t _{d(off)}	Turn-Off Delay Time		-	55.3	120	ns
t _f	Turn-Off Fall Time		-	19.4	49	ns
Drain-Sou	rce Diode Characteristics and Maximum	Ratings				
I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	100	А
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	400	А
V_{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 50 \text{ A}$	-	-	1.3	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 50 A	-	66.8	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	-	84	_	nC

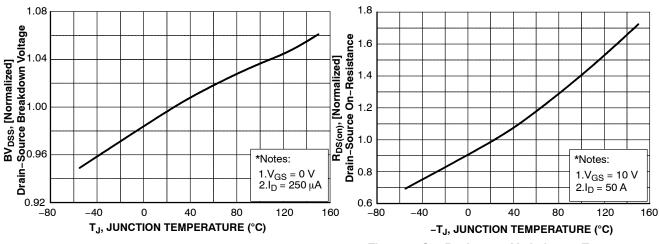
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

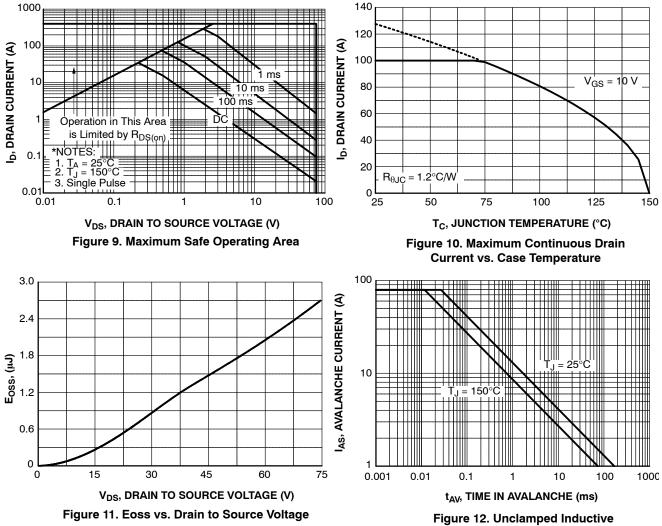


a).50 °C/W when mounted on a 1 in² pad of 2 oz copper.



b).125 °C/W when mounted on a minimum pad of 2 oz copper.

TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS (CONTINUED)

140

Switching Capability

TYPICAL CHARACTERISTICS (CONTINUED)

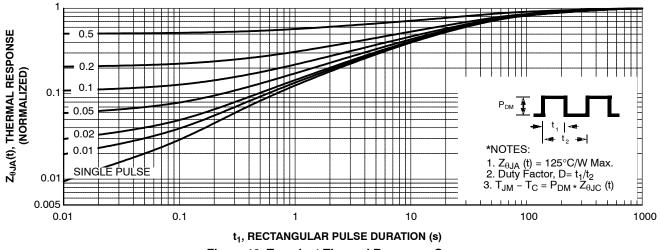


Figure 13. Transient Thermal Response Curve

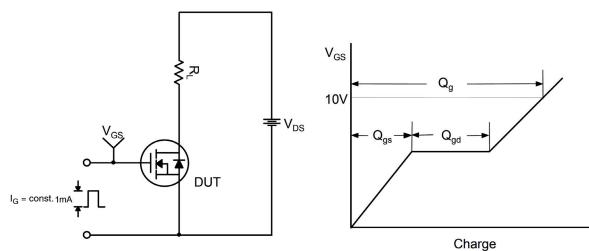


Figure 14. Gate Charge Test Circuit & Waveform

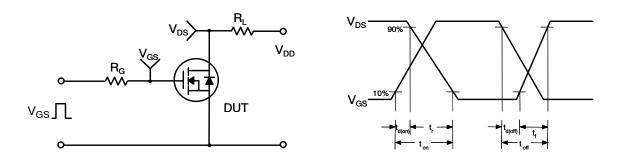


Figure 15. Resistive Switching Test Circuit & Waveforms

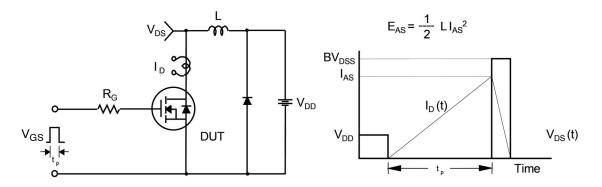


Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms

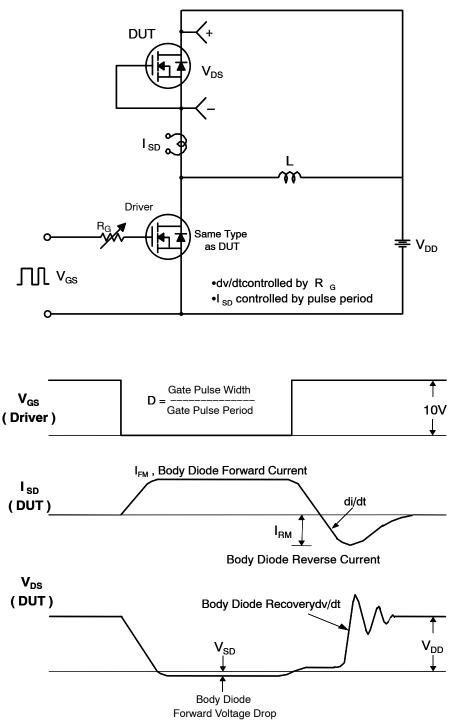


Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

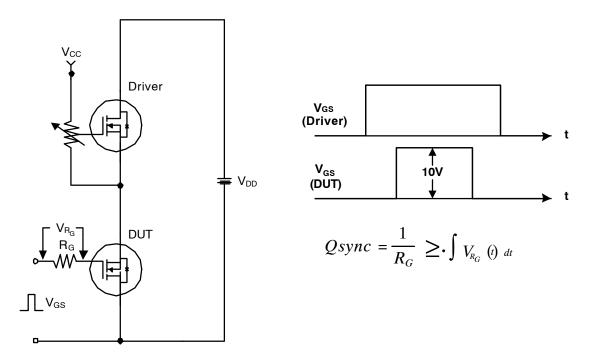
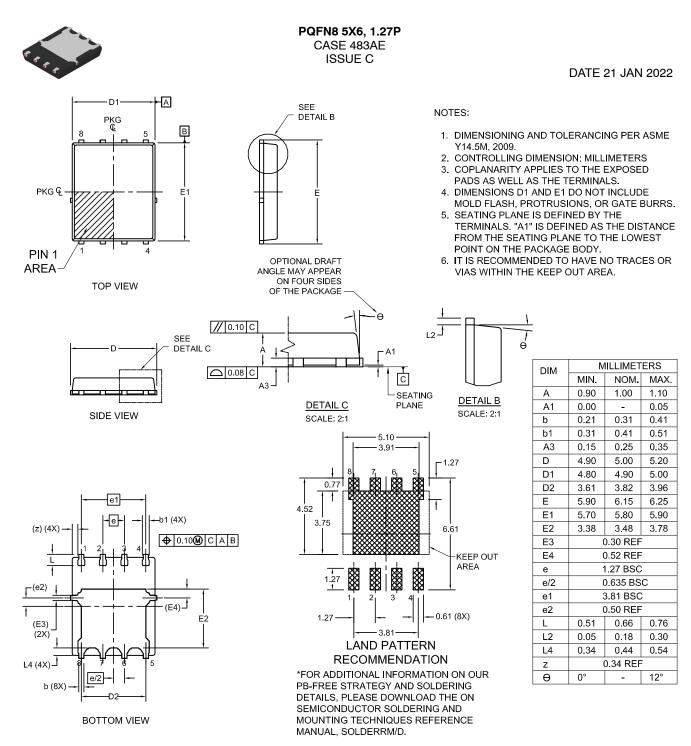



Figure 18. Total Gate Charge Qsync. Test Circuit & Waveforms

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

ONSEM¹.

DOCUMENT NUMBER:	98AON13655G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1	
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation				

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>