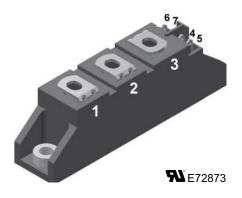
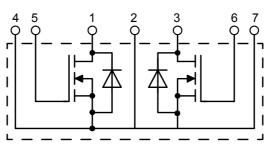


Dual Power MOSFET Module

Preliminary

 $V_{DSS} = 70 V$


 $I_{D25} = 165 A$


 $R_{DS(on)} = 7 \text{ m}\Omega$

Common-Source connected N-Channel Enhancement Mode

Part number

VMK165-007T

Features / Advantages:

- Two MOSFET with common source
- Direct copper bonded Al₂O₃ ceramic base plate
- $\bullet \ \mathsf{Low} \ \mathsf{R}_{\mathsf{DS}(\mathsf{on})} \ \mathsf{HDMOS^{\mathsf{TM}}} \ \mathsf{process}$
- Low package inductance for high speed switching
- Kelvin source contact
- Keyed twin plugs
- · High power density
- Low losses

Applications:

- Push-pull inverters
- Switched-mode and resonant-mode power supplies
- Uninterruptible power supplies (UPS)
- AC static switches

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

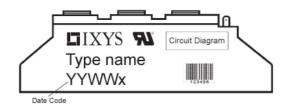
Disclaimer Notice

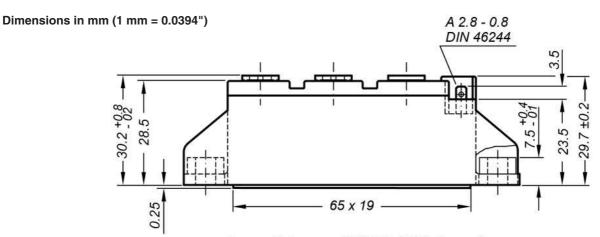
Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Preliminary

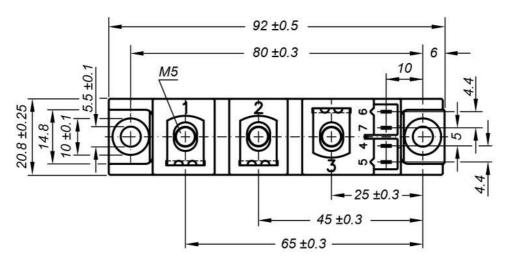
MOSFETs			Ratings				
Symbol	Definitions	Conditions	min.	typ.	max.	Unit	
$V_{\scriptscriptstyle DSS}$	drain source breakdown voltage	$T_{VJ} = 25^{\circ}C \text{ to} 125^{\circ}C$			70	V	
V _{DGR}	drain gate voltage	$R_{GS} = 6.8 \text{ k}\Omega$ $T_{VJ} = 25^{\circ}\text{C to}125^{\circ}\text{C}$			70	V	
V _{GS} V _{GSM}	gate source voltage max. transient gate source voltage	Continuous Transient			±20 ±30	V V	
I _{D25} I _{D100} I _{DM}	continuous drain current drain current maximum pulsed drain current	$$T_{\text{C}}$=$~25^{\circ}\text{C}$$ $$T_{\text{C}}$=$100^{\circ}\text{C}$$ $$t_{p}$=$10~\mu s$, pulse width limited by $T_{\text{JM}}$$ $$T_{\text{C}}$=$~25^{\circ}\text{C}$$			165 104 660	A A A	
P _{tot}	total power dissipation	$T_{VJ} = 125^{\circ}C$ $T_{C} = 25^{\circ}C$			390	W	
$V_{\scriptscriptstyle DSS}$	drain source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 1 \text{ mA}$	70			V	
$V_{GS(th)}$	gate threshold voltage	$V_{DS} = V_{GS}$; $I_D = 8 \text{ mA}$	2		4	V	
I _{GSS}	gate source leakage current	$V_{GS} = \pm 20 \text{ V DC}; V_{DS} = 0$			500	nΑ	
I _{DSS}	drain source leakage current	$V_{DS} = V_{DSS};$ $V_{GS} = 0 \text{ V}$ $T_{VJ} = 25^{\circ}\text{C}$ $V_{DS} = 0.8 \bullet V_{DSS};$ $V_{GS} = 0 \text{ V}$ $T_{VJ} = 125^{\circ}\text{C}$			200 1	μA mA	
R _{DS(on)}	staticdrain source on resistance	V_{GS} = 10 V; I_D = 0.5 • I_{D25} T_{VJ} = 25°C Pulse test, t ≤ 300 µs, duty cycle d ≤ 2 %		6	7	mΩ	
g _{fs}	forward transconductance	V _{DS} = 10 V; I _D = 0.5 • I _{D25} pulsed	60	80		S	
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer (Miller) capacitance			8.8 4.0 2.4		nF nF nF	
$\mathbf{t}_{d(on)} \\ \mathbf{t}_{r} \\ \mathbf{t}_{d(off)} \\ \mathbf{t}_{f}$	turn-on delay time current rise time turn-off delay time current fall time	$V_{GS} = 10 \text{ V; } V_{DS} = 0.5 \bullet V_{DSS}; I_D = 0.5 \bullet I_{D25}$ $R_G = 1 \Omega \text{ (external), resistive load}$		120 280 390 110		ns ns ns	
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	total gate charge gate source charge gate drain (Miller) charge			480 60 240		nC nC nC	
R_{thJC} R_{thJH}	thermal resistance junction to case thermal resistance junction to heatsink	with heat transfer paste		0.2	0.32	K/W K/W	

Source-Drain Diodes						
Symbol	Definitions	Conditions	min.	typ.	max.	
Is	continuous source current	$V_{GS} = 0 \text{ V}$			165	Α
I _{SM}	maximum pulsed source current	Repetitive; pulse width limited by T _{JM}			660	Α
V _{SD}	forward voltage drop	$I_F = I_S; V_{GS} = 0 \text{ V}$ Pulse test, $t \le 300 \mu\text{s}$, duty cycle d $\le 2 \%$			1.5	V
t _{rr}	reverse recovery time	$I_F = 50 \text{ A}, -di/dt = 200 \text{ A/}\mu\text{s}; V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}$		150		ns


Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated. $T_J = 25^{\circ}C$, unless otherwise specified

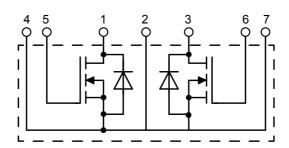

Preliminary

Package	TO-240AA				Ratings			
Symbol	Definitions	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature				-40		150	°C
T _{VJM}	maximum virtual junction temperature						150	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque terminal torque				2.5 2.5		4 4	Nm Nm
d _{Spp/App}	creepage distance on surface striking dist	a Latriking diatanga through air	terminal to terminal	13.0	9.7			mm
$\mathbf{d}_{Spb/Apb}$		e i strikirig distance trirough ali	terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS, I _{ISOL} ≤ 1 mA		4800			V
		t = 1 minute			4000			V



Preliminary

Outlines TO-240AA



General tolerance: DIN ISO 2768 class "c"

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red Type ZY 200L (L = Left for pin pair 4/5) Type ZY 200R (R = Right for pin pair 6/7) UL 758, style 3751

