

SN54AC14, SN74AC14 SCAS522H - AUGUST 1995 - REVISED JANUARY 2023

Hex Schmitt-Trigger Inverters

1 Features

Texas

- V_{CC} operation of 2 V to 6 V
- Inputs accept voltages to 6 V
- Max t_{pd} of 9.5 ns at 5 V •

INSTRUMENTS

2 Applications

- Synchronize inverted clock inputs •
- Debounce a switch
- Invert a digital signal ٠

3 Description

These Schmitt-trigger devices contain six independent inverters.

Package Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	SOIC	8.65 mm x 3.9 mm		
	SSOP	6.2 mm x 1.95 mm		
SNx4AC14	PDIP	19.3 mm x 6.35 mm		
	SOP	10.3 mm x 5.3 mm		
	TSSOP	5.00 mm x 4.4 mm		

A Υ

Logic Diagram (Positive Logic)

Page

Table of Contents

1 Features1
2 Applications1
3 Description1
4 Revision History
5 Pin Configuration and Functions
Pin Functions4
6 Specifications
6.1 Absolute Maximum Ratings5
6.2 ESD Ratings5
6.3 Recommend Operating Conditions5
6.4 Thermal Information5
6.5 Electrical Characteristics6
6.6 Switching Characteristics6
6.7 Switching Characteristics7
6.8 Operating Characteristics7
7 Parameter Measurement Information8
8 Detailed Description
8.1 Overview9

8.2 Functional Block Diagram	9
8.3 Feature Description	
8.4 Device Functional Modes	
9 Application Information Disclaimer	. 11
9.1 Application Information	11
9.2 Typical Application	
9.3 Power Supply Recommendations	
9.4 Layout	
10 Device and Documentation Support	
10.1 Documentation Support	. 14
10.2 Receiving Notification of Documentation Updates	.14
10.3 Support Resources	. 14
10.4 Trademarks	
10.5 Electrostatic Discharge Caution	14
10.6 Glossary	14
11 Mechanical, Packaging, and Orderable	
Information	. 15

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision G (August 2008) to Revision H (January 2023)	Pa
•	Added Applications, Device Information table, Pin Functions table, ESD Ratings table,	Thermal Information
	table, Typical Characteristics, Feature Description section, Device Functional Modes, A	Application and

Implementation section, Power Supply Recommendations section, Layout section, Device and

5 Pin Configuration and Functions

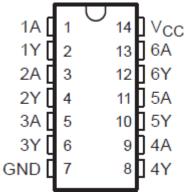
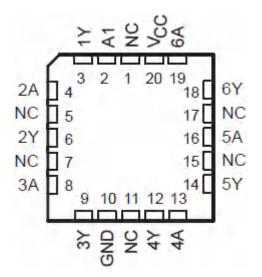



Figure 5-1. SN54AC14 J or W Package and SN74AC14 D, DB, N, NS, or PW Package Top View

NC – No internal connection

Figure 5-2. SN54AC14 FK Package Top View

Pin Functions

	PIN			PIN		PIN			
NAME	D, DB, N, NS, PW, J, or W	FK	I/O	DESCRIPTION					
1A	1	2	Input	Channel 1, Input A					
1Y	2	3	Output	Channel 1, Output Y					
2A	3	4	Input	Channel 2, Input A					
2Y	4	6	Output	Channel 2, Output Y					
3A	5	8	Input	Channel 3, Input A					
3Y	6	9	Output	Channel 3, Output Y					
GND	7	10	_	Ground					
4Y	8	12	Output	Channel 4, Output Y					
4A	9	13	Input	Channel 4, Input A					
5Y	10	14	Output	Channel 5, Output Y					
5A	11	16	Input	Channel 5, Input A					
6Y	12	18	Output	Channel 6, Output Y					
6A	13	19	Input	Channel 6, Input A					
V _{CC}	14	20	_	Positive Supply					
NC		1, 5, 7, 11, 15, 17	_	Not internally connected					

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted⁽¹⁾

		UNIT
Supply voltage range, V _{CC}	-0.5 V to 7	V
Input voltage range, V _I (⁽²⁾)	-0.5 V to V _{CC} + 0.5	V
Output voltage range, V _O (⁽²⁾)	-0.5 V to V _{CC} + 0.5	V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	±20	mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±20	mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50	mA
Continuous current through V _{CC} or GND	±200	mA
Storage temperature range, T _{stg}	-65 to 150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±4000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±2000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommend Operating Conditions

			SN54A	SN54AC14		N54AC14 SN74AC14		54AC14 SN74AC14		SN54AC14 SN74AC14	SN54AC14 SN74AC14		SN54AC14 SN74AC14	SN54AC14 SN74AC14		
			MIN	MAX	MIN MAX		UNIT									
V _{CC}	Supply voltage		2	6	2	6	V									
VI	Input voltage		0	V _{CC}	0	V _{CC}	V									
Vo	Output voltage		0	V _{CC}	0	V _{CC}	V									
		V _{CC} = 3 V		-12		-12										
I _{OH}	High-level output current	V _{CC} = 4.5 V		-24		-24	mA									
		V _{CC} = 5.5 V		-24		-24										
		V _{CC} = 3 V		12		12										
I _{OL}	Low-level output current	V _{CC} = 4.5 V		24		24	mA									
		V _{CC} = 5.5 V		24		24										
T _A	Operating free-air temperature		-55	125	-40	85	°C									

6.4 Thermal Information

				SNx4AC14			
THERMAL METRIC ⁽¹⁾		D (SOIC)	D (SOIC) DB (SSOP) N (PDIP) NS (SO) (TSS				UNIT
				14 PINS			
R _{0JA}	Junction-to-ambient thermal resistance	86	96	80	76	113	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

aver recommended a	norating frag ai	r tomporatura ranga	(unloss otherwise noted)
over recommended o	pperauno nee-ai	r temperature rande	(unless otherwise noted)

	TERT CONDITIONS	N N	T,	T _A = 25°C			C14	SN74AC14		LINUT
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
V _{T+}		3 V	0.8	1.8	2.2	0.8	2.2	0.8	2.2	
Positive-going		4.5 V	1.5	2.6	3.2	1.5	3.2	1.5	3.2	V
threshold		5.5 V	1.6	3.2	3.9	1.6	3.9	1.6	3.9	
V _{T-}		3 V	0.5	0.8	1	0.5	1.2	0.5	1	
Negative-going		4.5 V	0.9	1.4	1.8	0.9	1.8	0.9	1.8	V
threshold		5.5 V	1.1	1.8	2.3	1.1	2.3	1.1	2.3	
ΔV_{T}		3 V	0.3	1	1.2	0.3	1.2	0.3	1.2	
Hysteresis		4.5 V	0.4	1.2	1.4	0.4	1.4	0.4	1.4	V
(V _{T+} - V _{T-})		5.5 V	0.5	1.4	1.6	0.5	1.6	0.5	1.6	
		3 V	2.9			2.9		2.9		
	I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4		V
		5.5 V	5.4			5.4		5.4		
	I _{OH} = -12 mA	3 V	2.56			2.4		2.48		
V _{OH}	I _{OH} = -24 mA	4.5 V	3.86			3.7		3.8		
		5.5 V	4.86			4.7		4.8		
	I _{OH} = -50 mA ⁽¹⁾	5 5 1/				3.85				
	I _{OH} = -75 mA ⁽¹⁾	5.5 V						3.85		
		3 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	
		5.5 V			0.1		0.1		0.1	
	I _{OL} = 12 mA	3 V			0.36		0.44		0.44	V
V _{OL}	L = 24 mA	4.5 V			0.36		0.44		0.44	v
	I _{OL} = 24 mA	5.5 V			0.36		0.44		0.44	
	$I_{OL} = 50 \text{ mA}^{(1)}$	5 5 1/					1.65			-
	I _{OL} = 75 mA ⁽¹⁾								1.65	
I _I	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1	μA
I _{CC}	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	5.5 V			2		40		20	μA
C _i	$V_{I} = V_{CC}$ or GND	5 V		4.5						pF

(1) Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

6.6 Switching Characteristics

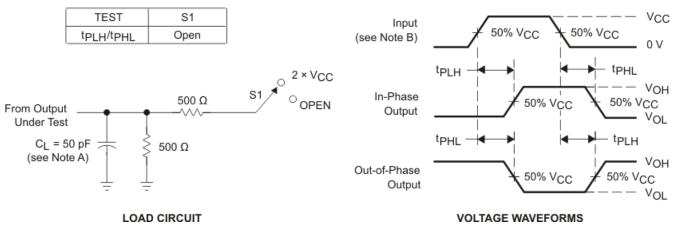
over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM	то	TA	= 25°C		SN54A	C14	SN74A	C14	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
t _{PLH}	A	v	1.5	6	13.5	1	16	1.5	15	nc
t _{PHL}			1.5	6	11.5	1	14	1.5	13	ns

6.7 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM	то	T _A		SN54A	C14	SN74AC14		UNIT	
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
t _{PLH}	۸	v	1.5	5	10	1.5	12	1.5	11	ns
t _{PHL}	A	Ť	1.5	5	8.5	1.5	10	1.5	9.5	


6.8 Operating Characteristics

 V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CO	ТҮР	UNIT	
C _{pd}	Power dissipation capacitance	C _L = 50 pF,	f = 1 MHz	25	pF

7 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z₀ = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

These 'AC14 devices perform the Boolean function $Y = \overline{A}$. Because of the Schmitt action, they have different input threshold levels for positive-going (V_{T+}) and for negative-going (V_{T-}) signals.

These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals. They also have a greater noise margin than conventional inverters.

8.2 Functional Block Diagram

8.3 Feature Description

- V_{CC} is optimized at 5 V
- Allows up voltage translation from 3.3 V to 5 V
 Inputs accept V_{IH} levels of 2 V
- Slow edge rates minimize output ringing
- Inputs are TTL-Voltage compatible

8.3.1 Balanced CMOS Push-Pull Outputs

This device includes balanced CMOS push-pull outputs. The term *balanced* indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads, so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

Unused push-pull CMOS outputs should be left disconnected.

8.3.2 Clamp Diode Structure

As shown in Figure 8-1, the inputs and outputs to this device have both positive and negative clamping diodes.

CAUTION

Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

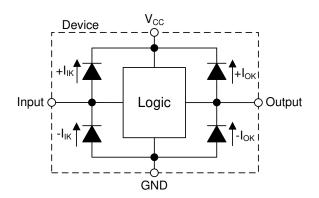


Figure 8-1. Electrical Placement of Clamping Diodes for Each Input and Output

Copyright © 2023 Texas Instruments Incorporated

8.4 Device Functional Modes

Table 8-1. Function Table

INPUT	OUTPUT
Α	Y
Н	L
L	Н

9 Application Information Disclaimer

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SNx4AC14 device is a low-drive CMOS device that can be used for a multitude of bus interface type applications where putput ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The inputs are tolerant to 5.5 V at any valid V_{CC} . This feature makes it Ideal for translating down to the V_{CC} level. Switching Characteristics Comparison shows the reduction in ringing compared to higher drive parts such as AC.

9.2 Typical Application

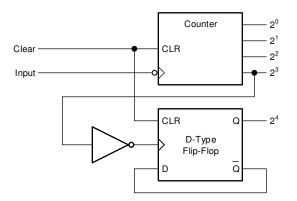
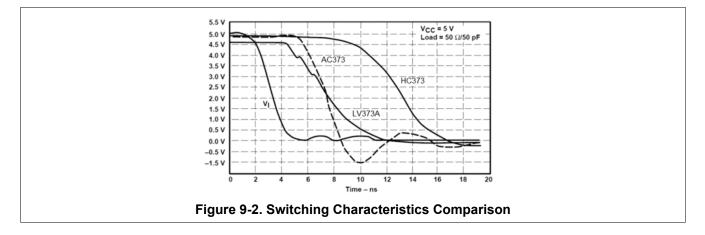


Figure 9-1. Typical Application Schematic

9.2.1 Design Requirements


This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

9.2.2 Detailed Design Procedure

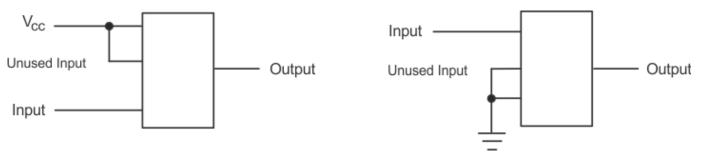
- 1. Recommended Input Conditions
 - For rise time and fall time specifications, see $\Delta t/\Delta V$ in the Section 6.3 table.
 - For specified High and low levels, see V_{IH} and V_{II} in the Section 6.3 table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed 35 mA per output and 70 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

9.2.3 Application Curves

9.3 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Section 6.3.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended; if there are multiple V_{CC} pins, then 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and a 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


9.4 Layout

9.4.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Layout Diagram are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled.

9.4.2 Layout Example

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY							
SN54AC14	Click here	Click here	Click here	Click here	Click here							
SN74AC14	Click here	Click here	Click here	Click here	Click here							

Table 10-1. Related Links

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

15

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-87624012A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87624012A SNJ54AC 14FK	Samples
5962-8762401CA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8762401CA SNJ54AC14J	Samples
5962-8762401DA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8762401DA SNJ54AC14W	Samples
5962-8762401VCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8762401VC A SNV54AC14J	Samples
5962-8762401VDA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8762401VD A SNV54AC14W	Samples
5962-8762402VCA	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8762402VC A SNV54AC14J	Samples
5962-8762402VDA	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8762402VD A SNV54AC14W	Samples
SN74AC14DBR	ACTIVE	SSOP	DB	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC14	Samples
SN74AC14DR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC14	Samples
SN74AC14N	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74AC14N	Samples
SN74AC14NSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC14	Samples
SN74AC14NSRG4	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC14	Samples
SN74AC14PWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC14	Samples
SN74AC14PWRE4	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC14	Samples
SN74AC14PWRG4	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AC14	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54AC14FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87624012A SNJ54AC 14FK	Samples
SNJ54AC14J	ACTIVE	CDIP	J	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8762401CA SNJ54AC14J	Samples
SNJ54AC14W	ACTIVE	CFP	W	14	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8762401DA SNJ54AC14W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

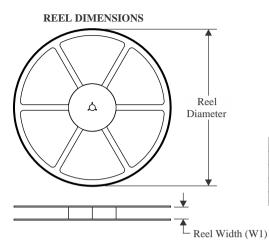
PACKAGE OPTION ADDENDUM

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

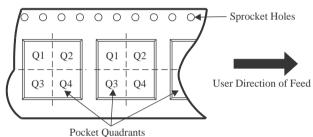
OTHER QUALIFIED VERSIONS OF SN54AC14, SN54AC14-SP, SN74AC14 :

- Catalog : SN74AC14, SN54AC14
- Automotive : SN74AC14-Q1, SN74AC14-Q1
- Military : SN54AC14
- Space : SN54AC14-SP

NOTE: Qualified Version Definitions:

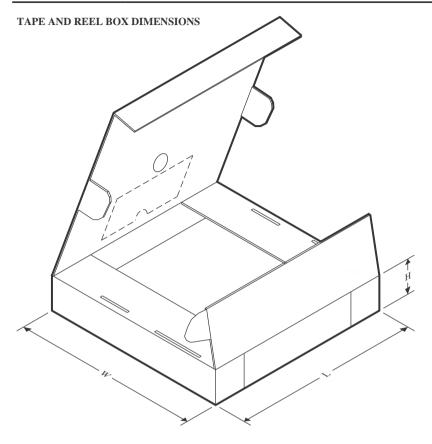

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

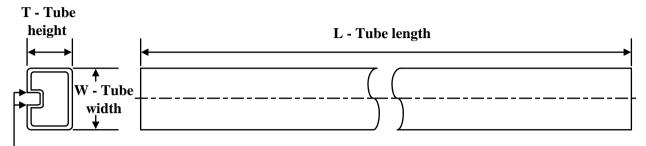

*All dimensions are nominal												t.
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AC14DBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74AC14DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74AC14DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74AC14NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74AC14PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

12-May-2023

*All dimensions are nominal

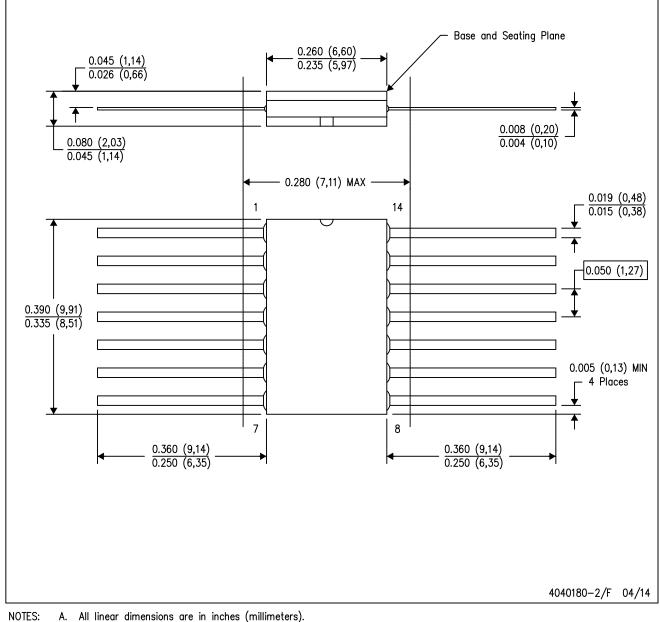

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AC14DBR	SSOP	DB	14	2000	356.0	356.0	35.0
SN74AC14DR	SOIC	D	14	2500	356.0	356.0	35.0
SN74AC14DR	SOIC	D	14	2500	340.5	336.1	32.0
SN74AC14NSR	SO	NS	14	2000	356.0	356.0	35.0
SN74AC14PWR	TSSOP	PW	14	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

12-May-2023

TUBE


- B - Alignment groove width

*All dimensions are nominal

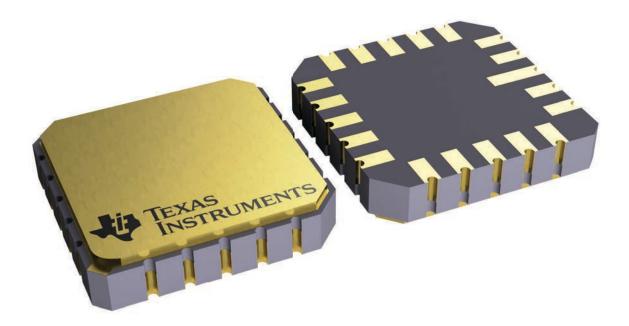
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
5962-87624012A	FK	LCCC	20	1	506.98	12.06	2030	NA
5962-8762401DA	W	CFP	14	1	506.98	26.16	6220	NA
5962-8762401VDA	W	CFP	14	1	506.98	26.16	6220	NA
5962-8762402VDA	W	CFP	14	1	506.98	26.16	6220	NA
SN74AC14N	N	PDIP	14	25	506	13.97	11230	4.32
SN74AC14N	N	PDIP	14	25	506	13.97	11230	4.32
SNJ54AC14FK	FK	LCCC	20	1	506.98	12.06	2030	NA
SNJ54AC14W	W	CFP	14	1	506.98	26.16	6220	NA

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14

FK 20

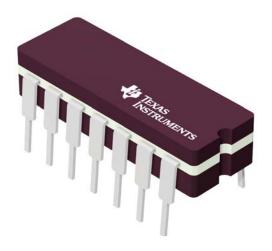

8.89 x 8.89, 1.27 mm pitch

GENERIC PACKAGE VIEW

LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

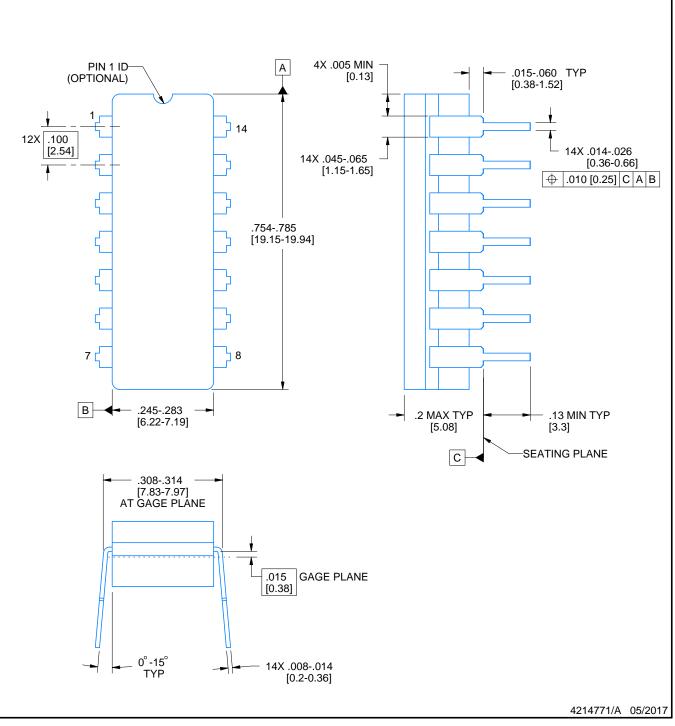


GENERIC PACKAGE VIEW

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


J0014A

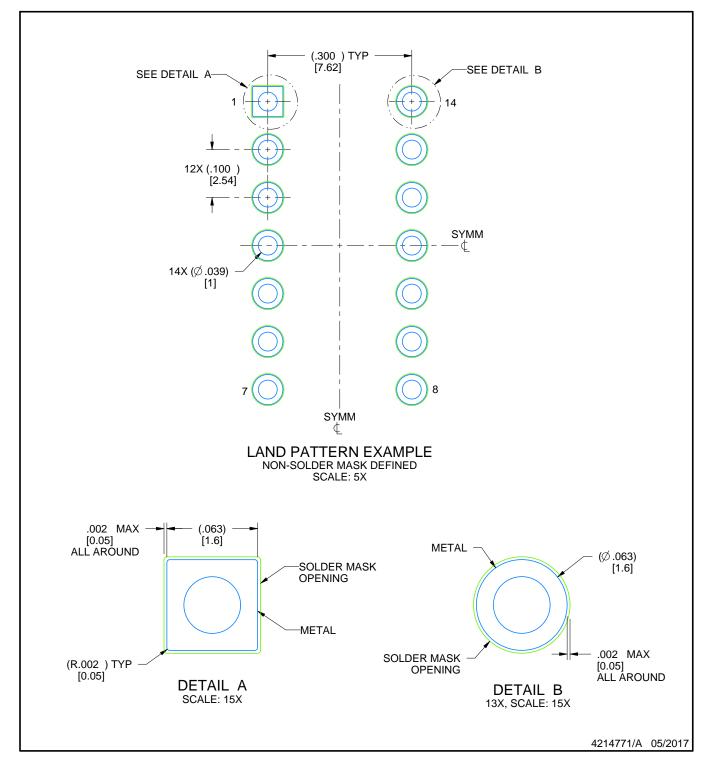
PACKAGE OUTLINE

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

NOTES:

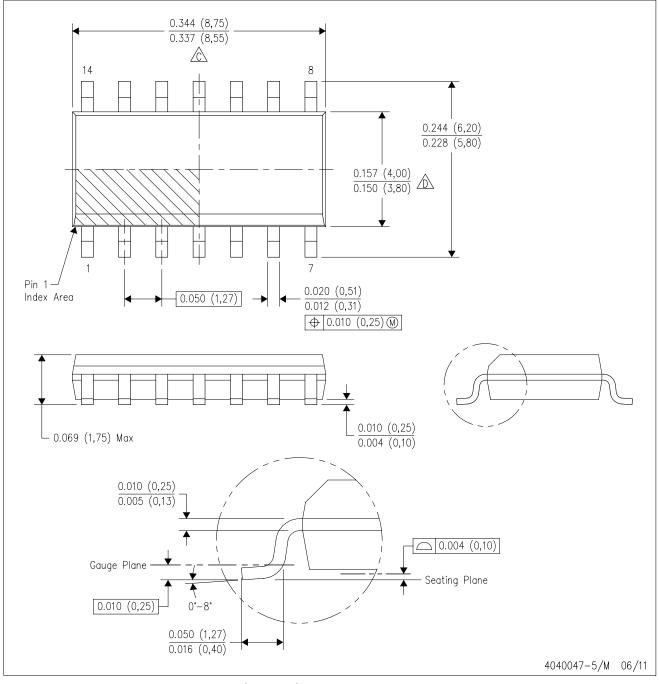
- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.



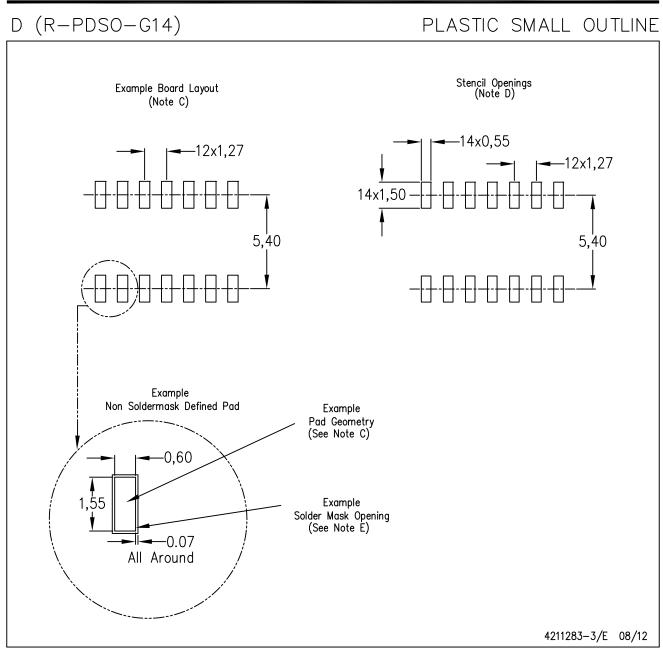
J0014A

EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

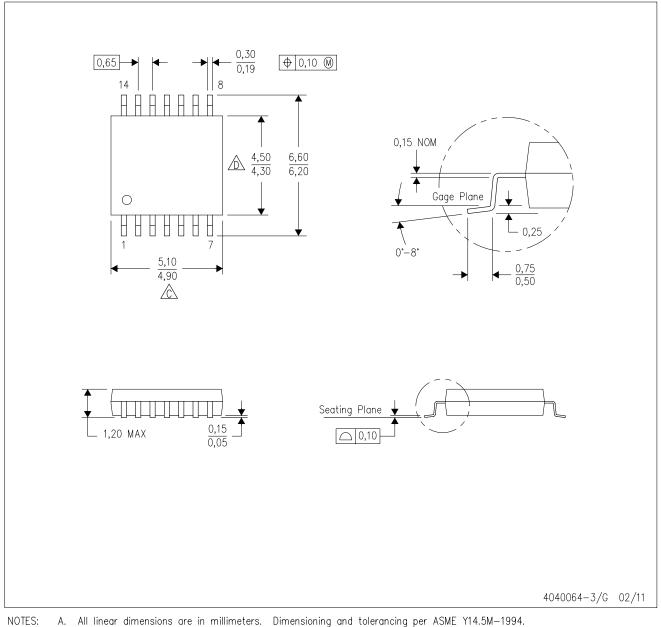

CERAMIC DUAL IN LINE PACKAGE

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

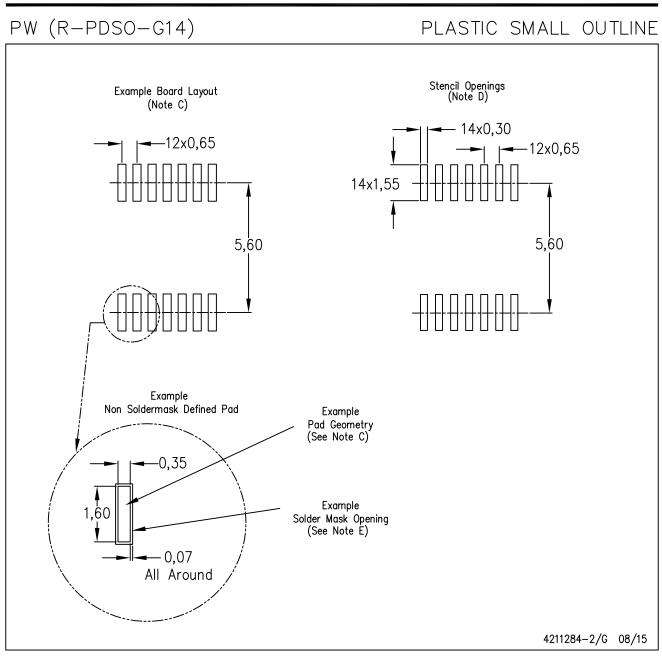
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

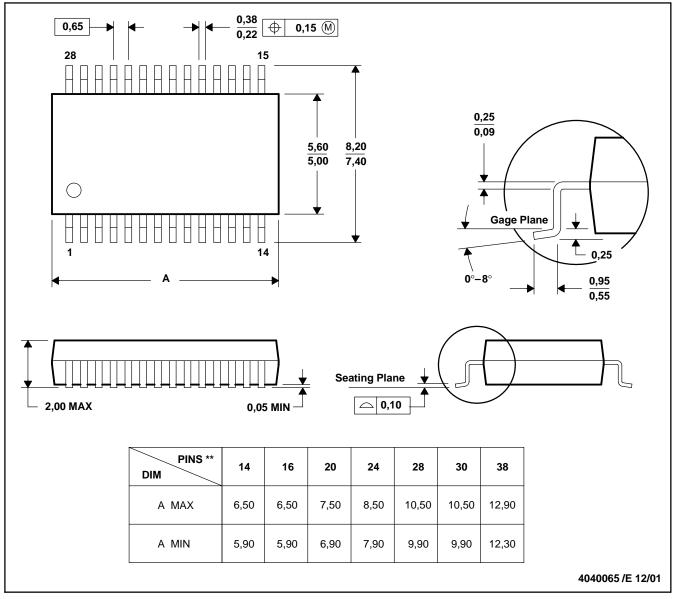
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated