# Ceramic Disc, RFI, and Safety Capacitors

In accordance with IEC recommendations ceramic capacitors are subdivided into two classes:

- · CERAMIC CLASS 1 or low-K capacitors are mainly manufactured of titanium dioxide or magnesium silicate
- CERAMIC CLASS 2 or high-K capacitors contain mostly alkaline titanate

| MAIN FEATURES                                 | MAIN FEATURES                                                                                                                                                                                                                                                                   |                                                                                                                                                                |  |  |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                               | CLASS 1                                                                                                                                                                                                                                                                         | CLASS 2                                                                                                                                                        |  |  |  |  |  |  |
| Application                                   | For temperature compensation of frequency discriminating circuits and filters, coupling and decoupling in high-frequency circuits where low losses and narrow capacitance tolerances are demanded. As RFI and safety capacitors.                                                | As coupling and decoupling capacitors for such application where higher losses and a reduced capacitance stability are required. As RFI and safety capacitors. |  |  |  |  |  |  |
| Properties Temperature Dependence Capacitance | High stability of capacitance. Low dissipation factor up to higher frequencies. Defined temperature coefficient of capacitance, positive or negative, linear, and reversible. High insulation resistance. No voltage dependence. High long-term stability of electrical values. | High capacitance values with small dimensions.<br>Non-linear dependence of capacitance on<br>temperature.                                                      |  |  |  |  |  |  |
| DC Voltage<br>Capacitance Dependence          | None                                                                                                                                                                                                                                                                            | Increasing with ε                                                                                                                                              |  |  |  |  |  |  |
| Dissipation Factor $\tan \delta$              | Maximum 1.5 x 10 <sup>-3</sup> (typical)                                                                                                                                                                                                                                        | Maximum 35 x 10 <sup>-3</sup> (typical)                                                                                                                        |  |  |  |  |  |  |
| Insulation Resistance                         | $\geq 10^{10} \Omega$                                                                                                                                                                                                                                                           | $\geq 10^9  \Omega$                                                                                                                                            |  |  |  |  |  |  |
| Capacitance Tolerances                        | ± 5 %, ± 10 %, ± 20 %                                                                                                                                                                                                                                                           | ± 10 %, ± 20 %, + 50 % / - 20 %, + 80 % / - 20 %                                                                                                               |  |  |  |  |  |  |
| Rated Voltage                                 | Up to 25 kV <sub>DC</sub>                                                                                                                                                                                                                                                       | Up to 15 kV <sub>DC</sub>                                                                                                                                      |  |  |  |  |  |  |

| STANDARD SPECIFICATIONS                    |                                                 |  |  |  |
|--------------------------------------------|-------------------------------------------------|--|--|--|
| GENERAL STANDARDS                          |                                                 |  |  |  |
| IEC 60062                                  | Marking codes for resistors and capacitors      |  |  |  |
| IEC 60068                                  | Basic environmental testing procedures          |  |  |  |
| SPECIAL STANDARDS FOR CERAMIC CAPACITORS   |                                                 |  |  |  |
| EN 130600 and IEC 60384-8                  | Fixed capacitors of ceramic dielectric, class 1 |  |  |  |
| EN 130700 and IEC 60384-9                  | Fixed capacitors of ceramic dielectric, class 2 |  |  |  |
| STANDARDS FOR SPECIAL APPLICATION PURPOSES |                                                 |  |  |  |
| IEC 60384-14                               |                                                 |  |  |  |
| DIN EN 60384-14                            | RFI and safety capacitors                       |  |  |  |
| UL 60384-14                                | ni i and salety capacitors                      |  |  |  |
| CSA E60384-14                              | 1                                               |  |  |  |

| MEASURING AND TESTING CONDITIONS   |                                                                                                          |                                             |                                                                                                                                                                                                      |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                    | CLA                                                                                                      | .SS 1                                       | CLASS 2                                                                                                                                                                                              |  |  |  |
| Capacitance and Dissipation Factor | C ≥ 1000 pF<br>1 kHz, 1.0 $V_{RMS}$ to 5 $V_{RMS}$<br>C < 1000 pF<br>1 MHz, 1.0 $V_{RMS}$ to 5 $V_{RMS}$ |                                             | C ≥ 100 pF<br>1 kHz, 1.0 $V_{RMS}$ ± 0.2 $V_{RMS}$<br>C < 100 pF<br>1 MHz, 1.0 $V_{RMS}$ ± 0.2 $V_{RMS}$                                                                                             |  |  |  |
| Insulation Resistance              | Rated voltage  Measuring time:                                                                           | < 100 V:<br>≥ 100 V to < 500 V:<br>≥ 500 V: | measuring voltage = $10 \text{ V} \pm 1 \text{ V}$<br>measuring voltage = $100 \text{ V} \pm 15 \text{ V}$<br>measuring voltage = $500 \text{ V} \pm 50 \text{ V}$<br>$60 \text{ s} \pm 5 \text{ s}$ |  |  |  |
| Dielectric Strength                | Rated voltage: Testing time:                                                                             | ≤ 500 V:<br>> 500 V:                        | test voltage = 2.5 x U <sub>R</sub><br>test voltage = 1.5 x U <sub>R</sub><br>2 s                                                                                                                    |  |  |  |

## Note

Climatic test conditions: Temperature
 Relative humidity
 S0 % to 70 %

Revision: 30-Mar-2020 1 Document Number: 22001

# **MARKING**

See individual datasheet.

| CAPACITANCE VALUE        | CODE        | CAPACITANO                  | E VALUE                            |  |  |  |
|--------------------------|-------------|-----------------------------|------------------------------------|--|--|--|
|                          | p33         | 0.33 դ                      | F                                  |  |  |  |
|                          | 3p3         | 3.3 p                       |                                    |  |  |  |
|                          | 33p         | 33 pF                       |                                    |  |  |  |
|                          | 330p        | 330 pF                      |                                    |  |  |  |
|                          | n33         | 330 pF (0.                  | 33 nF)                             |  |  |  |
|                          | 3n3         | 3300 pF (3.3 nF)            |                                    |  |  |  |
|                          | 33n         | 33 000 pF (33 nF)           |                                    |  |  |  |
|                          | 330n        | 330 000 pF (330 nF)         |                                    |  |  |  |
|                          | μ33         | 0.33 μF                     |                                    |  |  |  |
|                          | 3µ3         | 3.3 µ                       | F                                  |  |  |  |
| CAPACITANCE<br>TOLERANCE | CODE LETTER | C-TOLERANCE<br>< 10 pF (pF) | C-TOLERANCE<br>≥ 10 pF (%)         |  |  |  |
|                          | В           | ± 0.1                       | =                                  |  |  |  |
|                          | С           | ± 0.25                      | =                                  |  |  |  |
|                          | D           | ± 0.5                       | ± 0.5                              |  |  |  |
|                          | F           | ± 1                         | ± 1<br>± 2<br>± 2.5<br>± 5<br>± 10 |  |  |  |
|                          | G           | ± 2                         |                                    |  |  |  |
|                          | Н           | -                           |                                    |  |  |  |
|                          | J           | -                           |                                    |  |  |  |
|                          | K           | -                           |                                    |  |  |  |
|                          | L           | -                           | ± 15                               |  |  |  |
|                          | М           | -                           | ± 20                               |  |  |  |
|                          | R           | <u>-</u>                    | (+ 30 / - 20)                      |  |  |  |
|                          | S           | -                           | (+ 50 / - 20)                      |  |  |  |
|                          | Z           | -                           | (+ 80 / - 20)                      |  |  |  |
| RATED VOLTAGE            |             | Clear text                  |                                    |  |  |  |

# PRODUCTION CODE ACCORDING TO IEC 60062

The production code is indicated either with a 2 FIGURE CODE or with a 4 FIGURE CODE.

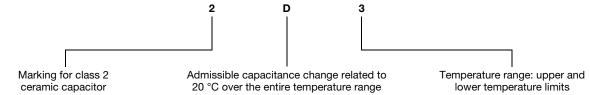
# 2 FIGURE CODE (YEAR / MONTH)

The 1st figure indicates the year and the 2nd figure indicates the month.

| YEAR        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| LETTER CODE | М    | N    | Р    | R    | S    | Т    | U    | ٧    | W    | Χ    | Α    | В    | C    | D    | Е    | F    | Н    | J    | K    | L    | М    |

| MONTH                | January | February | March | April | May | June | July | August | September | October | November | December |
|----------------------|---------|----------|-------|-------|-----|------|------|--------|-----------|---------|----------|----------|
| LETTER / NUMBER CODE | 1       | 2        | 3     | 4     | 5   | 6    | 7    | 8      | 9         | 0       | N        | D        |

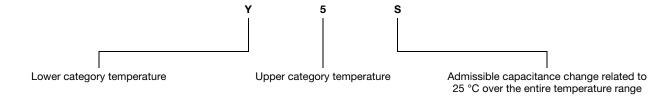
# 4 FIGURE CODE (YEAR / WEEK)


The 1st two figures indicate the year and the second two figures indicate the week.

| EXAMPLES           | EXAMPLES                            |
|--------------------|-------------------------------------|
| 2000 August = M8   | $32^{\text{nd}}$ week $2000 = 0032$ |
| 2001 May = N5      | $41^{st}$ week $2001 = 0141$        |
| 2002 October = PO  | $27^{th}$ week $2002 = 0227$        |
| 2014 March = E3    | 19 <sup>th</sup> week 2014 = 1419   |
| 2017 December = JD | 12 <sup>th</sup> week 2016 = 1612   |
| 2019 May = L5      | $35^{th}$ week $2020 = 2035$        |



# CODING OF THE TEMPERATURE CHARACTERISTIC OF CAPACITANCE FOR CLASS 2 CERAMIC **CAPACITORS**


# **ACCORDING TO EN 130700 OR IEC 60384-9**



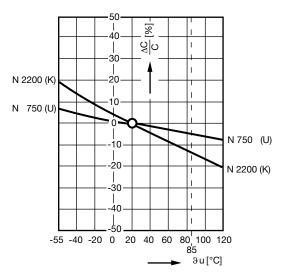
| DC VO           | CODE            |        |
|-----------------|-----------------|--------|
| WITHOUT         | WITH            | LETTER |
| ± 10 %          | + 10 % / - 15 % | В      |
| ± 20 %          | + 20 % / - 30 % | С      |
| + 20 % / - 30 % | + 20 % / - 40 % | D      |
| + 22 % / - 56 % | + 22 % / - 70 % | Е      |
| + 30 % / - 80 % | + 30 % / - 90 % | F      |
| ± 15 %          | + 15 % / - 40 % | R      |
| ± 15 %          | + 15 % / - 25 % | Х      |

| TEMPERATURE<br>RANGE | CODE<br>FIGURE |
|----------------------|----------------|
| -55 °C to +125 °C    | 1              |
| -55 °C to +85 °C     | 2              |
| -40 °C to +85 °C     | 3              |
| -25 °C to +85 °C     | 4              |
| -10 °C to +85 °C     | 5              |

# **ACCORDING TO EIA STANDARD RS 198**



| TEMPERATURE | CODE LETTER |
|-------------|-------------|
| -55 °C      | Х           |
| -30 °C      | Υ           |
| +10 °C      | Z           |


| TEMPERATURE | CODE FIGURE |
|-------------|-------------|
| +45 °C      | 2           |
| +65 °C      | 4           |
| +85 °C      | 5           |
| +105 °C     | 6           |
| +125 °C     | 7           |

| CHANGE        | CODE LETTER |
|---------------|-------------|
| ± 1 %         | Α           |
| ± 1.5 %       | В           |
| ± 2.2 %       | С           |
| ± 3.3 %       | D           |
| ± 4.7 %       | E           |
| ± 7.5 %       | F           |
| ± 10 %        | Р           |
| ± 15 %        | R           |
| ± 22 %        | S           |
| ± 22 %/- 33 % | Т           |
| ± 22 %/- 56 % | U           |
| ± 22 %/- 82 % | V           |

# CLASS 1 CERAMIC TYPE TEMPERATURE COEFFICIENT OF THE CAPACITANCE FOR CLASS 1 CERAMIC CAPACITORS

$$\frac{\Delta C}{C}$$
 [%] = 100 x  $\alpha$  x  $\Delta \theta$ 

 $\Delta C$  = capacitance change  $\alpha$  = temperature coefficient in 10 - 6/°C  $\Delta 9$  = temperature change in °C



# **VOLTAGE DEPENDENCE OF CAPACITANCE**

None

# FREQUENCY DEPENDENCE OF CAPACITANCE

Maximum -2 at 1 MHz

#### **DISSIPATION FACTOR**

- For values greater than 50 pF: see datasheet
- For lower values the dissipation factor is calculated according to the type of ceramic (rated temperature coefficient) under consideration of the capacitance according to EN 130600

$$+100 \le \alpha > -750$$
:  $1.5 \times \left(\frac{150}{C} + 7\right) \times 10^{-4}$ 

$$+750 \le \alpha > -1500$$
: 2 x  $\left(\frac{150}{C} + 7\right)$  x  $10^{-4}$ 

$$+1500 \le \alpha > -3300$$
: 3  $\times \left(\frac{150}{C} + 7\right) \times 10^{-4}$ 

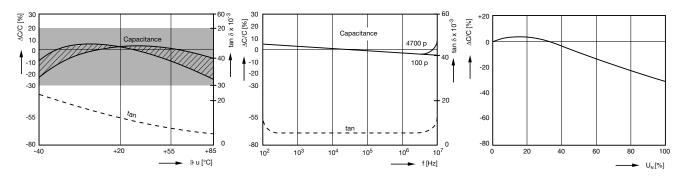
$$+3300 \le \alpha > -5600$$
: 4 x  $\left(\frac{150}{C} + 7\right)$  x  $10^{-4}$ 

$$\alpha \ge -5600$$
: 5 x  $\left(\frac{150}{C} + 7\right)$  x  $10^{-4}$ 

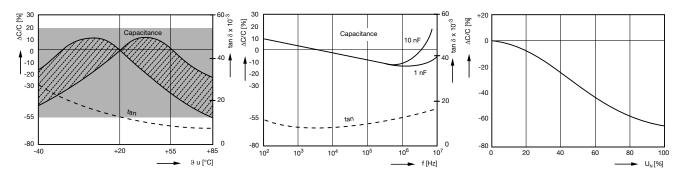
• The dissipation factor as well as the measuring method to be agreed between manufacturer and user for values lower than 5 pF.



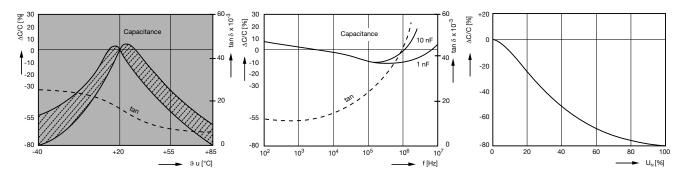



# **CLASS 2 CERAMIC TYPE**

CAPACITANCE CHANGE AND DISSIPATION FACTOR VS. TEMPERATURE


# CAPACITANCE CHANGE AND DISSIPATION FACTOR VS. FREQUENCY

CAPACITANCE CHANGE VS. DC VOLTAGE


# **CERAMIC DIELECTRIC: 2D3 / Y5T**



# **CERAMIC DIELECTRIC: 2E3 / Y5U**



## **CERAMIC DIELECTRIC: 2F3 / Y5V**



# **CAPACITANCE "AGING" OF CERAMIC CAPACITORS**

Following the final heat treatment all class 2 ceramic capacitors reduce their capacitance value approximately according to logarithmic law due to their special crystalline construction. This change is called "aging". If the capacitors are heat treated, for example when soldering, the capacitance increases again to a higher value and the aging process begins again.

#### Note

• The level of this de-aging is dependent on the temperature and the duration of the heat; an almost complete de-aging is achieved at 150 °C in one hour; these conditions also form the basis for reference measurements when testing. The capacitance change per time decade (aging constant) differs for the various types of ceramic but typical values can be taken from the table below.

| CERAMIC MATERIAL | Y5T  | Y5U  | Y5V  |
|------------------|------|------|------|
| AGING CONSTANT k | -4 % | -4 % | -5 % |

$$k = \frac{100 \times (C_{t1} - C_{t2})}{C_{t1} \times \log_{10}(t1/t2)}$$

t1, t2 = measuring time point (h)  $C_{t1}$ ,  $C_{t2}$  = capacitance values for the times t1, t2 k = aging constant (%)

$$C_{t2} = C_{t1} x (1 - k/100 x log_{10} [t1/t2])$$

# REFERENCE MEASUREMENT

Due to aging it is necessary to specify an age for reference measurements which can be related to the capacitance with fixed tolerance. According to EN 130700 this time period is 1000 h.

If the shelf-life of the capacitor is known, the capacitance for t = 1000 h can be calculated with the aging constant.

In order to avoid the influence of the aging, it is important to de-age the capacitors before stress-testing. The following procedure is adopted (see also EN 130700):

- De-aging at 150 °C, 1 h
- Storage for 24 h at standard climatic conditions
- · Initial measurement
- Stress
- De-aging at 150 °C, 1 h
- Storage for 24 h at standard climatic conditions
- Final measurement

# **COMPONENT CLIMATIC CATEGORY**



Minimum ambient temperature of operation (test cold)

Maximum ambient temperature of operation (dry heat test)

Number of days (steady steat test)

First set: two digits denoting the minimum ambient temperature of operation (cold test).

| 65 | -65 °C |
|----|--------|
| 55 | -55 °C |
| 40 | -40 °C |
| 25 | -25 °C |
| 10 | -10 °C |
| 00 | 0 °C   |
| 05 | +5 °C  |

Second set: three digits denoting the maximum ambient temperature (dry heat test).

| 155 | +155 °C |
|-----|---------|
| 125 | +125 °C |
| 110 | +110 °C |
| 090 | +90 °C  |
| 085 | +85 °C  |
| 080 | +80 °C  |
| 075 | +75 °C  |
| 070 | +70 °C  |
| 065 | +65 °C  |
| 060 | +60 °C  |
| 055 | +55 °C  |

Third set: two digits denoting the number of days of the damp heat steady state test (Ca).

| 56 | 56 days                                                  |
|----|----------------------------------------------------------|
| 21 | 21 days                                                  |
| 10 | 10 days                                                  |
| 04 | 4 days                                                   |
| 00 | The component is not required to be exposed to damp heat |

Standard coding according to IEC 60068-1.

| CATEGORY EXAMPLES |
|-------------------|
| 25/085/04         |
| 25/085/21         |
| 40/085/21         |
| 55/125/21         |
| 55/125/56         |



# **STORAGE**

The capacitors must not be stored in a corrosive atmosphere, where sulphide or chloride gas, acid, alkali or salt are present. Exposure of the components to moisture, should be avoided. The solderability of the leads is not affected by storage of up to 24 months (temperature +10 °C to +35 °C, relative humidity up to 60 %). Class 2 ceramic dielectric capacitors are also subject to aging, see previous page.

# **SOLDERING**

| SOLDERING SPECIFICATIONS                                                                         |               |               |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------|---------------|--|--|--|
| Soldering test for capacitors with wire leads: (according to IEC 60068-2-20, solder bath method) |               |               |  |  |  |
| SOLDERABILITY RESISTANCE TO SOLDERING HEAT                                                       |               |               |  |  |  |
| Soldering temperature                                                                            | 235 °C ± 5 °C | 260 °C ± 5 °C |  |  |  |
| Soldering duration                                                                               | 2 s ± 0.5 s   | 10 s ± 1 s    |  |  |  |
| Distance from component body                                                                     | ≥ 2 mm        | ≥ 5 mm        |  |  |  |

# **SOLDERING RECOMMENDATIONS**

Soldering of the component should be achieved using a Sn60/40 type or a silver-bearing Sn62/36/2Ag type solder. Ceramic capacitors are very sensitive to rapid changes in temperature (thermal shock) therefore the solder heat resistance specification (see Soldering Specifications table) should not be exceeded. Subjecting the capacitor to excessive heating may result in thermal shocks that can crack the ceramic body. Similarly, excessive heating can cause the internal solder junction to melt.

#### **CLEANING**

The components should be cleaned immediately following the soldering operation with vapor degreasers.

#### **SOLVENT RESISTANCE**

The coating and marking of the capacitors are resistant to the following test method: IEC 60068-2-45 (method XA).

#### MOUNTING

If a defined product stop is required for mounting on a PCB, a mechanically formed product stop (kinked or inline wire) or a mounting tool should be used.

We do not recommend modifying the lead terminals, e.g. bending or cropping. This action could break the coating or crack the ceramic insert. If however, the lead must be modified in any way, we recommend support of the lead with a clamping fixture next to the coating.



# AQL / FIT VALUES / SUPPLIED QUALITY AQL 0.1 FOR THE SUM OF THE ELECTRIC MAIN FAULTS

- C-tolerance > 1.5 x tolerance limit
- DF > 1.5 x catalog value
- R<sub>IS</sub> < catalog value</li>
- Inadequate dielectric breakdown
- Interruption

# **AQL 0.25 FOR THE SUM OF THE MECHANICAL MAIN FAULTS**

- · Marking wrong or missing
- · Dimensions out of tolerance
- · Coating failure
- · Lead space out of tolerance
- · Poor solderability of leads
- Wrong lead length

# **AQL 0.65 FOR SECONDARY FAULTS**

- Coating extension out of tolerance
- · Marking incomplete
- Tape dimensions out of tolerance
- Testing in accordance to IEC 60410

#### Notes

The following agreements are possible on request:

- Lower AQL values
- Confirmed initial random sampling test with appropriate report
- Report on production test findings
- · Agreement on ppm concept

#### RELIABILITY

By careful control of the manufacturing process stages, the quality of the product is maintained at the highest possible level. To obtain data on the reliability of our ceramic capacitors, many long-term tests under increased temperature and voltage conditions have been carried out in our laboratories.

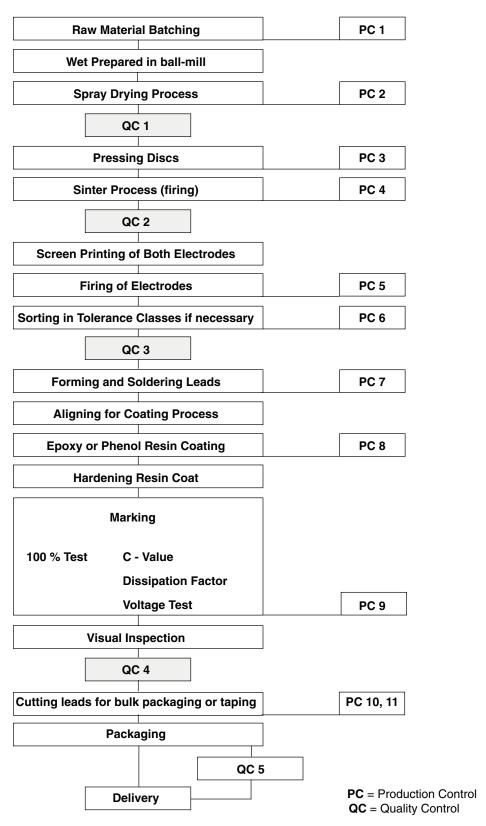
Based on the results of these tests, the following can be stated:

Reference conditions: Ambient temperature:  $40 \,^{\circ}\text{C} \pm 2 \,^{\circ}\text{C}$ 

Relative humidity:  $60 \% \pm 2 \%$ 

Electrical stress: 50 % rated voltage (U<sub>R</sub>)

Failure criteria: Short circuit ( $R \le 10^{-5} \Omega$ ) or open circuit

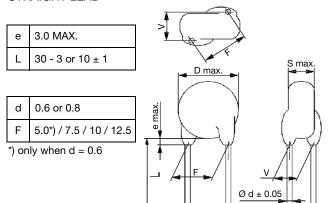

Failure tests: Class 1 capacitors:  $\lambda = 2 \times 10^{-9} \text{ h}^{-1}$ 

Class 2 capacitors:  $\lambda = 5 \times 10^{-9} \text{ h}^{-1}$ 

By derating the voltage load, greatly increased reliability can be predicted.

Temperature, up to the maximum category temperature, is not believed to significantly affect the reliability.

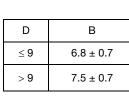
# **PRODUCTION FLOWCHART**

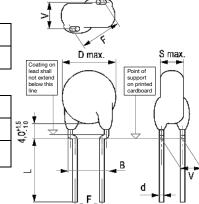



www.vishay.com


# Vishay Roederstein

# **AVAILABLE STANDARD LEAD CONFIGURATIONS**


STRAIGHT LEAD




# FORM 4



3.0 MIN.



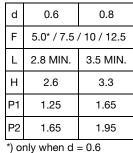


## FORM 2 **INSIDE CRIMP**



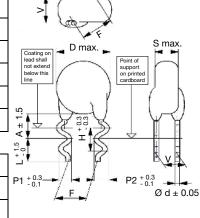
| F     | А             |
|-------|---------------|
| 5.0*) | 4.0 - 1 + 0.5 |
| 7.5   | 4.0 ± 1.5     |
| 10    | 5.0 ± 1.5     |
| 12.5  | 6.0 ± 1.5     |

\*) only when d = 0.6


WYO series: Kink = 1.4 + 0.5 - 0.2

FORM 5 SNAP-IN

S max


 $1.8^{+\ 0.5}_{-\ 0.2}$  \*)

Ø d ± 0.05



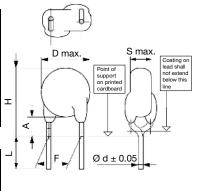


| D B |           |
|-----|-----------|
| ≤8  | 6.0 ± 1.5 |
| > 8 | 7.0 ± 1.5 |



## FORM 3

**OUTSIDE CRIMP** 


|       |     |       | > ( )                                        |
|-------|-----|-------|----------------------------------------------|
| F     | d   | A ± 1 | S max.                                       |
| 5.0*) | 0.6 | 5.0   | Coating on lead shall not extend             |
| 7.5   | 0.6 | 5.0   | below this line support on printed cardboard |
| 7.5   | 0.8 | 6.0   |                                              |
| 10    | 0.6 | 6.0   |                                              |
| 10    | 8.0 | 6.0   | 2,2±0,3 2,2±0,3 V                            |
| 12.5  | 0.6 | 6.0   | F Ød±0.05                                    |
| 12.5  | 0.8 | 6.0   |                                              |

 $1.8^{+0.5}_{-0.2}$ 

FORM 6 **INLINE WIRE** 

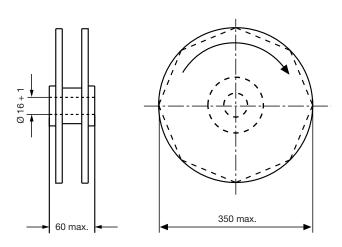
| F    | d   | Α        |
|------|-----|----------|
| 5.0  | 0.6 | 4.5 MAX. |
| 7.5  | 0.6 | 4.5 MAX. |
| 10   | 0.8 | 6.0 MAX. |
| 12.5 | 8.0 | 6.0 MAX. |
|      |     |          |

| F    | L        |
|------|----------|
| 7.5  | 2.8 MIN. |
| 10   | 3.0 MIN. |
| 12.5 | 3.0 MIN. |

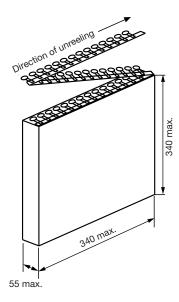


### Note

\*) only when d = 0.6

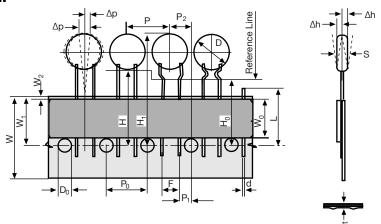

If a defined product stop is required for mounting on a PCB, a mechanically formed product stop (kinked or inline wire) or a mounting tool should be used



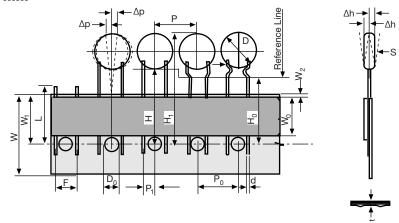

| DESIGNATION                                                                                              | SYMBOL         | TAPING P           | TAPING T                | TAPING U | TAPING F                                 |
|----------------------------------------------------------------------------------------------------------|----------------|--------------------|-------------------------|----------|------------------------------------------|
| Pitch of component                                                                                       | Р              | 12.7 ± 1           |                         |          | 25.4 ± 1                                 |
| Pitch of sprocket hole                                                                                   | P <sub>0</sub> |                    | 12.7 ± 0.3              |          | 12.7 ± 0.3                               |
| Distance, hole to lead                                                                                   | P <sub>1</sub> |                    | 3.85 ± 0.7              |          | $(0.5F) \pm 0.7$                         |
| Distance, hole to center of component                                                                    | P <sub>2</sub> |                    | 6.35 ± 1.3              |          | 12.7 ± 1.3                               |
| Lead spacing                                                                                             | F              | Ę                  | 5.0 / 7.5 + 0.8 / - 0.2 | 2        | 5 / 7.5 / 10 / 12.5 ± 0.8                |
| Average deviation across tape                                                                            | Δh             |                    | ± 2.0 max.              |          | ± 3.0 max.                               |
| Average deviation in direction of reeling                                                                | Δρ             |                    | ± 1.3 max.              |          |                                          |
| Carrier tape width                                                                                       | W              | 18.0 + 1 / - 0.5   |                         |          | 18.0 + 1 / - 0.5                         |
| Hold-down tape width                                                                                     | W <sub>0</sub> | 6                  |                         |          | 6                                        |
| Position of sprocket hole                                                                                | W <sub>1</sub> | 9.0 + 0.75 / - 0.5 |                         |          | 9.0 + 0.75 / - 0.5                       |
| Distance of hold-down tape                                                                               | W <sub>2</sub> |                    | 3.0 max.                |          |                                          |
| Distance between the abscissa and the bottom plane of the component body (straight leads)                | Н              | 16.5 ± 0.5         |                         | 20 ± 1   | 16.5 ± 0.5<br>18.0 + 2 / - 0<br>20.0 ± 1 |
| Distance between the abscissa and the reference plane of the component with crimped leads (kinked leads) | H <sub>0</sub> | 16.0 ± 0.5         |                         |          | 16.0 ± 0.5                               |
| Length of cut leads                                                                                      | L              | 11.0 max.          |                         |          | 11.0 max.                                |
| Diameter of sprocket hole                                                                                | D <sub>0</sub> | 4.0 ± 0.2          |                         |          | 4.0 ± 0.2                                |
| Total tape thickness                                                                                     | t              | 0.9 max.           |                         |          | 0.9 max.                                 |

# **PACKAGING VERSIONS**

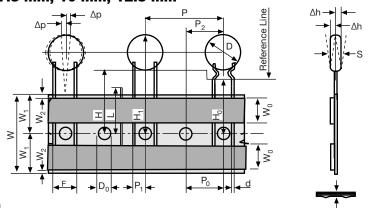
# **Reel Packaging**




# **Ammo Packaging**







# TAPING P / T / U COMPONENT PITCH 0.5" LEAD SPACING 5.0 mm



# TAPING P / T / U COMPONENT PITCH 0.5" LEAD SPACING 7.5 mm



TAPING F
COMPONENT PITCH 1.0"
LEAD SPACING 5.0 mm, 7.5 mm, 10 mm, 12.5 mm



- Pulling force from the tape  $\geq 5 \text{ N}$
- Tensile strength of tape  $\geq 15 \text{ N}$
- Unreeling force of tape from reel ≥ 2.5 N

Maximum 0.5 % of all components on reel may be missing. A maximum of 3 consecutive components may be missing provided this gap is followed by 6 consecutive components. The splices shall have the same minimum strength as the tape. The splices must be not thicker than 1.5 mm, the sprocket holes may not be effected.



www.vishay.com

Vishay Roederstein

The ordering code is made up of a 14-digit code.

| EXAMPLE H           | / I / V / W SE               | RIES            |                                                |                                       |                  |                       |  |
|---------------------|------------------------------|-----------------|------------------------------------------------|---------------------------------------|------------------|-----------------------|--|
| WYO                 | 472                          | М               | СМ                                             | CF0                                   | К                | R                     |  |
| 123                 | 4 5 6                        | 7               | 8 9                                            | 9 10 11 12 13                         |                  | 14                    |  |
| CAPACITOR<br>SERIES | CAPACITANCE<br>VALUE IN pF   |                 |                                                | LEAD CONFIGURATION                    | INTERNAL<br>CODE | RoHS                  |  |
| To be taken         | 1st two digits               | J = ± 5 %       | $AQ = 500 V_{DC}$                              | STRAIGH LEADS OR                      |                  | 0                     |  |
| from the            | represent                    | $K = \pm 10 \%$ | $BA = 1 kV_{DC}$                               | INSIDE CRIMP                          |                  | (PQ)                  |  |
| respective          | significant                  | $M = \pm 20 \%$ | $BB = 2 \text{ kV}_{DC}$                       |                                       |                  | )                     |  |
| individual          | figures                      | S = + 50 % /    | $BC = 3 \text{ kV}_{DC}$                       | 10 <sup>th</sup> digit                |                  | RoHS                  |  |
| datasheet           | Ü                            | - 20 %          | $BD = 4 \text{ kV}_{DC}$                       | Lead spacing                          |                  | COMPLIANT             |  |
|                     | 3 <sup>rd</sup> digit is the | Z = + 80 % /    | $BE = 5 \text{ kV}_{DC}$                       | B = 5.0 mm                            |                  | RoHS                  |  |
|                     | _                            | - 20 %          | $BF = 6 \text{ kV}_{DC}$                       | C = 7.5 mm                            |                  | complian<br>indicator |  |
|                     | multiplier (x 10)            | 20 70           | $BP = 8 \text{ kV}_{DC}$                       | D = 10 mm                             |                  | indicator             |  |
|                     |                              |                 | $BH = 10 \text{ kV}_{DC}$                      | E = 12.5 mm                           |                  |                       |  |
|                     | e.g.                         |                 | $BJ = 15 \text{ kV}_{DC}$                      |                                       |                  |                       |  |
|                     | 1.6 pF = 916                 |                 | $BQ = 25 \text{ kV}_{DC}$                      | 11 <sup>th</sup> digit <sup>(1)</sup> |                  |                       |  |
|                     | 10 pF = 100                  |                 |                                                | Lead length / dia.                    |                  |                       |  |
|                     | 120 pF = 121                 |                 | W1X Series:                                    | B = 6 + 0 - 1 / 0.6                   |                  |                       |  |
|                     | 4700 pF = 472                |                 | CV = 275 V <sub>AC</sub>                       | $D = 10 \pm 1 / 0.6$                  |                  |                       |  |
|                     | 22 nF = 223                  |                 |                                                | $H = 10 \pm 1 / 0.8$                  |                  |                       |  |
|                     |                              |                 | WYO Series:                                    | $Y = \ge 20 / 0.6$                    |                  |                       |  |
|                     |                              |                 | CM = 250 V <sub>AC</sub> , 440 V <sub>AC</sub> | F = 30 - 3 / 0.6                      |                  |                       |  |
|                     |                              |                 |                                                | J = 30 - 3 / 0.8                      |                  |                       |  |
|                     |                              |                 | VKO Series:                                    | S = ≥ 30 / 0.6                        |                  |                       |  |
|                     |                              |                 | $CQ = 300 V_{AC}, 440 V_{AC}$                  | $P = 45 \pm 2 / 0.6$                  |                  |                       |  |
|                     |                              |                 | 7.67                                           | R = tape and reel                     |                  |                       |  |
|                     |                              |                 | WKO Series:                                    | L = tape and ammo                     |                  |                       |  |
|                     |                              |                 | $CP = 300 V_{AC}, 440 V_{AC}$                  | ,                                     |                  |                       |  |
|                     |                              |                 | 7,6,                                           | 12 <sup>th</sup> digit <sup>(1)</sup> |                  |                       |  |
|                     |                              |                 | VKP Series:                                    | 0 = bulk                              |                  |                       |  |
|                     |                              |                 | CQ = 500 V <sub>AC</sub> , 760 V <sub>AC</sub> | Other = special type                  |                  |                       |  |
|                     |                              |                 | WKP Series:                                    | OTHER LEAD                            |                  |                       |  |
|                     |                              |                 | $CP = 500 \text{ V}_{AC}, 760 \text{ V}_{AC}$  | CONFIGURATION                         |                  |                       |  |
|                     |                              |                 |                                                | 10 <sup>th</sup> digit                |                  |                       |  |
|                     |                              |                 |                                                | Q = snap-in                           |                  |                       |  |
|                     |                              |                 |                                                | T = outside crimp                     |                  |                       |  |
|                     |                              |                 |                                                | U = 7.5 mm to 5 mm                    |                  |                       |  |
|                     |                              |                 |                                                | Y = inline wire                       |                  |                       |  |
|                     |                              |                 |                                                | <u>SPECIALTY</u>                      |                  |                       |  |
|                     |                              |                 |                                                | 10 <sup>th</sup> digit                |                  |                       |  |
|                     |                              |                 |                                                | R or S                                |                  |                       |  |

# Note

 $<sup>^{(1)}</sup>$  The schematic of the 11th and 12th digit is only applicable if the 10th digit is B, C, D, or E.

# ORDER CODE, 10th, 11th AND 12th DIGIT - POSSIBLE LEAD AND PACKAGING COMBINATIONS

| BULK PACKAGING                  |                      |                 |                |        |       |         |  |
|---------------------------------|----------------------|-----------------|----------------|--------|-------|---------|--|
|                                 | LEAD LENGTH L        | LEAD DIA. d     | LEAD SPACING F |        |       |         |  |
|                                 | LEAD LENGTH L        |                 | 5 mm           | 7.5 mm | 10 mm | 12.5 mm |  |
|                                 | 30 mm - 3 mm         | 0.6 mm          | BF0            | CF0    | DF0   | EF0     |  |
|                                 | 30 111111 - 3 111111 | 0.8 mm          | -              | CJ0    | DJ0   | EJ0     |  |
| Straight leads                  | 10 mm ± 1 mm         | 0.6 mm          | BD0            | CD0    | DD0   | ED0     |  |
|                                 | 10111111 ± 1 111111  | 0.8 mm          | -              | CH0    | DH0   | EH0     |  |
|                                 | 6 mm - 1 mm          | 0.6 mm / 0.8 mm | BB0            | CB0    | DB0   | EB0     |  |
| Preformed leads inside crimp    | 30 mm - 3 mm         | 0.6 mm          | BFG            | CFG    | DFG   | EFG     |  |
| Preformed leads inside crimp    | 30 111111 - 3 111111 | 0.8 mm          | -              | CJG    | DJG   | EJG     |  |
| Duefermend lands subside suines | 5 mm ± 1 mm          | 0.6 mm          | TA0            | TC0    | TE0   | TG0     |  |
| Preformed leads outside crimp   | 3111111 ± 1 111111   | 0.8 mm          | -              | TD0    | TF0   | TH0     |  |
| Droformed leads onen in         | Min. 2.8 mm          | 0.6 mm          | QA0            | QC0    | QE0   | QG0     |  |
| Preformed leads snap-in         | Min. 3.5 mm          | 0.8 mm          | -              | QD0    | QF0   | QH0     |  |
| Inline wire                     | Min. 2.8 mm + 1.5 mm | 0.6 mm          | YA0            | YC0    | YE0   | YG0     |  |
| Illine wife                     | Min. 3.0 mm + 2.0 mm | 0.8 mm          | YB0            | YD0    | YF0   | YH0     |  |

| REEL PACKAGING COMPONENT PITCH 12.7 mm |                                                            |        |                                                                        |        |             |        |  |  |
|----------------------------------------|------------------------------------------------------------|--------|------------------------------------------------------------------------|--------|-------------|--------|--|--|
|                                        | TAPING P                                                   |        | TAPI                                                                   | NG T   | TAPING U    |        |  |  |
| Lead diameter 0.6 mm                   | H = 16.5 mm                                                |        | $H = 18.0$ mm straight leads only $H_0 = 16.0$ mm preformed leads only |        | H = 20.0 mm |        |  |  |
| Lead spacing F                         | 5 mm                                                       | 7.5 mm | 5 mm                                                                   | 7.5 mm | 5 mm        | 7.5 mm |  |  |
| Body diameter D                        | Valid for ≤ 12 mm standard (> 12 mm to ≤ 13 mm on request) |        |                                                                        |        |             |        |  |  |
| Straight leads                         | BRE                                                        | CRE    | BRA                                                                    | CRA    | BRC         | CRC    |  |  |
| Preformed leads inside crimp           | -                                                          | -      | BRB                                                                    | CRB    | -           | -      |  |  |
| Preformed leads outside crimp          | -                                                          | -      | TAR                                                                    | TCR    | -           | -      |  |  |
| Preformed leads 7.5 mm to 5 mm         | -                                                          | -      | UAR                                                                    | -      | -           | -      |  |  |
| Preformed leads snap-in                | - 1                                                        | -      | QAR                                                                    | QCR    | -           | -      |  |  |
| Inline wire                            | - 1                                                        | -      | YBR                                                                    | YCR    | -           | -      |  |  |

| REEL PACKAGING COMPONENT PITCH 25.4 mm |                         |          |        |               |         |  |  |  |
|----------------------------------------|-------------------------|----------|--------|---------------|---------|--|--|--|
|                                        |                         | TAPING F |        |               |         |  |  |  |
| Lead spacing F                         |                         | 5 mm     | 7.5 mm | 10 mm         | 12.5 mm |  |  |  |
| Body diameter D                        |                         | > 12 mm  |        | All diameters |         |  |  |  |
|                                        | H = 16.5 mm             | BRT      | CRT    | DRT           | ERT     |  |  |  |
| Straight leads                         | H = 18.0 mm             | BRU      | CRU    | DRU           | ERU     |  |  |  |
|                                        | H = 20.0 mm             | BRY      | CRY    | DRY           | ERY     |  |  |  |
| Preformed leads inside crimp           | $H_0 = 16.0 \text{ mm}$ | BRZ      | CRZ    | DRZ           | ERZ     |  |  |  |
| Preformed leads outside crimp          | $H_0 = 16.0 \text{ mm}$ | =        | -      | TDR           | TER     |  |  |  |
| Inline wire                            | $H_0 = 16.0 \text{ mm}$ | YRB      | YRC    | YRD           | YRE     |  |  |  |

#### Note

 The lead diameter of the taped components is depending on the capacitance value and corresponds with the data given in the individual datasheets

| AMMO PACKAGING COMPONENT PITCH 12.7 mm |                                                            |        |                                                                        |        |             |        |  |  |
|----------------------------------------|------------------------------------------------------------|--------|------------------------------------------------------------------------|--------|-------------|--------|--|--|
|                                        | TAPING P                                                   |        | TAPI                                                                   | NG T   | TAPING U    |        |  |  |
| Lead diameter 0.6 mm                   | H = 16                                                     | 6.5 mm | $H = 18.0$ mm straight leads only $H_0 = 16.0$ mm preformed leads only |        | H = 20.0 mm |        |  |  |
| Lead spacing F                         | 5 mm                                                       | 7.5 mm | 5 mm                                                                   | 7.5 mm | 5 mm        | 7.5 mm |  |  |
| Disc diameter D                        | Valid for ≤ 12 mm standard (> 12 mm to ≤ 13 mm on request) |        |                                                                        |        |             |        |  |  |
| Straight leads                         | BLE                                                        | -      | BLA                                                                    | CLA    | BLC         | -      |  |  |
| Preformed leads inside crimp           | =                                                          | -      | BLB                                                                    | CLB    | -           | -      |  |  |
| Preformed leads 7.5 mm to 5 mm         | =                                                          | -      | UAL                                                                    | -      | -           | -      |  |  |
| Inline wire                            | =                                                          | -      | YAL                                                                    | YLC    | -           | -      |  |  |

# Note

 If a defined product stop is required for mounting on a PCB, a mechanically formed product stop (kinked or inline wire) or a mounting tool should be used