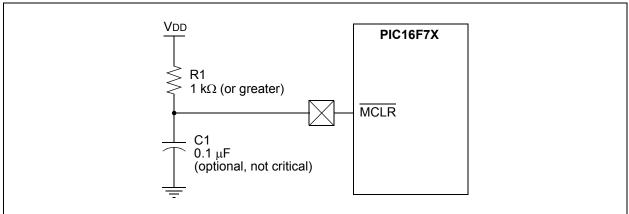


PIC16C76/77 \rightarrow PIC16F76/77 Migration

DEVICE MIGRATIONS

This document is intended to describe the differences that are present when migrating from one device to the next. Table 1 and Table 2 list the data memory organization differences and the additional Special Function Registers, Table 3 lists the differences in functionality, and Table 4 through Table 11 list the differences in the electrical and timing specifications.

- **Note 1:** This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.
 - **2:** The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the Oscillator mode may be required.


XT Oscillator Differences

Please refer to the PIC16F73/74/76/77 Rev. B1 Silicon Errata for more information. Please refer to the difference in parameter D042A in Table 5.

MCLR Functionality Differences

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 1, is suggested.

FIGURE 1: RECOMMENDED MCLR CIRCUIT

TABLE 1:PIC16C76/77 \rightarrow PIC16F76/77 DATA MEMORY DIFFERENCES

No.	SFR	Differences from PIC16C76/77	Comment
1	PMADRH:PMADRL	Implemented	Address register pair
2	PMDATH:PMDATL	Implemented	Data register pair
3	PMCON1	Implemented	Control register for memory access
4	INTCON	Bit 2 (TMR0IF) and Bit 5 (TMR0IE)	T0IF and T0IE in PIC16C76/77

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS ⁽³⁾
Bank 2											
100h ⁽¹⁾	INDF	Addressi	ng this loca	ation uses co	ntents of FSF	R to address	data memory	y (not a physi	ical register)	0000 0000	0000 0000
101h	TMR0	Timer0 M	lodule's Re	egister						xxxx xxxx	uuuu uuuu
102h ⁽¹	PCL	Program	Counter's	(PC) Least S	Significant By	te				0000 0000	0000 0000
103h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
104h ⁽¹⁾	FSR	Indirect [Data Memo	ry Address F	Pointer		•			xxxx xxxx	uuuu uuuu
105h	_	Unimpler	mented	·						_	_
106h	PORTB	PORTB	Data Latch	when writter	n: PORTB pir	ns when read	1			XXXX XXXX	uuuu uuuu
107h	_	Unimpler		_	_						
108h	_	Unimpler	mented							_	_
109h	_	Unimpler	mented		_	_					
10Ah ^(1,2)	PCLATH	_	—	ounter	0 0000	0 0000					
10Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE ⁽⁵⁾	INTE	RBIE	TMR0IF ⁽⁵⁾	INTF	RBIF	0000 000x	0000 000u
10Ch ⁽⁵⁾	PMDATL	Data Reg	gister Low	Byte			•			xxxx xxxx	uuuu uuuu
10Dh ⁽⁵⁾	PMADRL	Address	Register L		xxxx xxxx	uuuu uuuu					
10Eh ⁽⁵⁾	PMDATH	_	_		xxxx xxxx	uuuu uuuu					
10Fh ⁽⁵⁾	PMADRH	_	_	-	Address Re	gister High E	Byte			xxxx xxxx	uuuu uuuu
Bank 3											
180h ⁽¹⁾	INDF	Addressi	ng this loca	ation uses co	ntents of FSF	R to address	data memory	y (not a physi	ical register)	0000 0000	0000 0000
181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h ⁽¹⁾	PCL	Program	Counter's	(PC) Least	Significant By	/te	•			0000 0000	0000 0000
183h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
184h ⁽¹⁾	FSR	Indirect [Data Memo	ry Address F	Pointer		•			xxxx xxxx	uuuu uuuu
185h	_	Unimpler	mented							_	_
186h	TRISB	PORTB I	Data Direct	ion Register						1111 1111	1111 1111
187h		Unimpler	mented							_	_
188h	_	Unimpler	mented							_	_
189h	_	Unimpler	mented		_	_					
18Ah ^(1,2)	PCLATH		—	_	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
18Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
18Ch ⁽⁵⁾	PMCON1	(4)	—	—	_	_	_	_	RD	10	10
18Dh	_	Unimpler	mented							_	_
18Eh		Reserved	d, maintain	clear						0000 0000	0000 0000
18Fh		Reserved	d, maintain	clear						0000 0000	0000 0000

TABLE 2: SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, — = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

4: This bit always reads as a '1'.

5: Difference from PIC16C76/77.

FIGURE 2: PIC16F76/77 BANK 2 & 3 REGISTER FILE MAP

		File Address		File Address
		100h		
	Indirect addr.(*)		Indirect addr.(*)	180h
	TMR0	101h	OPTION	181h
	PCL	102h	PCL	182h
	STATUS	103h	STATUS	183h
	FSR	104h	FSR	184h
		105h		185h
	PORTB	106h	TRISB	186h
		107h		187h
		108h		188h
		109h		189h
	PCLATH	10Ah	PCLATH	18Ah
	INTCON	10Bh	INTCON	18Bh
	PMDATL ⁽¹⁾	10Ch	PMCON1 ⁽¹⁾	18Ch
	PMADRL ⁽¹⁾	10Dh		18Dh
	PMDATH ⁽¹⁾	10Eh		18Eh
	PMADRH ⁽¹⁾	10Fh		18Fh
	Bank 2		Bank 3	
		data memo	ry locations, read a	s 'N'
*	Not a physical re		.,	
Note 1	: New registers in		in PIC16F77.	
	-			

TABLE 3: PIC16C76/77 \rightarrow PIC16F76/77 FUNCTIONAL DIFFERENCES

No.	Module	Differences from PIC16C76/77	H/W	S/W	Prog
1	Program Memory Read	The FLASH Program Memory is readable during normal operation		Yes	—
	Legend: H	 Issues may exist with regard to the application circuit. Issues may exist with regard to the user program. 			

Prog. - Issues may exist with regard to programming.

READING PROGRAM MEMORY

The FLASH Program Memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory:

- PMCON1
- PMDATL
- PMDATH
- PMADRL
- PMADRH

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATL registers form a two-byte word that holds 14-bit data for reads. The PMADRH:PMADRL registers form a two-byte word that holds the 13-bit address of the FLASH location being accessed. This device can have up to 8K words of program FLASH, with an address range from 0h to 1FFFh. The unused upper bits in both the PMDATH and PMADRH registers are not implemented and read as zeroes.

PMADR

The address registers can address up to a maximum of 8K words of program FLASH.

When selecting a program address value, the MSByte of the address is written to the PMADRH register and the LSByte is written to the PMADRL register. The upper MSbits of PMADRH must always be clear.

PMCON1 Register

PMCON1 is the control register for memory access.

The control bit, RD, initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 1: PMCON1: PROGRAM MEMORY CONTROL REGISTER (ADDRESS 18Ch)

R-1	U-0	U-0	U-0	U-x	U-0	U-0	R/S-0
reserved	_	—	—	—	—	—	RD
bit 7							bit 0

- bit 7 Reserved: Read as '1'
- bit 6-1 Unimplemented: Read as '0'
- bit 0 RD: Read Control bit
 - 1 = Initiates a FLASH read, RD is cleared in hardware. The RD bit can only be set (not cleared) in software.
 - 0 = Does not initiate a FLASH read

Legend:		
S = Settable bit	U = Unimplemented bit, re	ad as '0'
W = Writable bit	R = Readable bit	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

U-1	U-1	U-1	U-1	U-1	U-1	U-1	u-1	U-1	u-1	u-1	u-1	u-1	u-1
—	_	—	—	_	—	—	BOREN	(3)	CP	PWRTEN	WDTEN	F0SC1	F0SC0
bit13													bit0
oit 13-7		Unimpl	emente	d: Read	as '1'								
oit 6		BOREN	I: Browr	n-out Re	set Ena	ble bit ⁽²⁾							
			R enable R disabl										
it 5 Unimplemented: Read as '1'													
oit 4		CP: FL	ASH Pro	ogram M	emory (Code Pro	otection bi	t					
				ction off location	s code	protecte	d						
oit 3		PWRTE	EN: Pow	er-up Ti	mer Ena	able bit							
			RT disa RT enal										
oit 2		WDTEN	I: Watch	ndog Tim	ner Enal	ole bit							
			T enabl T disabl										
oit 1-0		FOSC1	:FOSCO): Oscilla	ator Sele	ection bit	s						
		10 = HS 01 = X7	C oscilla S oscilla F oscillat P oscillat	tor tor									
		Note	1: The	erased	(unprog	grammed	d) value of	the cor	nfigura	tion word is	3FFFh.		
			the							Power-up Til er is enable			
			3: Diff	erence f	rom PIC	16C76/7	77.						

u = Unchanged from programmed state

- n = Value when device is unprogrammed

TABLE 4: PIC16C76/77 → PIC16F76/77 ELECTRICAL CHARACTERISTICS DIFFERENCES

Characteristic	PIC16C7X Data Sheet	PIC16F7X Data Sheet	Units
Voltage on VDD with respect to VSS	-0.3 to 7.5	-0.3 to 6.5	V
Voltage on MCLR with respect to Vss (Note 1)	0 to 14	0 to 13.5	V
Voltage on RA4 with respect to Vss	0 to 14	0 to 12	V

Note 1: It is not recommended to tie the MCLR pin directly to VDD (see Figure 1 in this document or Figure 12-5 in the PIC16F76/77 Data Sheet for the recommended MCLR circuit).

TABLE 5: PIC16C76/77 → PIC16F76/77 DC CHARACTERISTICS DIFFERENCES

Param	C. ma	Characteristic	PIC1	6C7X	Data SI	neet	Conditions	PIC	16F7X	Data S	heet	Conditions
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions	Min	Typ†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.0	—	6.0	V	XT, RC and LP osc configuration	4.0		5.5	V	All configurations
D001A			4.5	—	5.5	V	HS osc configuration					
D005	Bvdd	Brown-out Reset Voltage	3.7	4.0	4.3	V	BODEN bit in configuration word enabled	3.65	4.0	4.35	V	Same as PIC16C76/77
D010	IDD	Supply Current (Notes 3, 5)		2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V, (Note 5)	—	0.9	4	mA	XT, RC osc configuration
D013			—	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V	_	5.2	15	mA	HS osc configuration
D015*	Δ Ibor	Brown-out Reset Current (Note 6)	_	350	425	μA	BOR enabled, VDD = 5.0V	_	25	200	μA	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: For RC osc configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F76/77 be driven with external clock in RC mode.

- 2: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.
- **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\underline{OSC1}$ = External square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD. \overline{MCLR} = VDD; WDT enabled/disabled as specified.

- 4: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

		<u> </u>	i								•	- ,
Param	Sym	Characteristic	PIC1	6C7X	Data SI	neet	Conditions		16F7X	Data S	neet	Conditions
No.	• • • •		Min	Typ†	Max	Units		Min	Тур†	Мах	Units	
D020	IPD	Power-down Reset Current (Note 4, 7)	_	10.5	42	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C	—	5.0	42	μA	Same as PIC16C76/77
D021x			_	1.5	19	μA	VDD = 4.0V, WDT disabled, -40°C to 85°C	-	0.1	19	μΑ	VDD = 4.0V, WDT disabled, -40°C to +85°C
D021B			_	2.5	19	μA	V _{DD} = 4.0V, WDT disabled, -40°C to +125°C	_	1.5	42	μA	Same as PIC16C76/77
D023*	DIBOR	Brown-out Reset Current (Note 5)	—	300	425	μA	BOR Enabled, VDD = 5.0V	_	25	200	μA	Same as PIC16C76/77
D042A	Vih	OSC1 (in XT and LP mode)	0.7Vdd		Vdd	V		1.6V		Vdd	V	
D130	Ep	Program FLASH Memory Endurance	N/A	N/A	N/A	N/A		100	1000	—	E/W	25°C at 5V
D131	Vpr	Program FLASH Memory VDD for Read	N/A	N/A	N/A	N/A		4.0	_	5.5	V	
D150*	Vod	Open Drain High Voltage	_	_	14	V	RA4 pin	—	—	12	V	RA4 pin

TABLE 5: PIC16C76/77 → PIC16F76/77 DC CHARACTERISTICS DIFFERENCES (CONTINUED)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: For RC osc configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F76/77 be driven with external clock in RC mode.

- 2: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.
- 3: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = External square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD.

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

4: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in $k\Omega$.

6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

7: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

			DIC	46078	Data S	Shoot	1		16F7X	Data S	haat	1	
Param No.	Sym	Characteristic		-			Conditions		-			Conditions	
NO.			Min	Тур†	Max	Units		Min	Тур†	Max	Units		
D001	Vdd	Supply Voltage	2.5	—	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)	2.5	—	5.5	V	A/D in use, -40°C - +85°C	
								2.0	—	5.5	V	A/D not used, -40°C - +85°C	
D005	BVdd	Brown-out Reset Voltage	3.7	4.0	4.3	V	BODEN bit in configuration word enabled	3.65	4.0	4.35	V	Same as PIC16LC76/77	
D010	IDD	Supply Current (Note 3, 4)	_	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V, (Note 5)	_	0.4	2.0	mA	Same as PIC16LC76/77	
D010A			_	22.5	48	mA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled	_	25	48	μA	Same as PIC16LC76/77	
D015*	Δ Ibor	Brown-out Reset Current (Note 6)	_	350	425	μA	BOR enabled, VDD = 5.0V	_	25	200	μA	Same as PIC16LC76/77	
D020	IPD	Power-down Current (Note 4, 7)	—	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C	—	2.0	30	μA	Same as PIC16LC76/77	
D021A			—	0.9	5	μA	VDD = 3.0V, WDT disabled, -40°C to +85°C	—	0.1	5	μA	V _{DD} = 3.0V, WDT disabled, -40°C to +85°C	
D023*	ΔIBOR	Brown-out Reset Current (Note 6)		350	425	μA	BOR enabled, VDD = 5.0V	_	25	200	μA	Same as PIC16LC76/77	
		Program FLASH Memory											
D130	Eр	Endurance	N/A	N/A	N/A	N/A		100	1000	—	E/W	25°C at 5V	
D131	Vpr	VDD for Read	N/A	N/A	N/A	N/A		2.0	_	5.5	V		
D150	Vod	Open Drain High Voltage	_	_	14	V	RA4 pin		_	12	V	RA4 pin	

TABLE 6: PIC16LC76/77 \rightarrow PIC16LF76/77 DC CHARACTERISTICS DIFFERENCES

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: For RC osc configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F76/77 be driven with external clock in RC mode.

2: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

3: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = External square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD.

MCLR = VDD; WDT enabled/disabled as specified.

4: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

5: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

7: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

TABLE 7: PIC16C76/77 \rightarrow PIC16F76/77 EXTERNAL CLOCK TIMING REQUIREMENTS DIFFERENCES

Param	Curra .	Characteristic	PIC16C7X Data Sheet				Conditions	PIC16F7X Data Sheet				Conditions
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKI Frequency	DC	_	4	MHz	XT and RC Osc mode	DC	_	1	MHz	XT Osc mode
			DC	—	200	kHz	LP osc mode	DC		32	kHz	LP Osc mode
1	Тсү	External CLKI Period	250			ns	XT and RC Osc mode	1000			ns	XT Osc mode

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 8: PIC16C76/77 \rightarrow PIC16F76/77 CLKO AND I/O TIMING REQUIREMENTS DIFFERENCES

Param	Sym	Characteristic	PIC16C7X Data Sheet				Conditions	PIC	16F7X	Conditions		
No.		Characteristic	Min	Тур†	Max	Units	Conditions	Min	Typ†	Max	Units	Conditions
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port Out Valid		50	150	ns			100	255	ns	
20*	TioR	Port Output Rise Time	_		80	ns	PIC16LC7X	_		145	ns	PIC16LF7X
21*	TioF	Port Output Fall Time		_	80	ns	PIC16LC7X		_	145	ns	PIC16LF7X

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 9: PIC16C76/77 \rightarrow PIC16F76/77 CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2) DIFFERENCES

Param No.	Sym	Characteristic	PIC16C7X Data Sheet				Conditions	PIC	16F7X	Conditions		
		Characteristic	Min	Тур†	Max	Units		Min	Typ†	Мах	Units	Conditions
53*	TCCR	CCP1 and CCP2 Output Rise Time	—	25	45	ns	PIC16LC7X		25	50	ns	PIC16LF7X

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

Param	C	Chanastaria	PIC	16C7X	Data	Sheet	Conditions	PIC	16F7X Data Sheet			
No.	Sym	Characteris	STIC	Min	Typ†	Мах	Units	Conditions	Min		Max	Units
78*	TscR	SCK Output Rise Time (Master mode)	PIC16LC7X	-	10	25	ns	PIC16LF7X	_	25	50	ns
79*	TdoR	SDO Data Output Rise Time	PIC16LC7X	-	10	25	ns	PIC16LF7X	_	25	50	ns
80*	,	SDO Data Output Valid after SCK Edge	PIC16LC7X	_	_	50	ns	PIC16LF7X	_	_	145	ns

TABLE 10: PIC16C76/77 \rightarrow PIC16F76/77 SPI MODE REQUIREMENTS DIFFERENCES

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 11: PIC16C76/77 → PIC16F76/77 A/D CONVERTER CHARACTERISTICS DIFFERENCES

Param	Sym	Characteristic	Ρ	IC16C7	7X Data Sh	eet	Conditions	Р	IC16F7	7X Data Sh	Conditions	
No.	Sym		Min	Typ†	Max	Units	Conditions	Min	Typ†	Max	Units	Conditions
131	TCNV	Conversion Time (not including S/H time) (Note 1)		9.5	_	Tad		9		9	TAD	
A20	VREF	Reference Voltage	3.0		VDD + 0.3	V		2.5 2.2	_	VDD + 0.3 VDD + 0.3	V V	-40°C to +125°C 0°C to +125°C
A50	IREF	VREF Input Current (Note 1)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see device data sheet.	N/A	_	±5	μA	During VAIN acquisition.
			—	—	10	μA	During A/D Conversion cycle.	—	_	500	μA	During A/D Conversion cycle.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-82350361 Fax: 86-755-82366086

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India Microchip Technology Inc. India Liaison Office

Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 EUROPE Austria Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3

Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom

Microchip Ltd 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

10/18/02