PCN Number:		2016	20161114000					P	PCN Date: Nov 15, 2016		
Title	ADC32xx/3	4xx Produ	ıct F	amily Design C	hange						
Cust	<u>PCN</u>	PCN Manager			Dept:	Qualit	Quality Services			•	
Prop	oosed 1 st Ship Date	e:	No	v 15, 2016	Estim	ated Samp	le Ava	ila	bility:	Date provided a sample request	t
Char	nge Type:										
	Assembly Site			Assembly Pro	cess				Assemb	ly Materials	
	Design			Electrical Spe	cificatio	n			Mechan	ical Specification	
	Test Site			Packing/Ship	ping/La	beling			Test Pro	ocess	
	Wafer Bump Site			Wafer Bump	Materia	I			Wafer B	Sump Process	
	Wafer Fab Site			Wafer Fab Ma	aterials				Wafer F	ab Process	
	Software			Part number	change						
				DCN	Data	:1-					

PCN Details

Description of Change:

Texas Instruments Incorporated is announcing an information only notification for a design change on the ADC32xx/34xx product family of devices.

The following observations are made when a device listed in the product affected table (below) is used for 1st time on the board.

- 1. ADC's gain error (1) shows a 'glitch' when a fresh device is tested.
 - a. For quad channel part (ADC34xx/34Jxx), channel A and D show the glitch together, while channel B and C show it together. For dual channel part (ADC32xx/32Jxx), glitch occurs at the same time for channel A and B.
 - b. When glitch occurs, the gain error increases by $\sim 0.5\%$.
 - c. The glitch shows a very slow settling profile with a time constant of 'hours'.
 - d. Once settled, the glitch doesn't occur again, i.e. the glitch occur only once for a given device.
 - e. This issue doesn't cause any impact on AC performance.
 - f. The issue affects only time-domain applications.
- 2. Lab test show that glitch in gain error is a result of glitch in ADC's reference voltage as shown in figure 1

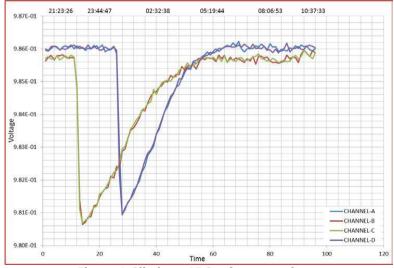


Figure 1 Glitch on ADC reference voltage

3. Root cause

Figure 2 explains the circuitry inside a quad channel device (ADC34xx/34Jxx) which causes the problem. For the dual channel device (ADC32xx/32Jxx), channel A&D represent the two channels.

Channel A and D for quad channel device Channel **B** and **C** for quad channel device (Channel A and B for dual channel device) Reference Reference Voltage ChB Voltage ChA Ref Drive Drive V1 V3 Current3 Generation (used) Current1 Generation (used) Current4 Generation (used) Current2 Generation (used) V2 V4 Unused or Spare Cell Unused or Spare Cell Reference Reference Voltage ChD Voltage ChC Current Generation Current Generation (UNUSED) (UNUSED) Floating Input of Floating Input of inverter inverter

Figure 2 Reference Voltage generation inside ADC3xxx/3xJxx devices

- Bias Voltages (V1,V2) and (V3,V4) are used to generate currents for reference driver for channel A&D, and channel B&C respectively.
- Inside device, there are two unused cells to generate current (one for channel A&D, other for channel B&C). The bias voltage of these unused cells is chosen by multiplexer. The selection line of multiplexer is driven by a floating input inverter.
- This floating gate of inverter in unused cell causes V1 and V2 to short temporarily, resulting in glitch in reference output of CHA and CHD. Same phenomenon is seen by CHB and CHC.

4. Solution

The floating gate of inverter in unused cell is connected to deterministic state (AVDD supply) in new Silicon. While it solves the problem, it doesn't impact any parameter (performance, power or timing) of device in any possible way since the unused cell is not used anywhere in design for any purpose.

This change did not necessitate a manufacturing or silicon process requalification. However, a full test yield and bin analysis was performed on a representative device from each product family. None of the evaluated devices showed any meaningful differences from the current yield and bin distributions.

Affected devices are listed in the product affected section of this document.

Reason for Change:

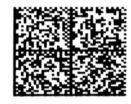
To fix design glitch

Anticipated impact on Form, Fit, Function, Quality or Reliability (positive / negative):

The design improvement does not affect the specified form fit or function of the device and therefore it represents an application drop-in replacement. There will be no accompanying changes to the device specifications.

Changes to product identification resulting from this PCN:

There is no change to the device marking. The Die Rev designator for the affected devices will change as shown in the table and sample label below:


Current	New				
Die Rev [2P]	Die Rev [2P]				
Α	В				

Sample product shipping label (not actual product label)

2DC: 2Q: MSL 2 /260C/1 YEAR SEAL DT MSL 1 /235C/UNLIM 03/29/04

TTEM: 5A (L)TO:3750

(1P) \$N74L\$07N\$R (Q) 2000 (D) 0336 (31T) LOT: 3959047MLA (4W) TKY(1T) 7523483\$I2 (2P) REV: (V) 0033317 (20L) 950: SHE (21L) CCO:USA (22L) ASO: MLA (23L) ACO: MYS

Product Affected:					
ADC3221IRGZR	ADC32J22IRGZT	ADC3421IRTQR	ADC34J22IRGZ25		
ADC3221IRGZT	ADC32J23IRGZ25	ADC3421IRTQT	ADC34J22IRGZR		
ADC3222IRGZR	ADC32J23IRGZR	ADC3422IRTQ25	ADC34J22IRGZT		
ADC3222IRGZT	ADC32J23IRGZT	ADC3422IRTQR	ADC34J23IRGZ25		
ADC3223IRGZ25	ADC32J24IRGZ25	ADC3422IRTQT	ADC34J23IRGZR		
ADC3223IRGZR	ADC32J24IRGZR	ADC3423IRTQ25	ADC34J23IRGZT		
ADC3223IRGZT	ADC32J24IRGZT	ADC3423IRTQR	ADC34J24IRGZ25		
ADC3224IRGZ25	ADC32J25IRGZ25	ADC3423IRTQT	ADC34J24IRGZR		
ADC3224IRGZR	ADC32J25IRGZR	ADC3424IRTQ25	ADC34J24IRGZT		
ADC3224IRGZT	ADC32J25IRGZT	ADC3424IRTQR	ADC34J25IRGZ25		
ADC3241IRGZ25	ADC32J42IRGZ25	ADC3424IRTQT	ADC34J25IRGZR		
ADC3241IRGZR	ADC32J42IRGZR	ADC3441IRTQ25	ADC34J25IRGZT		
ADC3241IRGZT	ADC32J42IRGZT	ADC3441IRTQR	ADC34J42IRGZ25		
ADC3242IRGZ25	ADC32J43IRGZ25	ADC3441IRTQT	ADC34J42IRGZR		
ADC3242IRGZR	ADC32J43IRGZR	ADC3442IRTQ25	ADC34J43IRGZ25		
ADC3242IRGZT	ADC32J43IRGZT	ADC3442IRTQR	ADC34J43IRGZR		
ADC3243IRGZ25	ADC32J44IRGZ25	ADC3442IRTQT	ADC34J43IRGZT		
ADC3243IRGZR	ADC32J44IRGZR	ADC3443IRTQ25	ADC34J44IRGZ25		
ADC3243IRGZT	ADC32J44IRGZT	ADC3443IRTQR	ADC34J44IRGZR		
ADC3244IRGZ25	ADC32J45IRGZ25	ADC3443IRTQT	ADC34J44IRGZT		
ADC3244IRGZR	ADC32J45IRGZR	ADC3444IRTQ25	ADC34J45IRGZ25		
ADC3244IRGZT	ADC32J45IRGZT	ADC3444IRTQR	ADC34J45IRGZR		
ADC32J22IRGZR	ADC3421IRTQ25	ADC3444IRTQT	ADC34J45IRGZT		

For questions regarding this notice, e-mails can be sent to the regional contacts shown below, or you can contact your local Field Sales Representative.

Location	E-Mail
USA	PCNAmericasContact@list.ti.com
Europe	PCNEuropeContact@list.ti.com
Asia Pacific	PCNAsiaContact@list.ti.com
Japan	PCNJapanContact@list.ti.com