MC14521B

24-Stage Frequency Divider

The MC14521B consists of a chain of 24 flip-flops with an input circuit that allows three modes of operation. The input will function as a crystal oscillator, an RC oscillator, or as an input buffer for an external oscillator. Each flip-flop divides the frequency of the previous flip-flop by two, consequently this part will count up to $2^{24}=16,777,216$. The count advances on the negative going edge of the clock. The outputs of the last seven-stages are available for added flexibility.

Features

- All Stages are Resettable
- Reset Disables the RC Oscillator for Low Standby Power Drain
- RC and Crystal Oscillator Outputs Are Capable of Driving External Loads
- Test Mode to Reduce Test Time
- $\mathrm{V}_{\mathrm{DD}}{ }^{\prime}$ and $\mathrm{V}_{\mathrm{SS}}{ }^{\prime}$ Pins Brought Out on Crystal Oscillator Inverter to Allow the Connection of External Resistors for Low-Power Operation
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range
- NLV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to V_{DD} +0.5	V
Input or Output Current (DC or Transient) per Pin	$\mathrm{I}_{\mathrm{in}}, \mathrm{I}_{\text {out }}$	± 10	mA
Power Dissipation, per Package (Note 1)	P_{D}	500	mW
Ambient Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (8-Second Soldering)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Package: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\text {SS }} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

SOIC-16
D SUFFIX
CASE 751B

PIN ASSIGNMENT

Q24	$1 \bullet$	16	$] V_{D D}$
RESET	2	15] Q23
$\mathrm{V}_{\text {SS }} 4$	3	14	Q22
OUT 2 [4	13	Q21
$V_{\text {DD }} 4$	5	12	Q20
IN 2 [6	11] Q19
OUT1	7	10	Q18
$\mathrm{V}_{\text {SS }}$	8	9	IN 1

MARKING DIAGRAMS

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { YY, Y } & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
\text { G } & =\text { Pb-Free Package }
\end{array}
$$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet

MC14521B

BLOCK DIAGRAM

Output	Count Capacity
Q18	$2^{18}=262,144$
Q19	$2^{19}=524,288$
Q20	$2^{20}=1,048,576$
Q21	$2^{21}=2,097,152$
Q22	$2^{22}=4,194,304$
Q23	$2^{23}=8,388,608$
Q24	$2^{24}=16,777,216$

ORDERING INFORMATION

Device	Package	Shipping †
MC14521BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14521BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14521BDR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14521BDR2G*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	V_{DD} Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		
			Min	Max	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Min	Max	
Output Voltage $V_{\text {in }}=V_{D D}$ or 0 "0" Level $V_{\text {in }}=0$ or $V_{D D}$ " $1 "$ Level	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	0 0 0	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{aligned} & \text { Input Voltage or } \quad \text { " } 0 \text { " Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	1.5 3.0 4.0	-	1.5 3.0 4.0	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	3.5 7.0 11	-	3.5 7.0 11	2.75 5.50 8.25	-	3.5 7.0 11	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=9.0 \mathrm{Vdc}\right)$ Pin 4 $\left(\mathrm{~V}_{\mathrm{OH}}=13 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ Pins $1,7,10$, $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $11,12,13,14$ $\left(\mathrm{~V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$ and 15 $\left(\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$ Sink $\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$ 	$\mathrm{IOH}^{\text {a }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & -0.25 \\ & -0.62 \\ & -1.8 \end{aligned}$	-	$\begin{aligned} & -0.2 \\ & -0.5 \\ & -1.5 \end{aligned}$	$\begin{gathered} -0.36 \\ -0.9 \\ -3.5 \end{gathered}$	-	$\begin{aligned} & -0.14 \\ & -0.35 \\ & -1.1 \end{aligned}$	-	mAdc
		5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	-	-2.4 -0.51 -1.3 -3.4 0.51	-4.2 -0.88 -2.25 -8.8	-	-1.7 -0.36 -0.9 -2.4 0.36	- - -	mAdc
	${ }^{\text {OL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{aligned} & 0.51 \\ & 1.3 \\ & 3.4 \end{aligned}$	0.88 2.25 8.8	-	0.36 0.9 2.4	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(\mathrm{V}_{\text {in }}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	I_{DD}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Note 3, 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	$\mathrm{I}^{\text {T }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & I_{\mathrm{T}}=(0.42 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(0.85 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.40 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF : $\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right)$ Vfk where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in pF , $\mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.003$.

MC14521B

SWITCHING CHARACTERISTICS (Note 5) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time (Counter Outputs) $t_{T L H}, t_{T H L}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{TL}}, \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{TL}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns}$	${ }_{\text {t }}^{\text {LLH }}$, $\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay Time Clock to Q18 $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+4415 \mathrm{~ns}$ $t_{\text {PHL }}, t_{\text {PLH }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1667 \mathrm{~ns}$ $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1275 \mathrm{~ns}$ Clock to Q24 $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+5915 \mathrm{~ns}$ $t_{\text {PHL }}, t_{\text {PLH }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+2167 \mathrm{~ns}$ $t_{\text {PHL }}, t_{\text {PLH }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1675 \mathrm{~ns}$	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	5.0 10 15 5.0 10 15		$\begin{aligned} & 4.5 \\ & 1.7 \\ & 1.3 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 3.5 \\ & 2.7 \end{aligned}$	us
	$t_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 1300 \\ 500 \\ 375 \end{gathered}$	$\begin{aligned} & 2600 \\ & 1000 \\ & 750 \end{aligned}$	ns
Clock Pulse Width	$\mathrm{t}_{\text {WH(cl) }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 385 \\ & 150 \\ & 120 \end{aligned}$	$\begin{gathered} \hline 140 \\ 55 \\ 40 \end{gathered}$	-	ns
Clock Pulse Frequency	f_{cl}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 3.5 \\ & 9.0 \\ & 12 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 5.0 \\ & 6.5 \end{aligned}$	MHz
Clock Rise and Fall Time	${ }_{\text {t }}^{\text {LLH }}$, $\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	$\begin{aligned} & 15 \\ & 5.0 \\ & 4.0 \end{aligned}$	us
Reset Pulse Width	${ }^{\text {twh }}$ (R)	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 1400 \\ & 600 \\ & 450 \end{aligned}$	$\begin{aligned} & \hline 700 \\ & 300 \\ & 225 \end{aligned}$	-	ns
Reset Removal Time	$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 30 \\ 0 \\ -40 \end{gathered}$	$\begin{aligned} & \hline-200 \\ & -160 \\ & -110 \end{aligned}$	-	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Power Dissipation Test Circuit and Waveform

Figure 2. Switching Time Test Circuit and Waveforms

*Optional for low power operation, $10 \mathrm{k} \Omega \leq \mathrm{R} \leq 70 \mathrm{k} \Omega$.

Figure 3. Crystal Oscillator Circuit

Characteristic	500 kHz Circuit	50 kHz Circuit	Unit
Crystal Characteristics Resonant Frequency Equivalent Resistance, R_{S}	$\begin{gathered} 500 \\ 1.0 \end{gathered}$	$\begin{aligned} & 50 \\ & 6.2 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{k} \Omega \end{gathered}$
External Resistor/Capacitor Values $\begin{aligned} & \mathrm{R}_{0} \\ & \mathrm{C}_{\mathrm{T}} \end{aligned}$ Cs	$\begin{aligned} & 47 \\ & 82 \\ & 20 \end{aligned}$	$\begin{gathered} 750 \\ 82 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Frequency Stability Frequency Change as a Function of $V_{D D}\left(T_{A}=25^{\circ} \mathrm{C}\right)$ $V_{D D}$ Change from 5.0 V to 10 V V_{DD} Change from 10 V to 15 V Frequency Change as a Function of Temperature ($\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$) T_{A} Change from $-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$ MC14521 only Complete Oscillator* T_{A} Change from $+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ MC14521 only Complete Oscillator*	$\begin{aligned} & +6.0 \\ & +2.0 \\ & \\ & -4.0 \\ & +100 \\ & \\ & \\ & -2.0 \\ & -160 \end{aligned}$	$\begin{aligned} & +2.0 \\ & +2.0 \\ & \\ & -2.0 \\ & +120 \\ & \\ & \\ & -2.0 \\ & -560 \end{aligned}$	ppm ppm ppm ppm ppm

*Complete oscillator includes crystal, capacitors, and resistors.
Figure 4. Typical Data for Crystal Oscillator Circuit

Figure 5. RC Oscillator Stability

Figure 7. RC Oscillator Circuit

Figure 6. RC Oscillator Frequency as a Function of $R_{\text {TC }}$ and C

Figure 8. Functional Test Circuit

FUNCTIONAL TEST SEQUENCE

A test function (see Figure 8) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8 -stage sections, and 255 counts are loaded in each of the 8 -stage sections in parallel. All flip-flops are now at a logic "1". The counter is now returned to the normal 24 -stages in series configuration. One more pulse is entered into Input 2 ($\ln 2$) which will cause the counter to ripple from an all " 1 " state to an all " 0 " state.	Inputs		Outputs				Comments
	Reset	In 2	Out 2	$\mathrm{V}_{\text {SS }}{ }^{\prime}$	$\mathrm{V}_{\mathrm{DD}^{\prime}}$	Q18 thru Q24	Counter is in three 8-stage sections in parallel mode Counter is reset. In 2 and Out 2 are connected together.
	1	0	0	$V_{D D}$ GND	GND	0	
	$\underbrace{0}$	1	1				First " 0 " to " 1 " transition on $\ln 2$, Out 2 node.
		0	0				255 " 0 " to " 1 " transitions are clocked
		-	-				into this in 2, Out 2 node.
		1	1			1	The 255th "0" to "1" transition.
		0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			1	
		1	0			1	Counter converted back to 24-stages in series mode.
		1	0			1	Out 2 converts back to an output.
		0	1			0	Counter ripples from an all " 1 " state to an all "0" stage.

MC14521B
LOGIC DIAGRAM

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

