

Maxim > Design Support > Technical Documents > Application Notes > T/E Carrier and Packetized > APP 4118

Keywords: JTAG, BSDL, MCM, Multi-Chip Module

APPLICATION NOTE 4118

DS33R11 Multichip-Module BSDL Testing

Oct 09, 2007

Abstract: This application note describes how to alter the printed wiring board (PWB) netlist of a design containing the DS33R11T1/E1/J1 transceiver so that the netlist complies with the Joint Test Action Group (JTAG) specifications. These alterations are necessary because the DS33R11 was designed as a multichip module with multiple die in a single package which cannot be defined by the Boundary-Scan Description Language (BSDL) for board-level JTAG testing. The application note contains external pin mapping tables, internal die-pad bond tables, and contact information so the designer can quickly achieve accurate JTAG boundary-scan board testing.

Introduction

When manufacturing hardware for a telecommunications system, one of the basic tasks is to test the system for any production flaws. While there are many ways to test the hardware, one of the most popular methods uses the Joint Test Action Group (JTAG) boundary-scan method. The boundary-scan test method involves some minor changes to the hardware before production so that hardware verification can be performed after production. During design, all of the Integrated Circuit (IC) devices which support JTAG are connected in a serial daisy-chain fashion through the JTAG test access port. Verification is done by a specialized JTAG test system which connects to the test access port. The JTAG test system then uses a combination of the printed wiring board (PWB) netlist, Boundary-Scan Description Language (BSDL) files, and PWB connectivity test vectors to verify the pin-to-pin connections.

BSDL testing is straightforward. Nonetheless, multichip module devices like the DS33R11 Inverse-Multiplexing Ethernet Mapper with Integrated T1/E1/J1 Transceiver cannot be properly described by a single BSDL file because there are multiple die in a single package. This shortcoming can be overcome with simple modification to the PWB netlist and by using two BSDL files to describe the device package instead of just one.

Modifying the Printed Wiring Board Netlist

Before JTAG boundary scan testing can be performed, the portion of the PWB netlist that describes the external connections to the DS33R11 package must be modified to split those connections between the internal DS33Z11 die and DS2155 die. Once completed, the netlist will define the DS33R11 package with two independent reference designators. These reference designators allow two different BSDL files to individually describe the DS33Z11 and DS2155 connections inside the DS33R11 package.

Tables 1, **2**, and **3** and **Figure 1** make the task of modifying the netlist easy. Table 1 lists all of the external DS33R11 package pins which only connect to the DS33Z11 die. Table 2 lists all of the external DS33R11 package pins which only connect to the DS2155 die. Table 3 lists all of the external DS33R11

package pins which connect to both the DS33Z11 die and the DS2155 die. Figure 1 shows the same information in a format created for easier viewing.

This PWB netlist modification and JTAG boundary scan test have been performed using a Concise Net List format netlist of the DS33R11 engineering evaluation board designed with Cadence Concept. Designers can perform the operation in approximately 30 to 60 minutes, depending on the netlist type and individual's skill level. Most of the edits to the netlist file can be done with a simple text editor. Depending on the netlist type, however, it may be possible to edit the netlist in a program such as Microsoft® Excel which can sort rows based on column data. However the editing is done, it is important to pay careful attention to detail. Irregular data such as header and footer information must be maintained, and the netlist must always be saved in the original format.

The following is a list of steps needed to complete the process.

- 1. Open the netlist file in a text editor and group all of the nets connected to the DS33R11 reference designator. As an example, the DS33R11 package on the DS33R11 engineering evaluation board has a reference designator of U01.
- 2. Separate all of the nets isolated in step 1 among those connected to the DS33Z11 die, those connected to the DS2155 die, and those connected to both die. Use Tables 1, 2, and 3 and Figure 1 to complete this task.
- 3. Change the reference designator for all of the DS33Z11 nets from U01 to U01_D1 (short for reference designator U01, device 1). This step assumes that the DS33R11 reference designator is U01. If the reference designator is not U01, change U01_D1 appropriately.
- 4. Change the reference designator for all of the DS2155 nets from U01 to U01_D2 (short for reference designator U01, device 2). This assumes that the DS33R11 reference designator is U01. If it is not U01, change U01_D2 appropriately.
- 5. Duplicate the 22 shared nets so that there are exactly two of each. Split them into two groups.
- 6. Change the reference designator for first group of nets created in step 5 from U01 to U01_D1. This assumes that the DS33R11 reference designator is U01. If it is not U01, change U01_D1 appropriately.
- 7. Change the reference designator for second group of nets created in step 5 from U01 to U01_D2. This assumes that the DS33R11 reference designator is U01. If it is not U01, change U01_D2 appropriately.
- 8. Save the newly created netlist.

The newly created PCB netlist will actually contain two instances for the DS33R11 physical device. The first instance will describe the pin connections related to the DS33Z11 section; the second will describe pin connections related to the DS2155 section. The new netlist can be loaded into any JTAG test suite along with the two DS33R11 BSDL files and any associated test vectors.

Although the method documented here has been tested and verified to work properly, there can be some unforeseen complications with other netlist formats. If additional assistance is needed during JTAG boundary scan testing, please use the contact information below for further assistance.

Table 1. Device Pins for DS33Z11 Die Only

Pin	Description	Pin	Description	Pin	Description
A7	JTCLK1	L17	VDD3	V13	SDA[5]
A8	RST	L18	RXD[0]	V14	SDA[10]
A11	CS	L19	RXD[1]	V15	SMASK[3]
A15	VSS	L20	RXD[2]	V16	SMASK[2]
A19	REF_CLK	M17	VDD3	V17	SDATA[29]

A[18]
A[20]
A[15]
A[0]
A[14]
A[9]
A[5]
A[7]
1]
]
6]
)]
3]
A[31]
A[30]
A[28]
A[23]
A[2]
A[4]
A[1]
A[3]
K[0]
KO
.8
)]
)]
]
.8
!]
2]
A[16]
A[17]

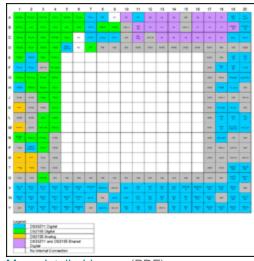

H20	VSS	V4	SDATA[10]	Y18	SDATA[27]
J17	VDD3	V5	SDATA[6]	Y19	SDATA[19]
J18	VDD1.8	V6	SDATA[8]	Y20	SDATA[21]
J19	VSS	V7	SMASK[1]		
J20	VDD1.8	V8	SYSCLKI		
K17	VDD3	V9	VDD1.8		
K18	RX_ERR	V10	SDCS		
K19	RX_DV	V11	SBA[1]		
K20	VSS	V12	SDA[8]		

Table 2. Device Pins for DS2155 Die Only

Table 2. Device Pins for DS2155 Die Only						
Pin	Description	Pin	Description	Pin	Description	
A1	RCHBLK	D13	DVDD	L2	RVSS	
A2	TCHBLK	D14	DVDD	L3	RSIG	
АЗ	RFSYNC	D15	DVDD	L4	RNEGI	
A4	TDATA	D16	DVDD	M1	RRING	
A5	TSSYNC	D17	DVDD	M2	RVSS	
A6	JTCLK2	E1	TPOSO	M3	RDCLKO	
B1	BPCLK	E3	TSERI	M4	RDCLKI	
B2	LIUC	E4	TSYSCLK	N1	RLOS/LTC	
В3	TPOSI	E17	DVDD	N2	RNEGO	
B4	TSIG	F4	RSYSCLK	N3	RPOSO	
B5	RCL	G1	TCHCLK	N4	DVSS	
B6	JTDI2	G2	RCHCLK	P1	TVSS	
В8	JTRST2	G3	RCLKO	РЗ	RSIGF	
B9	JTMS2	G4	RSYNC	P4	DVSS	
C1	TSYNC	H2	RSERO	R1	TTIP	
C2	TDCLKO	НЗ	RDATA	R2	TTIP	
C3	TNEGI	H4	MCLK	R3	TVSS	
C4	TSTRST	J1	RVSS	R4	DVSS	
C5	JTDO2	J2	RVSS	T1	TRING	
D1	TDCLKI	J3	RPOSI	T2	TRING	
D2	TCLKT	J4	XTALD	Т3	TVSS	
D3	TNEGO	K1	RTIP	T4	DVSS	
D4	TESO	K2	RVSS	U1	TVDD	
D7	CST	K3	RVDD	U2	TVSS	
D11	DVDD	K4	8XCLK	U3	RMSYNC	
D12	DVDD	L1	RVDD			

Table 3. Shared Device Pins for DS33Z11 and DS2155 Die

Iabi	5 5. Offarca L
Pin	Description
A10	INT
A12	D6
A13	D3
A14	D0
A16	A6
A17	A3
A18	A0
B11	RD/DS
B12	D7
B13	D4
B14	D1
B16	A7
B17	A4
B18	A1
B19	MODEC[0]
C11	WR/RW
C13	D5
C14	D2
C17	A5
C18	A2

More detailed image (PDF)

Figure 1. DS33R11 256-ball BGA, color-coded pinout and die map.

References

If you have additional questions on the JTAG testing of the DS33R11, please contact the Telecommunication Applications support team by email, telecom.support@maximintegrated.com, or telephone at 01-972-371-6555.

For more information about the DS33R11 Inverse-Multiplexing Ethernet Mapper with Integrated T1/E1/J1 Transceiver, please consult the appropriate data sheet at: T/E Carrier and Packetized Communications.

Microsoft is a registered trademark and registered service mark of Microsoft Corporation.

Related Parts DS33R11 Ethernet Mapper with Integrated T1/E1/J1 Transceiver Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 4118: http://www.maximintegrated.com/an4118

APPLICATION NOTE 4118, AN4118, AN 4118, APP4118, Appnote4118, Appnote 4118

Copyright © by Maxim Integrated Products

Additional Legal Notices: http://www.maximintegrated.com/legal