

SN74AXC2T45 SCES880C - AUGUST 2019 - REVISED JUNE 2021

SN74AXC2T45 2-Bit Translating Transceiver with Configurable Level-Shifting

1 Features

- Fully configurable dual-rail design allows each port to operate with a power supply range from 0.65 V to 3.6 V
- Operating temperature from -40°C to +125°C
- Glitch-free power supply sequencing
- Up to 380 Mbps support when translating from 1.8 V to 3.3 V
- V_{CC} isolation feature
 - If either V_{CC} input is below 100 mV, all I/Os outputs are disabled and become highimpedance
- I_{off} supports partial-power-down mode operation
- Compatible with AVC family level shifters
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD protection exceeds JESD 22
 - 8000-V human-body model
 - 1000-V charged-device model

2 Applications

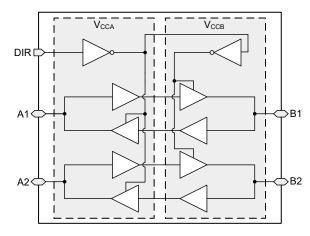
- Enterprise and communications
- Industrial
- Personal electronics
- Wireless infrastructure
- **Building automation**
- Point-of-sale

3 Description

The SN74AXC2T45 is a two-bit noninverting bus transceiver that uses two individually configurable power-supply rails. The device is operational with both V_{CCA} and V_{CCB} supplies as low as 0.65 V. The A port is designed to track V_{CCA} , which accepts any supply voltage from 0.65 V to 3.6 V. The B port is designed to track V_{CCB}, which also accepts any supply voltage from 0.65 V to 3.6 V. Additionally the SN74AXC2T45 is compatible with a single-supply system.

The SN74AXC2T45 device is designed asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level of the direction-control input (DIR). The SN74AXC2T45 device is designed so the control pin (DIR) is referenced to V_{CCA}.

This device is fully specified for partial-power-down applications using the Ioff current. The Ioff protection circuitry ensures that no excessive current is drawn from or to an input, output, or combined I/O that is biased to a specific voltage while the device is powered down.


The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} is less than 100 mV, both I/O ports enter a high-impedance state by disabling their outputs.

Glitch-free power supply sequencing allows either supply rail to be powered on or off in any order while providing robust power sequencing performance.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74AXC2T45DCT	SM8 (8)	2.95 mm × 2.80 mm
SN74AXC2T45DCU	VSSOP (8)	2.30 mm × 2.00 mm
SN74AXC2T45DTM	X2SON (8)	1.35 mm × 0.80 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

Table of Contents

1 Features1	7.1 Load Circuit and Voltage Waveforms	17
2 Applications 1	8 Detailed Description	
3 Description1	8.1 Overview	19
4 Revision History2	8.2 Functional Block Diagram	19
5 Pin Configuration and Functions3	8.3 Feature Description	19
6 Specifications4	8.4 Device Functional Modes	
6.1 Absolute Maximum Ratings4	9 Application and Implementation	21
6.2 ESD Ratings4	9.1 Application Information	<mark>2</mark> 1
6.3 Recommended Operating Conditions5	9.2 Typical Application	<mark>2</mark> 1
6.4 Thermal Information5	10 Power Supply Recommendations	23
6.5 Electrical Characteristics6	11 Layout	23
6.6 Switching Characteristics, V _{CCA} = 0.7 ± 0.05 V7	11.1 Layout Guidelines	23
6.7 Switching Characteristics, V _{CCA} = 0.8 ± 0.04 V8	11.2 Layout Example	
6.8 Switching Characteristics, V _{CCA} = 0.9 ± 0.045 V 9	12 Device and Documentation Support	24
6.9 Switching Characteristics, V _{CCA} = 1.2 ± 0.1 V 10	12.1 Documentation Support	<mark>2</mark> 4
6.10 Switching Characteristics, V _{CCA} = 1.5 ± 0.1 V 11	12.2 Receiving Notification of Documentation Update	s <mark>24</mark>
6.11 Switching Characteristics, V _{CCA} = 1.8 ± 0.15 V 12	12.3 Support Resources	<mark>2</mark> 4
6.12 Switching Characteristics, V _{CCA} = 2.5 ± 0.2 V 13	12.4 Trademarks	24
6.13 Switching Characteristics, V _{CCA} = 3.3 ± 0.3 V 14	12.5 Electrostatic Discharge Caution	24
6.14 Operating Characteristics: T _A = 25°C	12.6 Glossary	24
6.15 Typical Characteristics16	13 Mechanical, Packaging, and Orderable	
	Information	24

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (January 2020) to Revision C (June 2021)	Page
 Updated the numbering format for tables, figures, and cross-references throughout the document Updated the Enable Times section 	
Changes from Revision A (December 2019) to Revision B (January 2020)	Page
Added DCU and DCT packages to datasheet	1
Changes from Revision * (August 2019) to Revision A (December 2019)	Page
Changed from Advance Information to Production Data	1

5 Pin Configuration and Functions

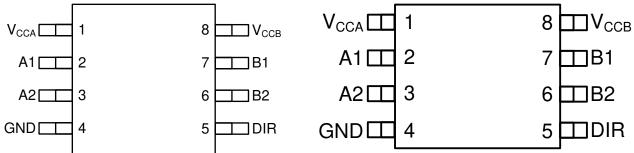


Figure 5-1. DCT Package 8-Pin SM8 Top View

Figure 5-2. DCU Package 8-Pin VSSOP Top View

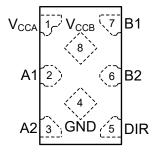


Figure 5-3. DTM Package 8-Pin X2SON Transparent Top View

Table 5-1. Pin Functions

PIN	NO.	DESCRIPTION
NAME	DTM, DCU, DCT	DESCRIPTION
A1	2	Input/output A1. Referenced to V _{CCA} .
A2	3	Input/output A2. Referenced to V _{CCA} .
B1	7	Input/output B1. Referenced to V _{CCB} .
B2	6	Input/output B2. Referenced to V _{CCB} .
DIR	5	Direction-control in for both ports. Referenced to V _{CCA}
GND	4	Ground
V _{CCA}	1	A-port power supply voltage. 0.65 V ≤ V _{CCA} ≤ 3.6 V
V _{CCB}	8	B-port power supply voltage. 0.65 V ≤ V _{CCB} ≤ 3.6 V

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNITS
V_{CCA}	Supply voltage A		-0.5	4.2	V
V_{CCB}	Supply voltage B		-0.5	4.2	V
		I/O Ports (A Port)	-0.5	4.2	
V_{I}	Input Voltage ⁽²⁾	I/O Ports (B Port)	-0.5	4.2	V
		Control Inputs	-0.5	4.2	
.,	Villa and the state of the stat	A Port	-0.5	4.2	.,
Vo	Voltage applied to any output in the high-impedance or power-off state ⁽²⁾	B Port	-0.5	4.2	V
.,	Voltage and in the construction that high an law state (2) (3)	A Port	-0.5	V _{CCA} + 0.2	V
Vo	Voltage applied to any output in the high or low state ^{(2) (3)}	B Port	-0.5	V _{CCB} + 0.2	, v
I _{IK}	Input clamp current	V _I < 0	-50		mA
I _{OK}	Output clamp current	V _O < 0	-50		mA
Io	Continuous output current		-50	50	mA
	Continuous current through V _{CC} or GND		-100	100	mA
Tj	Junction Temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.

6.2 ESD Ratings

		VALUE	UNIT
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±8000	
V _(ESD)	Charged device model (CDM), per JEDEC Specification JESD22-C101 ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1) (2)

				MIN	MAX	UNIT
V _{CCA}	Supply voltage A			0.65	3.6	V
V _{CCB}	Supply voltage B			0.65	3.6	V
			V _{CCI} = 0.65 V - 0.75 V	V _{CCI} × 0.70		
			V _{CCI} = 0.76 V – 1 V	V _{CCI} × 0.70		
		Data Inputs	V _{CCI} = 1.1 V – 1.95 V	V _{CCI} × 0.65		
			V _{CCI} = 2.3 V – 2.7 V	1.6		
	Llink lavalinavatvaltana		V _{CCI} = 3 V – 3.6 V	2		
V _{IH}	High-level input voltage		V _{CCA} = 0.65 V - 0.75 V	V _{CCA} × 0.70		
			V _{CCA} = 0.76 V – 1 V	V _{CCA} × 0.70		
		Control Input (DIR), Referenced to V _{CCA}	V _{CCA} = 1.1 V – 1.95 V	V _{CCA} × 0.65		
		10 V CCA	V _{CCA} = 2.3 V – 2.7 V	1.6		
			V _{CCA} = 3 V – 3.6 V	2		
			V _{CCI} = 0.65 V – 0.75 V		V _{CCI} x 0.30	
			V _{CCI} = 0.76 V – 1 V		V _{CCI} x 0.30	
		Data Inputs	V _{CCI} = 1.1 V – 1.95 V		V _{CCI} x 0.35	
			V _{CCI} = 2.3 V – 2.7 V		0.7	
.,	Low level input veltage		V _{CCI} = 3 V – 3.6 V		0.8	.,
V _{IL}	Low-level input voltage		V _{CCA} = 0.65 V - 0.75 V		V _{CCA} × 0.30	V
			V _{CCA} = 0.76 V – 1 V		V _{CCA} × 0.30	
		Control Input (DIR), Referenced to V _{CCA}	V _{CCA} = 1.1 V – 1.95 V		V _{CCA} × 0.35	
		10 VCCA	V _{CCA} = 2.3 V – 2.7 V		0.7	
			V _{CCA} = 3 V – 3.6 V		0.8	
V _I	Input voltage			0	3.6	V
\/	Output voltage	Active State		0	V _{CCO}	V
V _O	Output voltage	Tri-State	0	3.6	V	
Δt/Δv ⁽²⁾	Input transition rise and	all time			10	ns/V
$\Delta t/\Delta v^{(3)}$	Single channel input trar	sition rise and fall time			100	ns/V
T _A	Operating free-air tempe	rature		-40	125	°C

⁽¹⁾

6.4 Thermal Information

	TUEDNAL METDIO (1)		SN74AXC2T45							
	THERMAL METRIC (1)	DCT (SM8)	DCU (VSSOP)	DTM (X2SON)	UNIT					
R _{θJA}	Junction-to-ambient thermal resistance	223.5	242.9	225.9	°C/W					
R _{θJC(top)}	Junction-to-case (top) thermal resistance	120.7	96.2	131.6	°C/W					
$R_{\theta JB}$	Junction-to-board thermal resistance	138.0	153.3	141.3	°C/W					
Y _{JT}	Junction-to-top characterization parameter	47.5	38.2	12.7	°C/W					
Y _{JB}	Junction-to-board characterization parameter	136.7	152.5	140.9	°C/W					

⁽¹⁾ For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

 V_{CCI} is the V_{CC} associated with the input port. V_{CCO} is the V_{CC} associated with the output port. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Input transition rate of a single channel while the other channels are at a valid logic state and not switching.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted) (1) (2) (3)

					Operating free-air temperature (T _A)								
RAMETER	TEST	CONDITIONS	V _{CCA}	V _{CCB}	-40°	C to 85°C	-40°	C to 125°	,C	UNIT			
					MIN	TYP MAX	MIN	TYP	MAX				
		Ι _{ΟΗ} = -100 μΑ	0.7 V – 3.6 V	0.7 V – 3.6 V	V _{CCO} -0.1		V _{CCO} -0.1						
		I _{OH} = -50 μA	0.65 V	0.65 V	0.55		0.55						
		I _{OH} = -200 μA	0.76 V	0.76 V	0.58		0.58						
High-level		I _{OH} = -500 μA	0.85 V	0.85 V	0.65		0.65						
output voltage	$V_I = V_{IH}$	I _{OH} = -3 mA	1.1 V	1.1 V	0.85		0.85			V			
		I _{OH} = -6 mA	1.4 V	1.4 V	1.05		1.05						
		I _{OH} = -8 mA	1.65 V	1.65 V	1.2		1.2						
		I _{OH} = -9 mA	2.3 V	2.3 V	1.75		1.75						
		I _{OH} = -12 mA	3 V	3 V	2.3		2.3						
		I _{OL} = 100 μA	0.7 V – 3.6 V	0.7 V – 3.6 V		0.1			0.1				
		I _{OL} = 50 μA	0.65 V	0.65 V		0.1			0.1				
		I _{OL} = 200 μA	0.76 V	0.76 V		0.18			0.18				
Low-level output voltage		I _{OL} = 500 μA	0.85 V	0.85 V		0.2			0.2				
	$V_I = V_{IL}$	I _{OL} = 3 mA	1.1 V 1.1 V 0.25				0.25	V					
		I _{OL} = 6 mA	1.4 V	1.4 V		0.35			0.35				
		I _{OL} = 8 mA	1.65 V	1.65 V		0.45			0.45				
		I _{OL} = 9 mA	2.3 V	2.3 V		0.55			0.55				
		I _{OL} = 12 mA	3 V	3 V		0.7			0.7				
Input leakage			0.65 V – 3.6 V	0.65 V – 3.6 V	-0.5	0.5	-1		1	μΑ			
current			0.65 V – 3.6 V	0.65 V – 3.6 V	-4	4	-8		8	μΑ			
Partial power	A Port: V 3.6 V	$I_{\rm I}$ or $V_{\rm O} = 0 \text{ V} -$	0 V	0 V – 3.6 V	-4	4	-8		8	μA			
down current	B Port: V 3.6 V	$_{\rm I}$ or ${\rm V}_{\rm O}$ = 0 V $-$	0 V – 3.6 V	0 V	-4	4	-8		8	μ,			
	V ₁ =		0.65 V - 3.6 V	0.65 V – 3.6 V		8			14				
current	V _{CCI} or	I _O = 0	0 V	3.6 V	-2		-12			μΑ			
	GND		3.6 V	0 V		4			8				
	V _I =		0.65 V – 3.6 V	0.65 V – 3.6 V		8			14				
current	V _{CCI} or	I _O = 0	0 V	3.6 V		4			8	μA			
	GND		3.6 V	0 V	-2		-12						
Combined supply current	V _I = V _{CCI} or GND	I _O = 0	0.65 V – 3.6 V	0.65 V – 3.6 V		16			23	μA			
Control Input (DIR) Capacitance	t V _I = 3.3 V or GND		3.3 V	3.3 V		3.3		3.3		pF			
Data I/O Capacitance	V _O = 1.69 -16 dBm	5 V DC +1 MHz sine wave	3.3 V	3.3 V		5.4		5.4		pF			
	High-level output voltage Low-level output voltage Input leakage current Partial power down current V _{CCA} supply current V _{CCB} supply current Combined supply current Control Input (DIR) Capacitance Data I/O	High-level output voltage $V_{I} = V_{IH}$ Low-level output voltage $V_{I} = V_{IL}$ Input leakage current V_{CCA} or V_{CCI} or	High-level output voltage $V_{I} = V_{IIH} = V_{IIH} = V_{IOH} = -50 \ \mu A$ $I_{OH} = -500 \ \mu A$ $I_{OH} = -500 \ \mu A$ $I_{OH} = -500 \ \mu A$ $I_{OH} = -6 \ mA$ $I_{OH} = -9 \ mA$ $I_{OH} = -9 \ mA$ $I_{OH} = -9 \ mA$ $I_{OH} = -12 \ mA$ $I_{OH} = -12 \ mA$ $I_{OL} = 100 \ \mu A$ $I_{OL} = 500 \ \mu A$ $I_{OL} = 8 \ mA$ $I_{OL} = 8 \ mA$ $I_{OL} = 9 \ mA$ $I_{OL} = 12 \ mA$ $I_{OL} = 100 \ \mu A$ $I_{OL} = 0 \ mA$ $I_{OL} = 0 \ m$	High-level output voltage V _I = V _{IH} I _{OH} = -100 μA 0.7 V - 3.6 V I _{OH} = -50 μA 0.65 V I _{OH} = -500 μA 0.85 V I _{OH} = -3 mA 1.1 V I _{OH} = -8 mA 1.65 V I _{OH} = -9 mA 2.3 V I _{OH} = -12 mA 3 V I _{OH} = -12 mA 3 V I _{OH} = -12 mA 0.76 V I _{OH} = -12 mA 0.65 V 0.65	High-level output voltage V _I = V _{IH} I _{OH} = -100 μA 0.7 V - 3.6 V 0.7 V - 3.6 V I _{OH} = -200 μA 0.65 V 0.65 V 0.65 V I _{OH} = -200 μA 0.76 V 0.76 V 0.76 V I _{OH} = -800 μA 0.85 V 0.85 V 0.85 V I _{OH} = -8 mA 1.1 V 1.1 V I _{OH} = -8 mA 1.65 V 1.65 V I _{OH} = -9 mA 2.3 V 2.3 V I _{OH} = -12 mA 3 V 3 V I _{OH} = 50 μA 0.65 V 0.65 V 0.65 V I _{OL} = 50 μA 0.65 V 0.65 V I _{OL} = 50 μA 0.65 V 0.65 V I _{OL} = 500 μA 0.85 V 0.85 V I _{OL} = 200 μA 0.76 V 0.76 V I _{OL} = 200 μA 0.76 V 0.76 V I _{OL} = 3 mA 1.1 V 1.1 V I _{OL} = 6 mA 1.4 V 1.4 V I _{OL} = 6 mA 1.4 V 1.4 V I _{OL} = 6 mA 1.65 V I _{OL} = 3 mA 1.1 V 1.1 V I _{OL} = 8 mA 1.65 V I _{OE} = 0 mA I _{OE} = 0.65 V - 3.6 V I _{OE} = 0 mA I _{OE} = 0.65 V - 3.6 V I _{OE} = 0.65 V - 3.6	TEST CONDITIONS V _{CCA}	TEST CONDITIONS V _{CCA} V _{CCB}	TEST CONDITIONS V_CCA	TEST CONDITIONS	High-level output voltage V ₁ = V _H I _{OH} = -100 μA 0.7 V - 3.6 V 0.7 V - 3.6 V 0.55 0.55 0.55 0.56 0.04 I _{OH} = -500 μA 0.65 V 0.65 V 0.65 V 0.65 0.65 0.65 0.65 I _{OH} = -500 μA 0.85 V 0.85 V 0.65 0.65 0.65 I _{OH} = -500 μA 0.85 V 0.85 V 0.65 0.65 0.65 I _{OH} = -500 μA 0.85 V 0.85 V 0.65 0.65 I _{OH} = -3 mA 1.1 V 1.1 V 0.85 I _{OH} = -3 mA 1.65 V 1.66 V 1.2 I.2 I.2 I.2 I.2 I.2 I.2 I.2 I.2 I.3 I.3			

⁽¹⁾ (2)

 V_{CCI} is the V_{CC} associated with the input port. V_{CCO} is the V_{CC} associated with the output port. All typical data is taken at 25°C.

6.6 Switching Characteristics, $V_{CCA} = 0.7 \pm 0.05 \text{ V}$

										ı	B-Port S	Supply	Voltage	(V _{CCB})										
P	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± ().1 V	1.5 ± ().1 V	1.8 ± 0	.15 V	2.5 ± 0).2 V	3.3 ± ().3 V	UNIT			
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX				
		_	В	-40°C to 85°C	0.5	170	0.5	115	0.5	84	0.5	50	0.5	50	0.5	56	0.5	71	0.5	106				
	Propagation	A	В	-40°C to 125°C	0.5	170	0.5	115	0.5	84	0.5	50	0.5	50	0.5	56	0.5	71	0.5	106	ns			
t _{pd}	delay	В	Α	-40°C to 85°C	0.5	170	0.5	149	0.5	122	0.5	83	0.5	79	0.5	78	0.5	77	0.5	76	115			
			^	-40°C to 125°C	0.5	170	0.5	149	0.5	122	0.5	83	0.5	79	0.5	78	0.5	77	0.5	76				
		DIR	DIR	_	-40°C to 85°C	0.5	140	0.5	140	0.5	140	0.5	140	0.5	140	0.5	140	0.5	140	0.5	140			
	Disable time		OIR A	-40°C to 125°C	0.5	140	0.5	140	0.5	140	0.5	140	0.5	140	0.5	140	0.5	140	0.5	140	ns			
t _{dis}	Disable time	DIR B	-40°C to 85°C	0.5	143	0.5	105	0.5	84	0.5	41	0.5	39	0.5	42	0.5	56	0.5	107	115				
		Diix		-40°C to 125°C	0.5	143	0.5	105	0.5	84	0.5	41	0.5	39	0.5	42	0.5	56	0.5	107				
		DID A	DID A	DIR	DID	Α	-40°C to 85°C	0.5	311	0.5	311	0.5	311	0.5	311	0.5	311	0.5	311	0.5	311	0.5	311	
	Enable time	DIK	A	-40°C to 125°C	0.5	311	0.5	311	0.5	311	0.5	311	0.5	311	0.5	311	0.5	311	0.5	311				
t _{en}	Lilable tille	DIR B		-40°C to 85°C	0.5	306	0.5	247	0.5	216	0.5	186	0.5	182	0.5	183	0.5	194	0.5	228	ns			
	D		-40°C to 125°C	0.5	306	0.5	247	0.5	216	0.5	186	0.5	182	0.5	183	0.5	194	0.5	228					

6.7 Switching Characteristics, $V_{CCA} = 0.8 \pm 0.04 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

											B-Port S	Supply	Voltage	(V _{CCB})																	
F	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0.04 V		0.9 ± 0.045 V		1.2 ± 0.1 V		1.5 ± 0.1 V		1.8 ± 0.15 V		2.5 ± 0.2 V		3.3 ± 0.3 V		UNIT										
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX											
		Α	В	-40°C to 85°C	0.5	150	0.5	94	0.5	63	0.5	33	0.5	28	0.5	27	0.5	28	0.5	34											
	Propagation	^	В	-40°C to 125°C	0.5	150	0.5	94	0.5	63	0.5	33	0.5	28	0.5	27	0.5	28	0.5	34											
t _{pd}	delay	В	Α	-40°C to 85°C	0.5	115	0.5	94	0.5	76	0.5	50	0.5	41	0.5	40	0.5	38	0.5	38	ns										
				-40°C to 125°C	0.5	115	0.5	94	0.5	76	0.5	50	0.5	41	0.5	40	0.5	38	0.5	38											
		DIR	^	-40°C to 85°C	0.5	96	0.5	96	0.5	96	0.5	96	0.5	96	0.5	96	0.5	96	0.5	96											
	Disable time		A	-40°C to 125°C	0.5	96	0.5	96	0.5	96	0.5	96	0.5	96	0.5	96	0.5	96	0.5	96											
t _{dis}	Disable time	DIR	В В	-40°C to 85°C	0.5	136	0.5	97	0.5	76	0.5	33	0.5	27	0.5	26	0.5	28	0.5	35	ns										
		DIIX		-40°C to 125°C	0.5	136	0.5	97	0.5	76	0.5	33	0.5	27	0.5	26	0.5	28	0.5	35											
			DID A	DID A	DID	DID	DIR	DIP	DID	DID	DIP A	DID A	DIP A	-40°C to 85°C	0.5	246	0.5	246	0.5	246	0.5	246	0.5	246	0.5	246	0.5	246	0.5	246	
t _{en}	Enable time	DIK	A	-40°C to 125°C	0.5	246	0.5	246	0.5	246	0.5	246	0.5	246	0.5	246	0.5	246	0.5	246											
(1)	Enable time	DIB		-40°C to 85°C	0.5	243	0.5	188	0.5	157	0.5	128	0.5	123	0.5	122	0.5	123	0.5	125	ns										
		DIR B		-40°C to 125°C	0.5	243	0.5	188	0.5	157	0.5	128	0.5	123	0.5	122	0.5	123	0.5	125											

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the Enable Times section.

Product Folder Links: SN74AXC2T45

6.8 Switching Characteristics, $V_{CCA} = 0.9 \pm 0.045 \text{ V}$

											B-Port S	Supply	Voltage	(V _{CCB})																					
P	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± ().1 V	1.5 ± ().1 V	1.8 ± 0	.15 V	2.5 ± 0).2 V	3.3 ± ().3 V	UNIT														
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX															
		Α	В	-40°C to 85°C	0.5	122	0.5	76	0.5	51	0.5	23	0.5	18	0.5	16	0.5	15	0.5	17															
	Propagation	^	В	-40°C to 125°C	0.5	122	0.5	76	0.5	51	0.5	23	0.5	18	0.5	16	0.5	15	0.5	17	ns														
t _{pd}	delay	В	_	-40°C to 85°C	0.5	84	0.5	63	0.5	51	0.5	39	0.5	28	0.5	24	0.5	21	0.5	21	115														
		В	A	-40°C to 125°C	0.5	84	0.5	63	0.5	51	0.5	39	0.5	28	0.5	24	0.5	21	0.5	21															
		DIR	_	-40°C to 85°C	0.5	74	0.5	74	0.5	74	0.5	74	0.5	74	0.5	74	0.5	74	0.5	74															
	Disable time		A	-40°C to 125°C	0.5	74	0.5	74	0.5	74	0.5	74	0.5	74	0.5	74	0.5	74	0.5	74	no														
t _{dis}	Disable time	DIB	В	-40°C to 85°C	0.5	133	0.5	94	0.5	73	0.5	30	0.5	23	0.5	22	0.5	20	0.5	22	ns														
		DIR	DIR	DIR	DIR	DIR	DIR	DIR	DIR	DIR	В	-40°C to 125°C	0.5	133	0.5	94	0.5	73	0.5	31	0.5	24	0.5	22	0.5	20	0.5	23							
		DID A	DID	DID A	DID	DID	DID	DID	DIR	DIP	DID		DID	DIP	DIR A	DIP A	DID A	-40°C to 85°C	0.5	211	0.5	211	0.5	211	0.5	211	0.5	211	0.5	211	0.5	211	0.5	211	
t _{en}	Enable time	DIK	A	-40°C to 125°C	0.5	211	0.5	211	0.5	211	0.5	211	0.5	211	0.5	211	0.5	211	0.5	211															
(1)	Enable title	DIB	ID D	-40°C to 85°C	0.5	192	0.5	146	0.5	120	0.5	93	0.5	88	0.5	86	0.5	85	0.5	87	ns														
		DIR B	-40°C to 125°C	0.5	192	0.5	146	0.5	120	0.5	93	0.5	88	0.5	86	0.5	85	0.5	87																

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the Enable Times section.

10

6.9 Switching Characteristics, $V_{CCA} = 1.2 \pm 0.1 \text{ V}$

											B-Port S	Supply	Voltage	(V _{CCB})							
	PARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± ().1 V	1.5 ± ().1 V	1.8 ± 0	.15 V	2.5 ± ().2 V	3.3 ± 0).3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	84	0.5	51	0.5	38	0.5	15	0.5	10	0.5	9	0.5	7	0.5	8	
	Propagation	A	В	-40°C to 125°C	0.5	84	0.5	51	0.5	38	0.5	15	0.5	11	0.5	9	0.5	8	0.5	8	ne
t _{pd}	delay	D	A	-40°C to 85°C	0.5	50	0.5	33	0.5	23	0.5	15	0.5	12	0.5	10	0.5	8	0.5	7	ns
		В	^	-40°C to 125°C	0.5	50	0.5	33	0.5	23	0.5	15	0.5	12	0.5	10	0.5	8	0.5	7	
		DIR	Α	-40°C to 85°C	0.5	26	0.5	26	0.5	26	0.5	26	0.5	26	0.5	26	0.5	26	0.5	26	
.	Disable time	DIK	^	-40°C to 125°C	0.5	27	0.5	27	0.5	27	0.5	27	0.5	27	0.5	27	0.5	27	0.5	27	ns
t _{dis}	Disable time	DIR	В	-40°C to 85°C	0.5	129	0.5	90	0.5	70	0.5	27	0.5	20	0.5	18	0.5	15	0.5	15	115
		DIIX	Ь	-40°C to 125°C	0.5	129	0.5	90	0.5	71	0.5	28	0.5	21	0.5	19	0.5	16	0.5	16	
		DIR	Α	-40°C to 85°C	0.5	177	0.5	177	0.5	177	0.5	177	0.5	177	0.5	177	0.5	177	0.5	177	
t _{en}	Enable time	DIK	^	-40°C to 125°C	0.5	177	0.5	177	0.5	177	0.5	177	0.5	177	0.5	177	0.5	177	0.5	177	ns
(1)	Lilable tille	DIR	В	-40°C to 85°C	0.5	105	0.5	71	0.5	59	0.5	40	0.5	36	0.5	35	0.5	33	0.5	34	119
		Diix		-40°C to 125°C	0.5	105	0.5	71	0.5	59	0.5	41	0.5	37	0.5	36	0.5	34	0.5	35	

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the Enable Times section.

6.10 Switching Characteristics, $V_{CCA} = 1.5 \pm 0.1 \text{ V}$

											B-Port S	Supply	Voltage	(V _{CCB})							
P.	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± ().1 V	1.5 ± ().1 V	1.8 ± 0	.15 V	2.5 ± ().2 V	3.3 ± (0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		^	В	-40°C to 85°C	0.5	79	0.5	41	0.5	28	0.5	12	0.5	9	0.5	7	0.5	6	0.5	6	
	Propagation	A	В	-40°C to 125°C	0.5	79	0.5	41	0.5	28	0.5	12	0.5	9	0.5	8	0.5	6	0.5	6	ns
t _{pd}	delay	D	_	-40°C to 85°C	0.5	50	0.5	28	0.5	18	0.5	10	0.5	9	0.5	8	0.5	6	0.5	5	115
		В	A	-40°C to 125°C	0.5	50	0.5	28	0.5	18	0.5	11	0.5	9	0.5	8	0.5	6	0.5	5	
		DIR	Α	-40°C to 85°C	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	
	Disable time	DIK	A	-40°C to 125°C	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	0.5	19	ns
t _{dis}	Disable time	DIR	В	-40°C to 85°C	0.5	128	0.5	89	0.5	69	0.5	26	0.5	19	0.5	17	0.5	13	0.5	13	115
		DIK	В	-40°C to 125°C	0.5	128	0.5	89	0.5	70	0.5	27	0.5	20	0.5	18	0.5	14	0.5	14	
		DIR	Α	-40°C to 85°C	0.5	172	0.5	172	0.5	172	0.5	172	0.5	172	0.5	172	0.5	172	0.5	172	
t _{en}	Enable time	DIK	A	-40°C to 125°C	0.5	172	0.5	172	0.5	172	0.5	172	0.5	172	0.5	172	0.5	172	0.5	172	no
(1)	Enable time	DIR	В	-40°C to 85°C	0.5	92	0.5	54	0.5	42	0.5	31	0.5	27	0.5	25	0.5	24	0.5	24	ns
		אוט	B	-40°C to 125°C	0.5	92	0.5	54	0.5	42	0.5	31	0.5	28	0.5	26	0.5	25	0.5	25	

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the Enable Times section.

6.11 Switching Characteristics, $V_{CCA} = 1.8 \pm 0.15 \text{ V}$

See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

											B-Port S	Supply	Voltage	(V _{CCB})							
F	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± ().1 V	1.5 ± ().1 V	1.8 ± 0	.15 V	2.5 ± ().2 V	3.3 ± ().3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	78	0.5	40	0.5	24	0.5	10	0.5	8	0.5	7	0.5	5	0.5	5	
	Propagation	^	В	-40°C to 125°C	0.5	78	0.5	40	0.5	24	0.5	10	0.5	8	0.5	7	0.5	6	0.5	5	no
t _{pd}	delay	В	Α	-40°C to 85°C	0.5	56	0.5	27	0.5	16	0.5	9	0.5	7	0.5	7	0.5	5	0.5	4	ns
		B	A	-40°C to 125°C	0.5	56	0.5	27	0.5	16	0.5	9	0.5	8	0.5	7	0.5	5	0.5	5	
		DIR	Α	-40°C to 85°C	0.5	16	0.5	16	0.5	16	0.5	16	0.5	16	0.5	16	0.5	16	0.5	16	
	Disable time	DIK	A	-40°C to 125°C	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	0.5	17	no
t _{dis}	Disable time	DIR	В	-40°C to 85°C	0.5	127	0.5	88	0.5	69	0.5	25	0.5	18	0.5	16	0.5	12	0.5	12	ns
		DIIX		-40°C to 125°C	0.5	127	0.5	88	0.5	70	0.5	26	0.5	19	0.5	17	0.5	13	0.5	13	
		DIR	Α	-40°C to 85°C	0.5	171	0.5	171	0.5	171	0.5	171	0.5	171	0.5	171	0.5	171	0.5	171	
t _{en}	Enable time	DIK	A	-40°C to 125°C	0.5	171	0.5	171	0.5	171	0.5	171	0.5	171	0.5	171	0.5	171	0.5	171	no
(1)	Enable time	DIR	В	-40°C to 85°C	0.5	89	0.5	50	0.5	36	0.5	26	0.5	23	0.5	22	0.5	21	0.5	20	ns
		אוט	Ь	-40°C to 125°C	0.5	89	0.5	50	0.5	36	0.5	27	0.5	24	0.5	23	0.5	22	0.5	21	

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the Enable Times section.

Submit Document Feedback

6.12 Switching Characteristics, $V_{CCA} = 2.5 \pm 0.2 \text{ V}$

											B-Port S	Supply	Voltage	(V _{CCB})							
F	ARAMETER	FROM	то	Test Conditions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± ().1 V	1.5 ± ().1 V	1.8 ± 0	.15 V	2.5 ± ().2 V	3.3 ± ().3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	77	0.5	38	0.5	21	0.5	8	0.5	6	0.5	5	0.5	5	0.5	4	
	Propagation			-40°C to 125°C	0.5	77	0.5	38	0.5	21	0.5	8	0.5	6	0.5	5	0.5	5	0.5	5	ne
t _{pd}	delay	В	Α	-40°C to 85°C	0.5	71	0.5	28	0.5	15	0.5	7	0.5	6	0.5	5	0.5	5	0.5	4	ns
		В В	^	-40°C to 125°C	0.5	71	0.5	28	0.5	15	0.5	8	0.5	6	0.5	6	0.5	5	0.5	4	
		DIR	Α	-40°C to 85°C	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	
	Disable time	DIK	A	-40°C to 125°C	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	no
t _{dis}	Disable time	DIR	В	-40°C to 85°C	0.5	127	0.5	88	0.5	68	0.5	25	0.5	18	0.5	15	0.5	12	0.5	11	ns
		DIIX		-40°C to 125°C	0.5	127	0.5	88	0.5	69	0.5	26	0.5	19	0.5	16	0.5	12	0.5	12	
		DIR	Α	-40°C to 85°C	0.5	182	0.5	182	0.5	182	0.5	182	0.5	182	0.5	182	0.5	182	0.5	182	
t _{en}	Enable time	DIK	A	-40°C to 125°C	0.5	182	0.5	182	0.5	182	0.5	182	0.5	182	0.5	182	0.5	182	0.5	182	no
(1)	Enable time	DIR	В	-40°C to 85°C	0.5	84	0.5	46	0.5	29	0.5	18	0.5	17	0.5	16	0.5	15	0.5	15	ns
		אוטוא	В	-40°C to 125°C	0.5	84	0.5	46	0.5	29	0.5	19	0.5	18	0.5	17	0.5	16	0.5	16	

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the Enable Times section.

6.13 Switching Characteristics, $V_{CCA} = 3.3 \pm 0.3 \text{ V}$

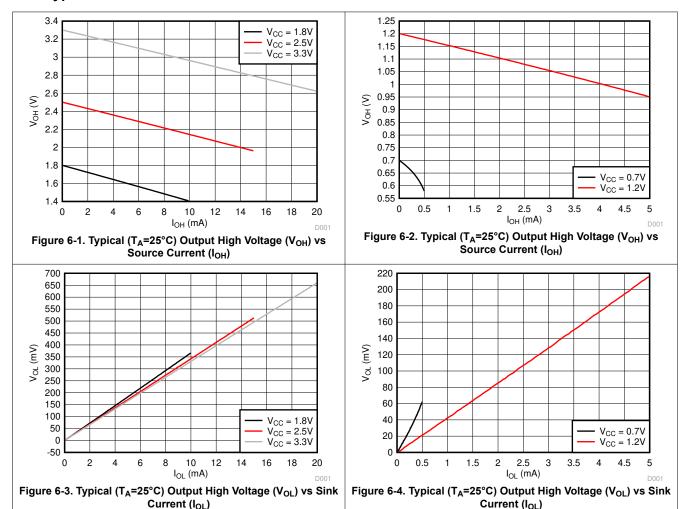
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.

											B-Port S	Supply	Voltage	(V _{CCB})							
F	ARAMETER	FROM	то	Test Condtions	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± ().1 V	1.5 ± ().1 V	1.8 ± 0	.15 V	2.5 ± (0.2 V	3.3 ± ().3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		A	В	-40°C to 85°C	0.5	76	0.5	38	0.5	21	0.5	7	0.5	5	0.5	4	0.5	4	0.5	4	
	Propagation			-40°C to 125°C	0.5	76	0.5	38	0.5	21	0.5	7	0.5	5	0.5	5	0.5	4	0.5	4	ns
t _{pd}	delay	В	A	-40°C to 85°C	0.5	105	0.5	34	0.5	17	0.5	8	0.5	6	0.5	5	0.5	4	0.5	4	115
				-40°C to 125°C	0.5	105	0.5	34	0.5	17	0.5	8	0.5	6	0.5	5	0.5	5	0.5	4	
		DIR	Α	-40°C to 85°C	0.5	10	0.5	10	0.5	10	0.5	10	0.5	10	0.5	10	0.5	10	0.5	10	
.	Disable time	DIK		-40°C to 125°C	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	0.5	11	ne
t _{dis}	Disable time	DIR	В	-40°C to 85°C	0.5	128	0.5	88	0.5	68	0.5	24	0.5	17	0.5	15	0.5	11	0.5	11	ns
		DIK	Ь	-40°C to 125°C	0.5	128	0.5	88	0.5	69	0.5	26	0.5	19	0.5	16	0.5	12	0.5	11	
		DIR A	Α	-40°C to 85°C	0.5	218	0.5	218	0.5	218	0.5	218	0.5	218	0.5	218	0.5	218	0.5	218	
t _{en}	Enable time	DIK	A	-40°C to 125°C	0.5	218	0.5	218	0.5	218	0.5	218	0.5	218	0.5	218	0.5	218	0.5	218	
(1)	Enable time	DIR	В	-40°C to 85°C	0.5	83	0.5	45	0.5	28	0.5	17	0.5	15	0.5	14	0.5	14	0.5	14	ns
		אוטוא	B	-40°C to 125°C	0.5	83	0.5	45	0.5	28	0.5	18	0.5	16	0.5	15	0.5	15	0.5	15	

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the Enable Times section.

Submit Document Feedback

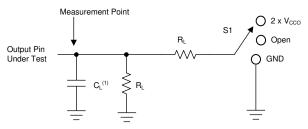
Product Folder Links: SN74AXC2T45



6.14 Operating Characteristics: $T_A = 25$ °C

	PARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN TYP	MAX UNIT
			0.7 V	0.7 V	2.2	
			0.8 V	0.8 V	2.0	
			0.9 V	0.9 V	2.0	
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V	2.0	
	per transceiver (A to B)	MHz, $tr = tf = 1 ns$	1.5 V	1.5 V	2.0	pF
			1.8 V	1.8 V	2.1	
			2.5 V	2.5 V	2.5	
			3.3 V	3.3 V	3.0	
C _{pdA}			0.7 V	0.7 V	10.6	
			0.8 V	0.8 V	10.7	
			0.9 V	0.9 V	10.6	
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V	10.8	
	per transceiver (B to A)	MHz, $tr = tf = 1 \text{ ns}$	1.5 V	1.5 V	11.1	pF
			1.8 V	1.8 V	12.2	
			2.5 V	2.5 V	15.9	
			3.3 V	3.3 V	19.6	
			0.7 V	0.7 V	10.6	
			0.8 V	0.8 V	10.7	
			0.9 V	0.9 V	10.6	
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V	10.8	
	per transceiver (A to B)	MHz, $tr = tf = 1 ns$	1.5 V	1.5 V	11.1	pF
			1.8 V	1.8 V	12.2	
			2.5 V	2.5 V	15.8	
			3.3 V	3.3 V	19.3	
C _{pdB}			0.7 V	0.7 V	2.2	
			0.8 V	0.8 V	2.0	
			0.9 V	0.9 V	2.0	
	Power Dissipation Capacitance	CL = 0, RL = Open f = 1	1.2 V	1.2 V	2.0	25
	per transceiver (B to A)	MHz, tr = tf = 1 ns	1.5 V	1.5 V	2.0	pF
			1.8 V	1.8 V	2.1	
			2.5 V	2.5 V	2.5	
			3.3 V	3.3 V	3.0	

6.15 Typical Characteristics

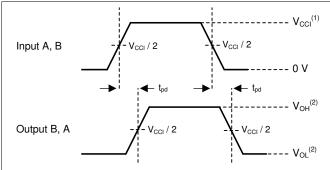


7 Parameter Measurement Information

7.1 Load Circuit and Voltage Waveforms

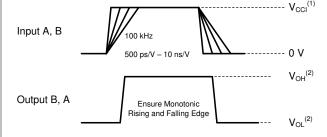
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- f = 1 MHz
- $Z_{O} = 50 \Omega$
- dv/dt ≤ 1 ns/V



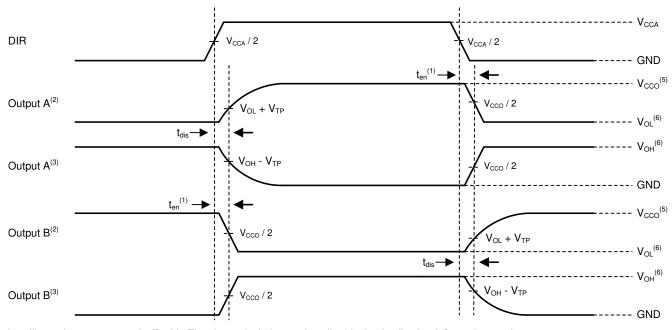
A. C_L includes probe and jig capacitance.

Figure 7-1. Load Circuit


Table 7-1. Load Circuit Conditions

	Parameter	V _{cco}	R_L	CL	S ₁	V _{TP}
Δt/Δν	Input transition rise or fall rate	0.65 V – 3.6 V	1 ΜΩ	15 pF	Open	N/A
		1.1 V – 3.6 V	2 kΩ	15 pF	Open	N/A
t _{pd}	Propagation (delay) time	0.65 V – 0.95 V	20 kΩ	15 pF	Open	N/A
		3 V – 3.6 V	2 kΩ	15 pF	2 × V _{CCO}	0.3 V
		1.65 V – 2.7 V	2 kΩ	15 pF	2 × V _{CCO}	0.15 V
t _{en} , t _{dis}	Enable time, disable time	1.1 V – 1.6 V	2 kΩ	15 pF	2 × V _{CCO}	0.1 V
		0.65 V - 0.95 V	20 kΩ	15 pF	2 × V _{CCO}	0.1 V
		3 V – 3.6 V	2 kΩ	15 pF	GND	0.3 V
		1.65 V – 2.7 V	2 kΩ	15 pF	GND	0.15 V
t _{en} , t _{dis}	Enable time, disable time	1.1 V – 1.6 V	2 kΩ	15 pF	GND	0.1 V
		0.65 V – 0.95 V	20 kΩ	15 pF	GND	0.1 V

- 1. V_{CCI} is the supply pin associated with the input port.
- 2. V_{OH} and V_{OL} are typical output voltage levels that occur with specified R_L , C_L , and S_1

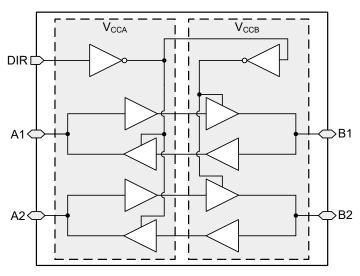

Figure 7-2. Propagation Delay

- 1. V_{CCI} is the supply pin associated with the input port.
- 2. V_{OH} and V_{OL} are typical output voltage levels that occur with specified R_L , C_L , and S_1

Figure 7-3. Input Transition Rise or Fall Rate

- A. Illustrative purposes only. Enable Time is a calculation as described in the Application Information section.
- B. Output waveform on the condition that input is driven to a valid Logic Low.
- C. Output waveform on the condition that input is driven to a valid Logic High.
- D. V_{CCI} is the supply pin associated with the input port.
- E. V_{CCO} is the supply pin associated with the output port.
- F. V_{OH} and V_{OL} are typical output voltage levels with specified R_L , C_L , and S_1 .

Figure 7-4. Enable Time And Disable Time



8 Detailed Description

8.1 Overview

The SN74AXC2T45 is a 2-bit, dual-supply non-inverting bidirectional voltage level translation device. Ax pins and the DIR pin are referenced to V_{CCA} logic levels, and Bx pins are referenced to V_{CCB} logic levels. The A port is able to accept I/O voltages ranging from 0.65 V to 3.6 V, while the B port can accept I/O voltages from 0.65 V to 3.6 V. A high on DIR enables data transmission from A to B and a low on DIR enables data transmission from B to A. See Device Functional Modes for a summary of the operation of the control logic.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Standard CMOS Inputs

Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in Section 6.5. The worst case resistance is calculated with the maximum input voltage, given in Section 6.1, and the maximum input leakage current, given in the Section 6.5, using Ohm's law $(R = V \div I)$.

Signals applied to the inputs need to have fast edge rates, as defined by $\Delta t/\Delta v$ in Section 6.3 to avoid excessive current consumption and oscillations. If a slow or noisy input signal is required, a device with a Schmitt-trigger input should be used to condition the input signal prior to the standard CMOS input.

8.3.2 Balanced High-Drive CMOS Push-Pull Outputs

A balanced output allows the device to sink and source similar currents. The high drive capability of this device creates fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. The electrical and thermal limits defined in Section 6.1 must be followed at all times.

8.3.3 Partial Power Down (Ioff)

The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting current backflow into the device. The maximum leakage into or out of any input or output pin on the device is specified by I_{off} in Section 6.5.

8.3.4 V_{CC} Isolation

The inputs and outputs for this device enter a high-impedance state when either supply is <100 mV.

8.3.5 Over-voltage Tolerant Inputs

Input signals to this device can be driven above the supply voltage so long as they remain below the maximum input voltage value specified in Section 6.3.

8.3.6 Glitch-Free Power Supply Sequencing

Either supply rail may be powered on or off in any order without producing a glitch on the I/Os (that is, where the output erroneously transitions to V_{CC} when it should be held low). Glitches of this nature can be misinterpreted by a peripheral as a valid data bit, which could trigger a false device reset of the peripheral, a false device configuration of the peripheral, or even a false data initialization by the peripheral. For more information regarding the power up glitch performance of the AXC family of level translators, see the *Glitch Free Power Sequencing With AXC Level Translators* application report.

8.3.7 Negative Clamping Diodes

The inputs and outputs to this device have negative clamping diodes as depicted in Figure 8-1.

CAUTION

Voltages beyond the values specified in Section 6.1 table can cause damage to the device. The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

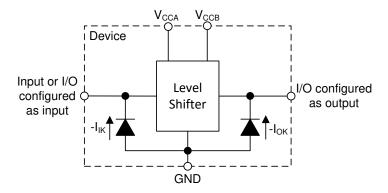


Figure 8-1. Electrical Placement of Clamping Diodes for Each Input and Output

8.3.8 Fully Configurable Dual-Rail Design

Both the V_{CCA} and V_{CCB} pins can be supplied at any voltage from 0.65 V to 3.6 V, making the device suitable for translating between any of the voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V and 3.3 V).

8.3.9 Supports High-Speed Translation

The SN74AXC2T45 device can support high data-rate applications. The translated signal data rate can be up to 380 Mbps when the signal is translated from 1.8 V to 3.3 V.

8.4 Device Functional Modes

Table 8-1. Function Table⁽¹⁾

CONTROL INPUT	Port Status		OPERATION
DIR	A PORT	B PORT	OPERATION
L	Output (Enabled)	Input (Hi-Z)	B data to A bus
Н	Input (Hi-Z)	Output (Enabled)	A data to B bus

(1) Input circuits of the data I/O's are always active.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AXC2T45 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The SN74AXC2T45 device is ideal for use in applications where a push-pull driver is connected to the data I/Os. The max data rate can be up to 380 Mbps when device translates a signal from 1.8 V to 3.3 V.

One example application is shown in Figure 9-1, where the SN74AXC2T45 device is used to translate low voltage error signals from a CPU to a higher voltage signal to properly drive the inputs of a system controller, thus alerting the system of any CPU errors such as overheating or other catastrophic processor errors.

9.1.1 Enable Times

Calculate the enable times for the SN74AXC2T45 using the following formulas:

$$t_{A \text{ en}}$$
 (DIR to A) = t_{dis} (DIR to B) + t_{pd} (B to A) (1)

$$t_{B en}$$
 (DIR to A) = t_{dis} (DIR to A) + t_{pd} (A to B) (2)

In a bidirectional application, these enable times provide the maximum delay time from the time the DIR bit is switched until an output is expected. For example, if the SN74AXC2T45 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled (t_{dis}) before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay (t_{pd}) . To avoid bus contention care should be taken to not apply an input signal prior to the output port being disabled (t_{dis}) maximum.

9.2 Typical Application

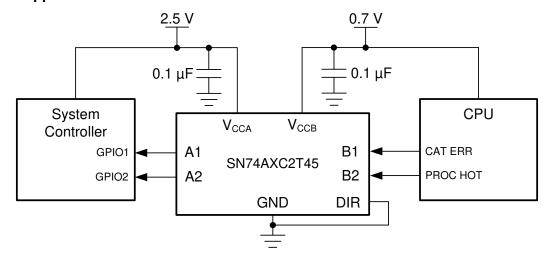


Figure 9-1. Processor Error Application

9.2.1 Design Requirements

For this design example, use the parameters listed in Table 9-1.

Table 9-1. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUES
Input voltage range	0.65 V to 3.6 V
Output voltage range	0.65 V to 3.6 V

9.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- · Input voltage range
 - Use the supply voltage of the device that is driving the SN74AXC2T45 device to determine the input voltage range. For a valid logic-high, the value must exceed the high-level input voltage (V_{IH}) of the input port. For a valid logic low the value must be less than the low-level input voltage (V_{IL}) of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AXC2T45 device is driving to determine the output voltage range.

9.2.3 Application Curve

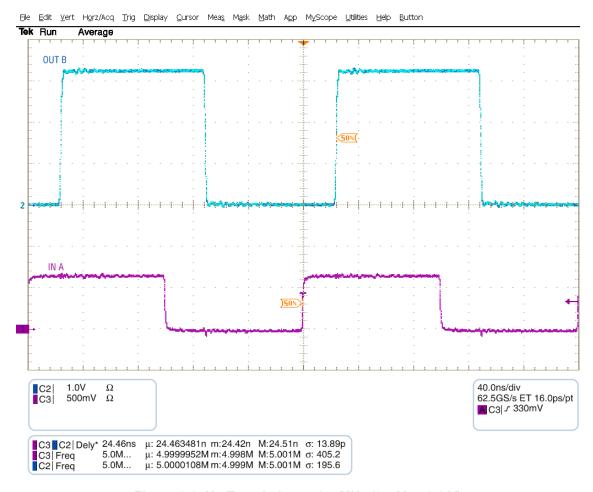


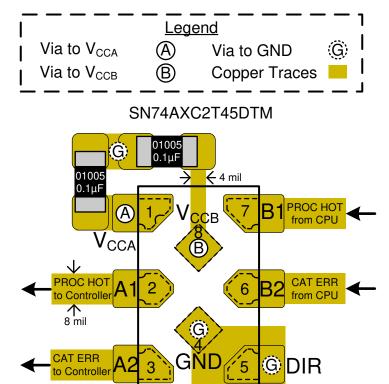
Figure 9-2. Up Translation at 2.5 MHz (0.7 V to 3.3 V)

Submit Document Feedback

10 Power Supply Recommendations

Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing without any supply sequencing requirements such as ramp order or ramp rate.

This device is designed with various power supply sequencing methods in mind to help prevent unintended triggering of downstream devices. For more information regarding the power up glitch performance of the AXC family of level translators, see the *Glitch Free Power Sequencing With AXC Level Translators* application report


11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:

- Use bypass capacitors on the power supply pins and place them as close to the device as possible. A 0.1
 μF capacitor is recommended, but transient performance can be improved by having both 1 μF and 0.1 μF
 capacitors in parallel as bypass capacitors.
- · Use short trace lengths to avoid excessive loading.

11.2 Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- · Texas Instruments, Implications of Slow or Floating CMOS Inputs application report
- Texas Instruments, Power Sequencing for AXC Family of Devicesapplication report

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74AXC2T45

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

www.ti.com 16-Jun-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AXC2T45DCTR	ACTIVE	SM8	DCT	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1H6 G	Samples
SN74AXC2T45DCUR	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	22HT	Samples
SN74AXC2T45DTMR	ACTIVE	X2SON	DTM	8	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	1FP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

www.ti.com 16-Jun-2021

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AXC2T45:

Automotive: SN74AXC2T45-Q1

NOTE: Qualified Version Definitions:

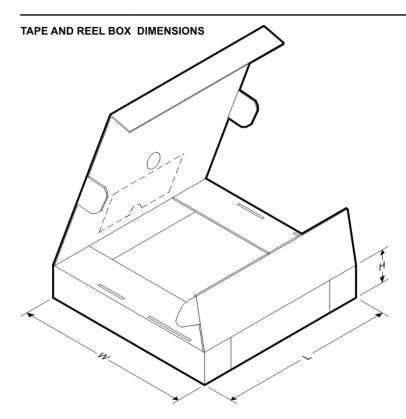
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Jun-2021

TAPE AND REEL INFORMATION

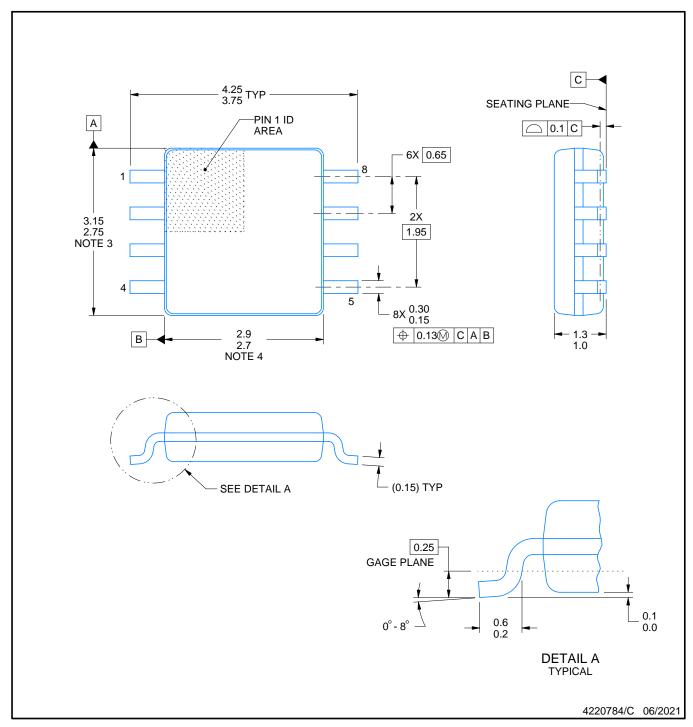
A0	
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficultions are nominal												
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AXC2T45DCTR	SM8	DCT	8	3000	177.8	12.4	3.45	4.4	1.45	4.0	12.0	Q3
SN74AXC2T45DCUR	VSSOP	DCU	8	3000	178.0	9.0	2.25	3.35	1.05	4.0	8.0	Q3
SN74AXC2T45DTMR	X2SON	DTM	8	5000	178.0	8.4	0.93	1.49	0.43	2.0	8.0	Q1
SN74AXC2T45DTMR	X2SON	DTM	8	5000	180.0	9.5	0.93	1.49	0.43	2.0	8.0	Q1

www.ti.com 17-Jun-2021



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AXC2T45DCTR	SM8	DCT	8	3000	183.0	183.0	20.0
SN74AXC2T45DCUR	VSSOP	DCU	8	3000	180.0	180.0	18.0
SN74AXC2T45DTMR	X2SON	DTM	8	5000	205.0	200.0	33.0
SN74AXC2T45DTMR	X2SON	DTM	8	5000	189.0	185.0	36.0

SMALL OUTLINE PACKAGE

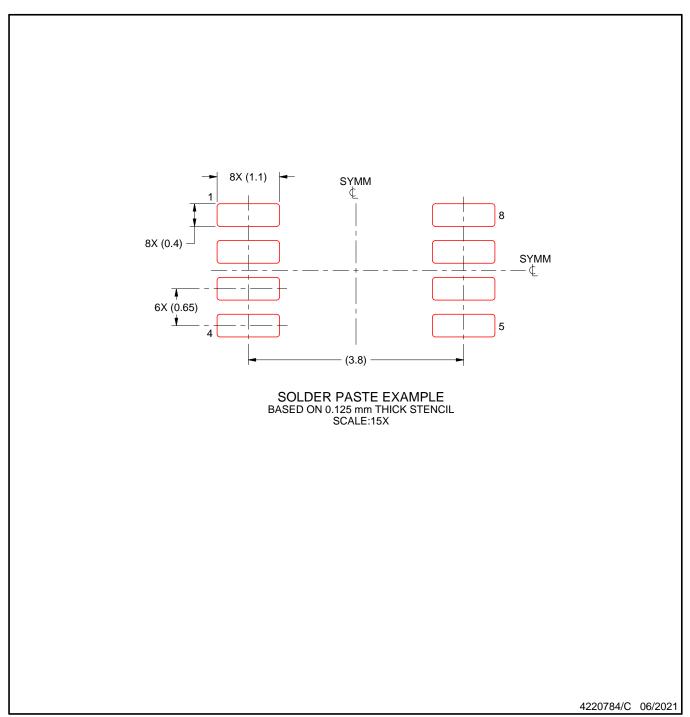
NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.

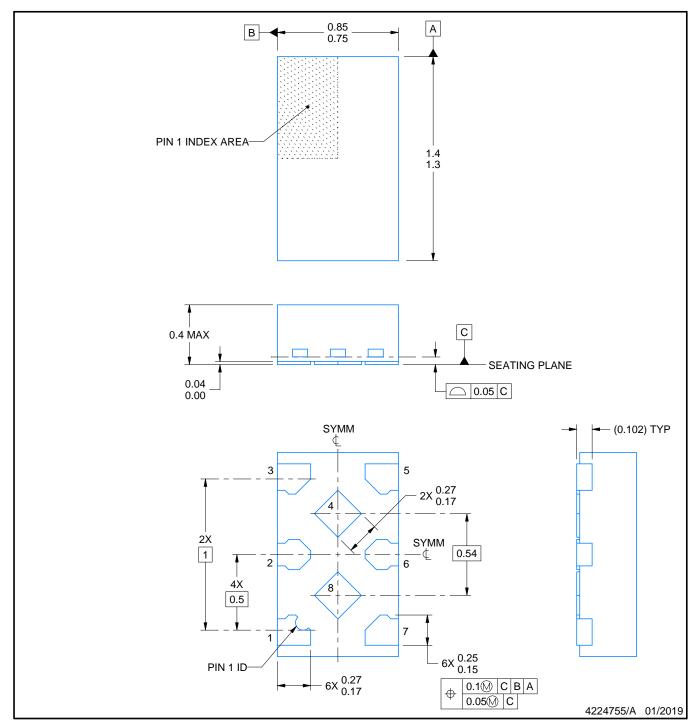
SMALL OUTLINE PACKAGE



NOTES: (continued)

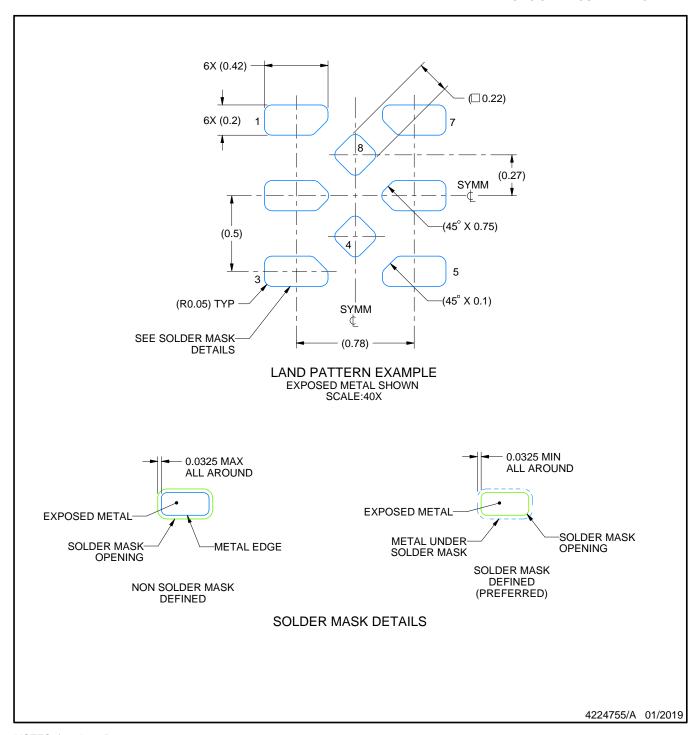
5. Publication IPC-7351 may have alternate designs.6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE


NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

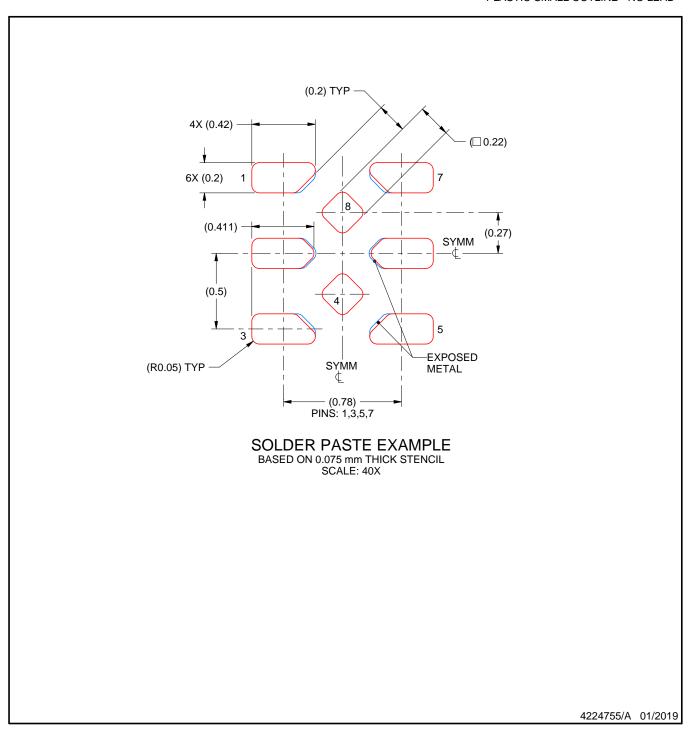
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
- 3. The package thermal pad(s) must be soldered to the printed circuit board for thermal and mechanical performance.

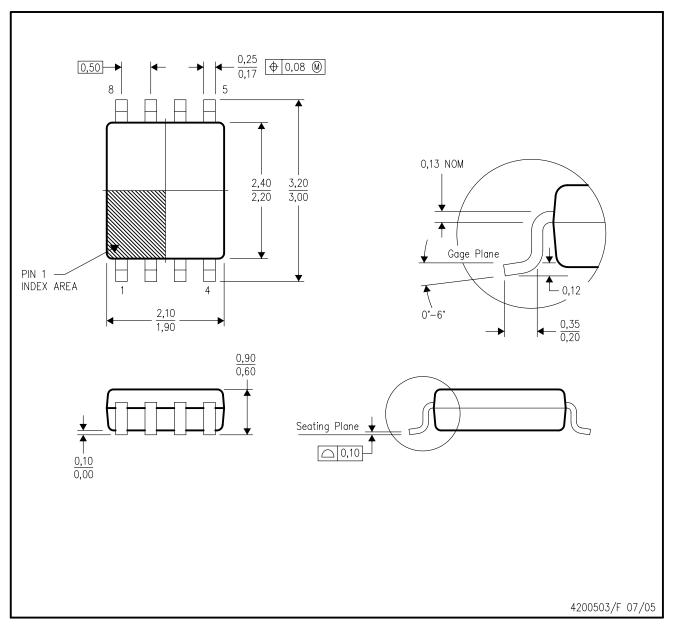
PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC SMALL OUTLINE - NO LEAD



5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-187 variation CA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated