ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

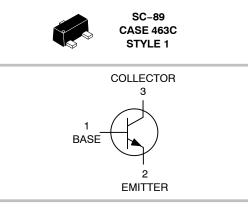
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

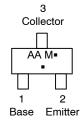
20 V, 1.0 A, Low V_{CE(sat)} NPN Transistor

ON Semiconductor's e²PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are DC–DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features


- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant*


ON Semiconductor®

http://onsemi.com

20 VOLTS, 1.0 AMPS NPN LOW V_{CE(sat)} TRANSISTOR

MARKING DIAGRAM

AA = Specific Device Code

- M = Date Code*
- = Pb–Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS20101JT1G	SC-89 (Pb-Free)	3,000 / Tape & Reel
NSV20101JT1G	SC-89 (Pb-Free)	3,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

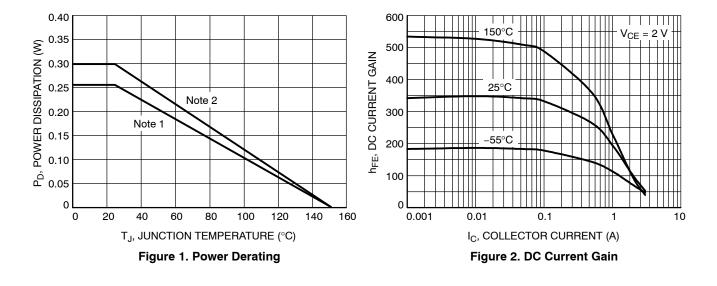
Semiconductor Components Industries, LLC, 2013
May, 2013 – Rev. 3

MAXIMUM RATINGS (T_A = 25° C)

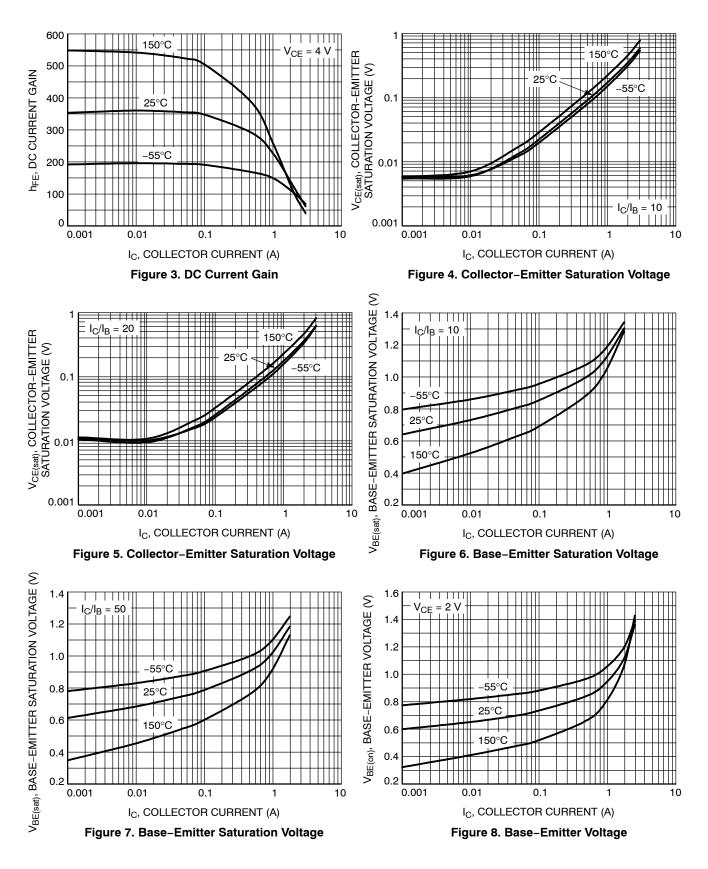
Rating	Symbol	Max	Unit	
Collector-Emitter Voltage	V _{CEO}	20	Vdc	
Collector-Base Voltage	V _{CBO}	40	Vdc	
Emitter-Base Voltage	V _{EBO}	6.0	Vdc	
Collector Current – Continuous	Ι _C	1.0	А	
Collector Current – Peak	I _{CM}	2.0	А	
Electrostatic Discharge	ESD	HBM Class 3B MM Class C		

THERMAL CHARACTERISTICS

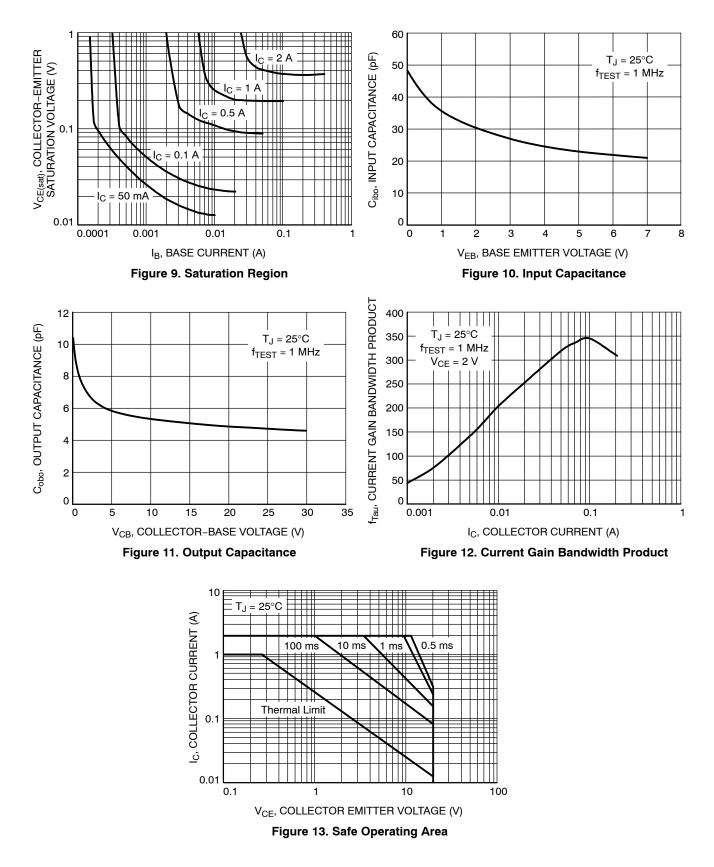
Characteristic	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	P _D (Note 1)	255 2.0	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 1)	490	°C/W
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 2)	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 2)	415	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. $FR-4 @ 100 \text{ mm}^2$, 1 oz. copper traces. 2. $FR-4 @ 500 \text{ mm}^2$, 1 oz. copper traces.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage $(I_{C} = 10 \text{ mAdc}, I_{B} = 0)$	V _{(BR)CEO}	20			Vdc
Collector – Base Breakdown Voltage $(I_{C} = 0.1 \text{ mAdc}, I_{E} = 0)$	V _{(BR)CBO}	40			Vdc
Emitter – Base Breakdown Voltage $(I_E = 0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	6.0			Vdc
Collector Cutoff Current ($V_{CB} = 30 \text{ Vdc}, I_E = 0$)	I _{CBO}			0.1	μAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc)	I _{EBO}			0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain (Note 3) (I _C = 10 mA, V _{CE} = 2.0 V) (I _C = 100 mA, V _{CE} = 2.0 V) (I _C = 500 mA, V _{CE} = 2.0 V) (I _C = 1.0 A, V _{CE} = 2.0 V)	h _{FE}	200 200 150 100		500	
Collector – Emitter Saturation Voltage (Note 3) ($I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$) ($I_C = 0.10 \text{ A}, I_B = 0.010 \text{ A}$) ($I_C = 0.5 \text{ A}, I_B = 0.050 \text{ A}$) ($I_C = 1.0 \text{ A}, I_B = 0.1 \text{ A}$)	V _{CE(sat)}			0.015 0.040 0.115 0.220	V
Base – Emitter Saturation Voltage (Note 3) $(I_C = 0.5 A, I_B = 50 mA)$	V _{BE(sat)}			1.1	V
Base – Emitter Turn–on Voltage (Note 3) (I _C = 0.5 A, V _{CE} = 2.0 V)	V _{BE(on)}			0.90	V
Cutoff Frequency ($I_C = 100 \text{ mA}, V_{CE} = 2.0 \text{ V}, f = 100 \text{ MHz}$)	f _T		350		MHz
Input Capacitance (V _{EB} = 0.5 V, f = 1.0 MHz)	Cibo		40		pF
Output Capacitance (V _{CB} = 4.0 V, f = 1.0 MHz)	Cobo		6		pF

3. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle \leq 2%.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

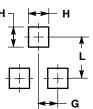
SC-89 3 LEAD

CASE 463C-03 ISSUE C

> NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS

 CONTROLLING DIMENSION: MILLIMETERS
MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE

MATERIAL. 4. 463C-01 OBSOLETE, NEW STANDARD 463C-02.


	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.60	1.70	0.059	0.063	0.067	
в	0.75	0.85	0.95	0.030	0.034	0.040	
С	0.60	0.70	0.80	0.024	0.028	0.031	
D	0.23	0.28	0.33	0.009	0.011	0.013	
G	0.50 BSC			0.020 BSC			
н	0.53 REF			0.021 REF			
J	0.10	0.15	0.20	0.004	0.006	0.008	
κ	0.30	0.40	0.50	0.012	0.016	0.020	
L	1.10 REF			0.043 REF			
М			10			10	
Ν			10 -			10	
S	1.50	1.60	1.70	0.059	0.063	0.067	

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*

SEATING PLANE

-T-1

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product culd create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

 $\begin{array}{c|c} & & & \\ & & & \\$

۷

С