BC549C, BC550C

Low Noise Transistors

NPN Silicon

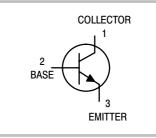
Features

• These are Pb–Free Devices*

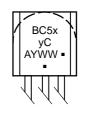
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage BC549C BC550C	V _{CEO}	30 45	Vdc
Collector – Base Voltage BC549C BC550C	V _{CBO}	30 50	Vdc
Emitter-Base Voltage	V_{EBO}	5.0	Vdc
Collector Current – Continuous	Ι _C	100	Vdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above = $25^{\circ}C$	PD	625 5.0	mW mW/°C
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above = $25^{\circ}C$	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	200	°C/W
Thermal Resistance, Junction-to-Case	R_{\thetaJC}	83.3	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping
BC549CG	TO-92 (Pb-Free)	5000 Units / Bulk
BC550CG	TO–92 (Pb–Free)	5000 Units / Bulk

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BC549C, BC550C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	•	•	
Collector – Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	45	_	_	Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \ \mu Adc, I_E = 0$)	V _{(BR)CBO}	50	-	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)	V _{(BR)EBO}	5.0	_	_	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ V}, I_E = 0)$ $(V_{CB} = 30 \text{ V}, I_E = 0, T_A = +125^{\circ}\text{C})$	I _{CBO}			15 5.0	nAdc μAdc
Emitter Cutoff Current ($V_{EB} = 4.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	-	15	nAdc
ON CHARACTERISTICS	·				
DC Current Gain (I _C = 10 μ Adc, V _{CE} = 5.0 Vdc) (I _C = 2.0 mAdc, V _{CE} = 5.0 Vdc)	h _{FE}	100 420	270 500	_ 800	-
	V _{CE(sat)}	_ _ _	0.075 0.3 0.25	0.25 0.6 0.6	Vdc
Base–Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{BE(sat)}	_	1.1	_	Vdc
$\begin{array}{l} \text{Base-Emitter On Voltage} \\ (I_{C} = 10 \; \mu \text{Adc}, \; V_{CE} = 5.0 \; \text{Vdc}) \\ (I_{C} = 100 \; \mu \text{Adc}, \; V_{CE} = 5.0 \; \text{Vdc}) \\ (I_{C} = 2.0 \; \text{mAdc}, \; V_{CE} = 5.0 \; \text{Vdc}) \end{array}$	V _{BE(on)}	 0.55	0.52 0.55 0.62	- - 0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS					
$\begin{array}{l} \mbox{Current-Gain} \mbox{Bandwidth Product} \\ (I_C = 10 \mbox{ mAdc}, \mbox{ V}_{CE} = 5.0 \mbox{ Vdc}, \mbox{ f} = 100 \mbox{ MHz}) \end{array}$	f _T	_	250	_	MHz
Collector–Base Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cbo}	-	2.5	-	pF
Small–Signal Current Gain ($I_C = 2.0 \text{ mAdc}, V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz}$)	h _{fe}	450	600	900	-

Noise Figure

1. I_B is value for which I_C = 11 mA at V_{CE} = 1.0 V. 2. Pulse test = 300 μ s – Duty cycle = 2%.

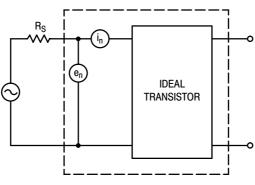


Figure 1. Transistor Noise Model

 $\frac{NF_1}{NF_2}$

dB

2.5

10

0.6

_

_

_

BC549C, BC550C

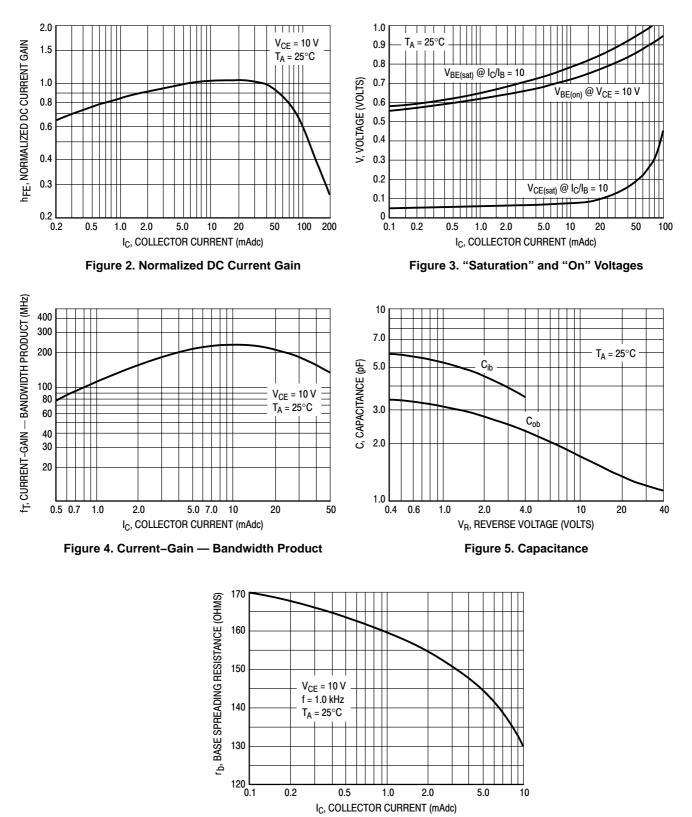
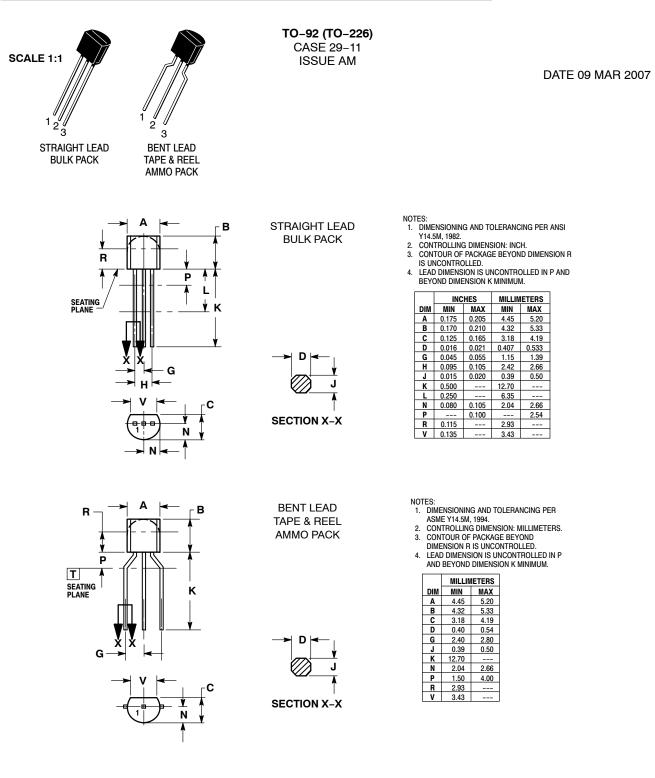



Figure 6. Base Spreading Resistance

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

ON Semiconductor®

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle	Repository. Printed	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 3	

TO-92 (TO-226) CASE 29-11 ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR STYLE 6: PIN 1. GATE 2. SOURCE & SUBSTRATE 3. DRAIN STYLE 11: PIN 1. ANODE 2. CATHODE & ANODE 3. CATHODE STYLE 16: PIN 1. ANODE 2. GATE 3. CATHODE STYLE 21: PIN 1. COLLECTOR 2. EMITTER 3. BASE STYLE 22: PIN 1. VCC 2. GROUND 2 3. OUTPUT STYLE 31: PIN 1. GATE 2. DRAIN 3. SOURCE

	BASE EMITTER COLLECTOR
2.	SOURCE DRAIN GATE
2.	MAIN TERMINAL 1 Gate Main Terminal 2
2.	COLLECTOR BASE EMITTER
2.	SOURCE GATE DRAIN

2	1. 2.	ANODE ANODE CATHODE
2	1. 2.	DRAIN Gate Source & Substrate
2	1. 2.	ANODE 1 GATE CATHODE 2
2	1. 2.	ANODE CATHODE NOT CONNECTED
2	1. 2.	GATE SOURCE DRAIN
2	1. 2.	CATHODE ANODE GATE

STYLE 33: PIN 1. RETURN 2. INPUT 3. OUTPUT

2.	CATHODE CATHODE ANODE
2.	BASE 1 EMITTER BASE 2
2.	EMITTER COLLECTOR BASE
	GATE ANODE CATHODE
2.	EMITTER Collector/Anode Cathode
2.	NOT CONNECTED ANODE CATHODE
2.	INPUT GROUND LOGIC

STYLE 4:

STYLE 5: PIN 1. DRAIN 2. SOURCE 3. GATE STYLE 10: PIN 1. CATHODE 2. GATE 3. ANODE STYLE 15: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 STYLE 20: PIN 1. NOT CONNECTED 2. CATHODE 3. ANODE STYLE 25: PIN 1. MT 1 2. GATE 3. MT 2 STYLE 30: PIN 1. DRAIN 2. GATE 3. SOURCE STYLE 35: PIN 1. DRAIN 2. GATE 3. SOURCE STYLE 35: PIN 1. GATE 2. COLLECTOR 3. EMITTER

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 3	

ON Semiconductor®

DOCUMENT NUMBER: 98ASB42022B

PAGE 3 OF 3

ISSUE	REVISION	DATE
AM	ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA.	09 MAR 2007

ON Semiconductor and images are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product care a stuation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agesociated with such unintended or unauthorized use payes that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>