MOSFET – Power, Single, N-Channel, µ8FL 30 V, 37 A

Features

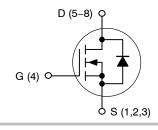
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

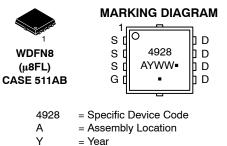
Applications

- DC-DC Converters
- Power Load Switch
- Notebook Battery Management
- Motor Control

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise stated)

Param	neter		Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain		T _A = 25°C	۱ _D	11.8	А
Current $R_{\theta JA}$ (Note 1)		T _A = 85°C		8.5	
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	PD	2.12	W
Continuous Drain		$T_A = 25^{\circ}C$	Ι _D	15.9	А
Current R _{θJA} ≤ 10 s (Note 1)		T _A = 85°C		11.5	
Power Dissipation $R_{\theta JA} \leq 10 \text{ s} (\text{Note 1})$	Steady	T _A = 25°C	PD	3.86	W
Continuous Drain	State	$T_A = 25^{\circ}C$	I _D	7.3	А
Current $R_{\theta JA}$ (Note 2)		T _A = 85°C		5.2	
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	PD	0.81	W
Continuous Drain		T _C = 25°C	I _D	37	А
Current $R_{\theta JC}$ (Note 1)		T _C = 85°C		27	
Power Dissipation $R_{\theta JC}$ (Note 1)		$T_C = 25^{\circ}C$	P _D	20.8	W
Pulsed Drain Current	T _A = 25°0	T _A = 25°C, t _p = 10 μs		160	А
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to +150	°C
Source Current (Body Die	ode)		۱ _S	20	А
Drain to Source dV/dt			dV/dt	6.0	V/ns




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	9.0 m Ω @ 10 V	37 A
30 V	13.5 m Ω @ 4.5 V	57 A

N-Channel MOSFET

= Work Week = Pb-Free Package (Note: Microdot may be in either location)

WW

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4928NTAG	WDFN8 (Pb-Free)	1500 / Tape & Reel
NTTFS4928NTWG	WDFN8 (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Value	Unit
Single Pulse Drain-to-Source Avalanche Energy (T_J = 25°C, V_{DD} = 50 V, V_{GS} = 10 V, I_L = 20 A _{pk} , L = 0.1 mH, R _G = 25 Ω)	E _{AS}	20	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.

2. Surface-mounted on FR4 board using the minimum recommended pad size.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	6	°C/W
Junction-to-Ambient - Steady State (Note 3)	R _{θJA}	59.1	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	154.5	
Junction–to–Ambient – (t \leq 10 s) (Note 3)	$R_{\theta JA}$	32.4	

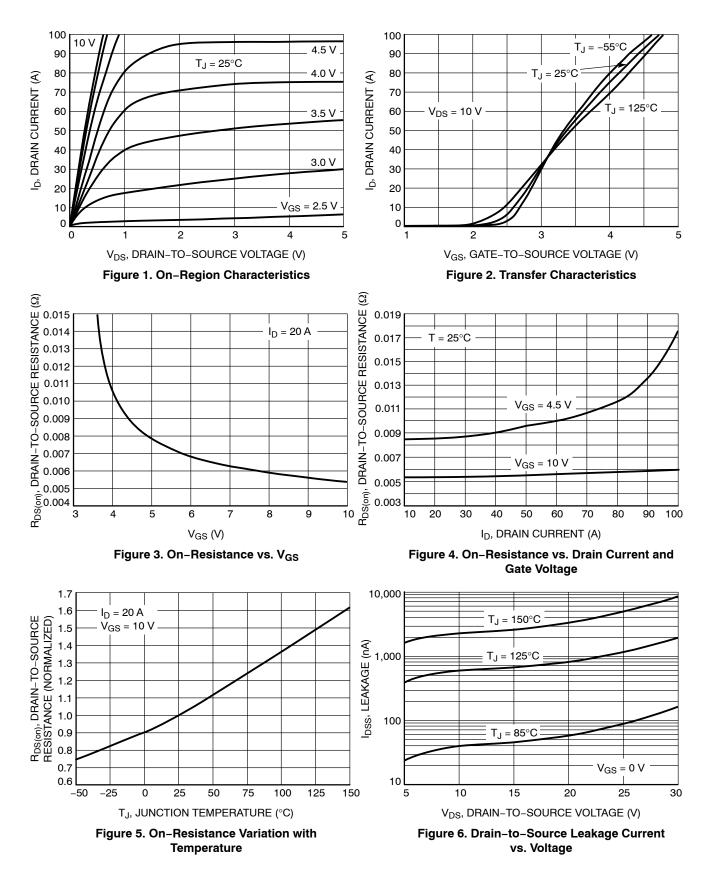
3. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.

4. Surface-mounted on FR4 board using the minimum recommended pad size (40 mm², 1 oz. Cu).

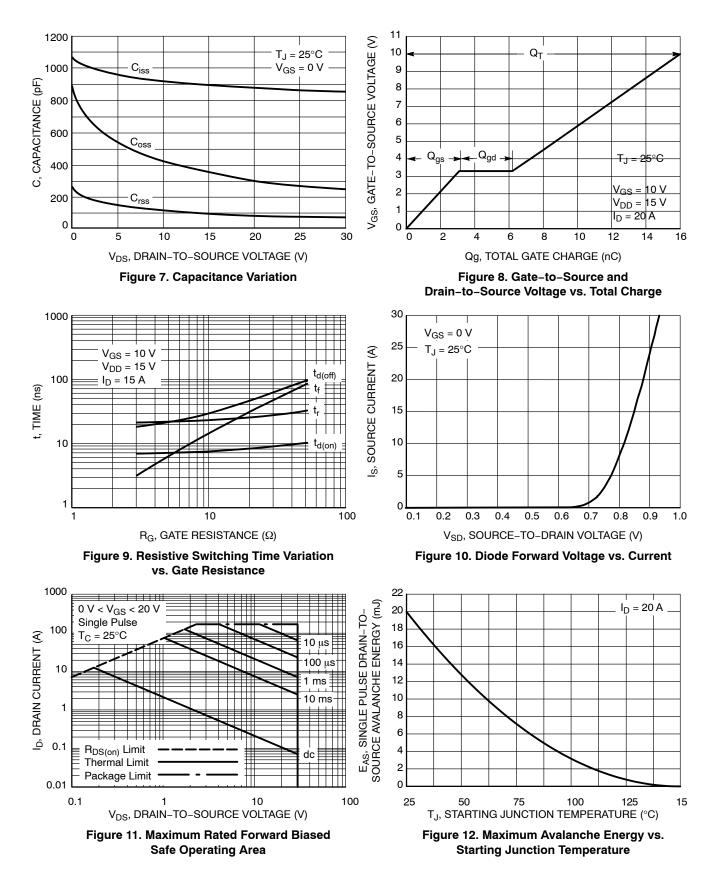
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D =	250 μΑ	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				24		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		V _{DS} = 24 V	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS},\ I_{D}=250\ \mu A$		1.2	1.6	2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		5.4	9.0	mΩ
			I _D = 10 A		5.3		
			I _D = 20 A		8.9	13.5	
		$V_{GS} = 4.5 \text{ V}$ I _D = -	I _D = 10 A		8.5		
Forward Transconductance	9 FS	V _{DS} = 1.5 V, I _D = 15 A			40		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}				913		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MH:	z, V _{DS} = 15 V		366		
Reverse Transfer Capacitance	C _{rss}				108		
Total Gate Charge	Q _{G(TOT)}				8.0		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15			1.6		
Gate-to-Source Charge	Q _{GS}	v _{GS} = 4.5 v, v _{DS} = 18	o v, i _D = ∠u A		3.1		
Gate-to-Drain Charge	Q _{GD}				3.1		

5. Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%.


6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)


Parameter	Symbol	Test Conditi	on	Min	Тур	Max	Unit
CHARGES AND CAPACITANCE	S						
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15	V, I _D = 20 A		16		nC
SWITCHING CHARACTERISTIC	S (Note 6)						
Turn-On Delay Time	t _{d(on)}				9.2		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS}	= 15 V,		25.5		
Turn-Off Delay Time	t _{d(off)}	$\label{eq:VGS} \begin{array}{l} V_{GS} = 4.5 \; V, \; V_{DS} = 15 \; V, \\ I_{D} = 15 \; A, \; R_{G} = 3.0 \; \Omega \end{array}$			14		
Fall Time	t _f				4.4		
Turn-On Delay Time	t _{d(on)}	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			6.5		ns
Rise Time	t _r				21		
Turn-Off Delay Time	t _{d(off)}				18		
Fall Time	t _f				3.0		
DRAIN-SOURCE DIODE CHARA	ACTERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.87	1.1	V
		V _{GS} = 0 V, I _S = 20 A	$T_J = 125^{\circ}C$		0.76		
Reverse Recovery Time	t _{RR}		•		21.4		ns
Charge Time	ta	$V_{GS} = 0 V, d_{IS}/d_{t} =$	100 A/μs,		10.5		
Discharge Time	t _b	$V_{GS} = 0 \text{ V}, \text{ d}_{IS}/\text{d}_t = I_S = 20 \text{ A}$			10.9		
Reverse Recovery Charge	Q _{RR}		ľ		8.4		nC
PACKAGE PARASITIC VALUES							-
Source Inductance	L _S				0.38		nH
Drain Inductance	LD	T 0500	ļ		0.054		
Gate Inductance	L _G	- T _A = 25°C			1.3		
Gate Resistance	R _G	1	1		0.9		Ω

5. Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

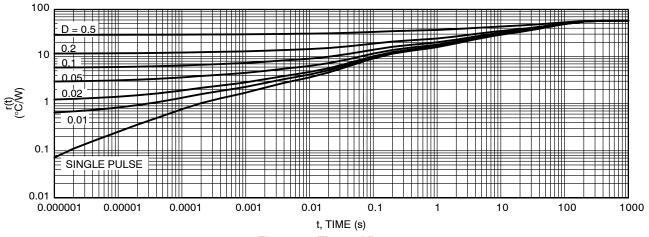
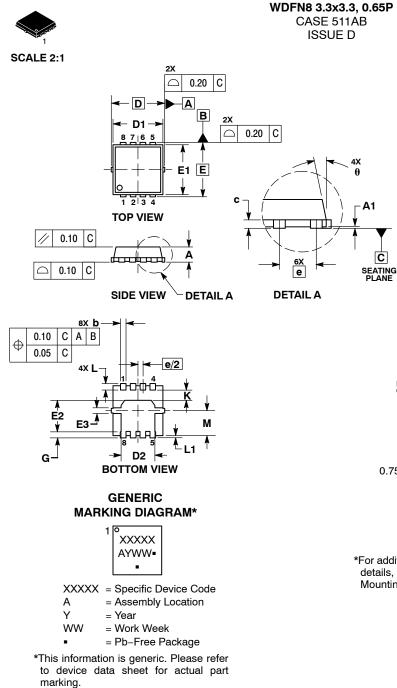
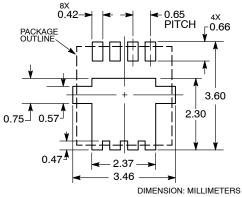



Figure 13. Thermal Response

DATE 23 APR 2012


Pb-Free indicator, "G" or microdot " .", may or may not be present.

NOTES: LES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. 1.

2. 3.

	м	LLIMETE	RS		INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
с	0.15	0.20	0.25	0.006	0.008	0.010	
D		3.30 BSC		0.130 BSC			
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E		3.30 BSC			0.130 BSC		
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е	0.65 BSC			0.026 BSC			
G	0.30	0.41	0.51	0.012	0.016	0.020	
к	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
м	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: WDFN8 3.3X3.3, 0.65P PAGE 1 O						
	to make changes without further notice to any	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation				

rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative