$\frac{\text{MOSFET}}{\text{POWERTRENCH}^{\mathbb{R}}} - \text{N-Channel,}$ 30 V, 174 A, 1.3 m Ω

General Description

This N–Channel MOSFET is produced using ON Semiconductor's advanced POWERTRENCH process that has been especially tailored to minimize the on–state resistance. This device is well suited for applications where ultra low $r_{DS(on)}$ is required in small spaces such as High performance VRM, POL and Oring functions.

Features

- Extended T_J Rating to 175°C
- Max $r_{DS(on)} = 1.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 30 \text{ A}$
- Max $r_{DS(on)} = 1.8 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 25 \text{ A}$
- High Performance Technology for Extremely Low rDS(on)
- These Devices are Pb-Free and are RoHS Compliant

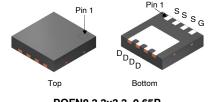
Applications

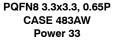
- DC DC Buck Converters
- Point of Load
- High Efficiency Load Switch and Low Side Switching
- Oring FET

MOSFET MAXIMUM RATINGS (T_A = 25°C Unless Otherwise Noted)

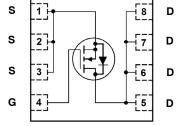
Symbol	Parameter	Ratings	Units
VDS	Drain to Source Voltage	30	V
Vgs	Gate to Source Volage (Note 4)	±20	V
ID	$\begin{array}{llllllllllllllllllllllllllllllllllll$	174 123 30 835	A
Eas	Single Pulse Avalance Energy (Note 3)	153	mJ
PD	Power Dissipation $T_c = 25^{\circ}C$	65	W
	Power Dissipation $T_A = 25^{\circ}C$ (Note 1a)	2.8	
Тј, Тѕтс	Operating and Storage Junction Temperature Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS


Symbol	Parameter	Ratings	Unit
Rejc	Thermal Resistance, Junction to Case	1.3	°C/W
Reja	Thermal Resistance, Junction to Ambient (Note 1a)	53	°C/W

ON Semiconductor®


www.onsemi.com

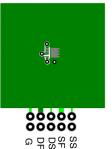
MARKING DIAGRAM

ORDERING INFORMATION

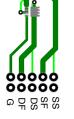
See detailed ordering, marking and shipping information in the package dimensions section on page 2 of this data sheet.

© Semiconductor Components Industries, LLC, 2017 July, 2019 – Rev. 2

PACKAGE MARKING AND ORDERING INFORMATION


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC8010ET	FDMC8010ET30	Power 33	13"	12 mm	3000 Units

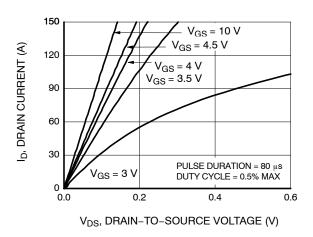
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Symbol	Parameter	Test Condition	Min	Тур	Max	Unit	
OFF CHARAC	TERISTICS				8		
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30			V	
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 1$ mA, referenced to 25°C		15		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μΑ	
I _{GSS}	Gate to Source Leakage Current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA	
ON CHARACT	TERISTICS						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	1.2	1.5	2.5	V	
$\Delta V_{GS(th)}\!/\!\Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 1$ mA, referenced to 25°C		-5		mV/°C	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 30 A		0.9	1.3	mΩ	
		V _{GS} = 4.5 V, I _D = 25 A		1.3	1.8		
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 30 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$ 1.3		2	-		
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 30 A		188		S	
DYNAMIC CH	ARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		4405	5860	pF	
C _{oss}	Output Capacitance	f = 1 MHz		1570	2090	pF	
C _{rss}	Reverse Transfer Capacitance			167	250	pF	
Rg	Gate Resistance		0.1	0.5	1.25	Ω	
SWITCHING C	CHARACTERISTICS						
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 30 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$		15	27	ns	
t _r	Rise Time	R _{GEN} = 6 Ω		7.5	15	ns	
t _{d(off)}	Turn-Off Delay Time			40	64	ns	
t _f	Fall Time			5.3	11	ns	
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } 10 V$ $V_{DD} = 15 V$		67	94	nC	
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V$ I _D = 30 A		32	45	nC	
Qgs	Gate to Source Charge			10		nC	
Qgd	Gate to Drain "Miller" Charge			9.5		nC	
DRAIN-SOUR	CE DIODE CHARACTERISTICS						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 2 A$ (Note 2)		0.6	1.2	V	
		V _{GS} = 0 V, I _S = 30 A (Note 2)		0.7	1.2	1	
t _{rr}	Reverse Recovery Time	I _F = 30 A, di/dt = 100 A/μs		49	78	ns	
Q _{rr}	Reverse Recovery Charge	1 1		29	46	nC	

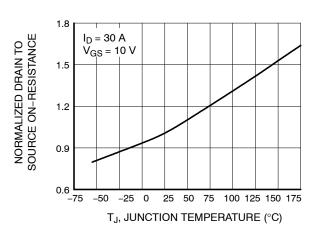
NOTES:

R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θCA} is determined by the user's board design.

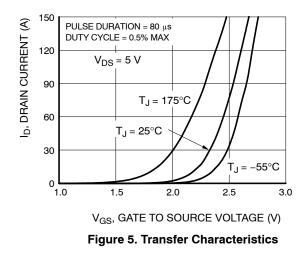
a. 53 °C/W when mounted on a 1 in² pad of 2 oz copper.


b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < $300 \ \mu$ s, Duty cycle < 2.0 %. 3. E_{AS} of 153 mJ is based on starting T_J = 25°C, L = 0.3 mH, I_{AS} = 32 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 47 A. 4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied. 5. Pulsed Id please refer to Figure 11 SOA graph for more details.


- 6. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS


 $T_J = 25^{\circ}C$ Unless Otherwise Noted

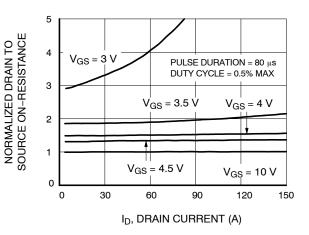


Figure 2. Normalized On–Resistance vs Drain Current and Gate Voltage

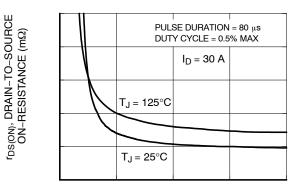
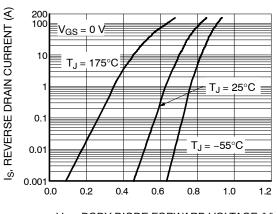
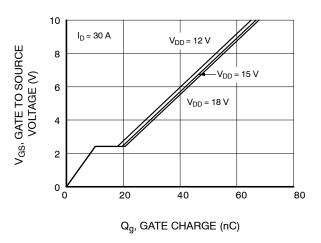
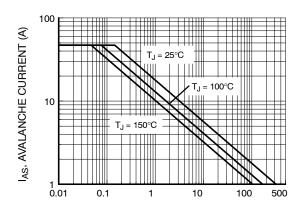


Figure 4. On-Resistance vs Gate to Source Voltage




Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL CHARACTERISTICS (continued)


 $T_J = 25^{\circ}C$ Unless Otherwise Noted

CAPACITANCE (pF)

ID, DRAIN CURRENT (A)

t_{AV}, TIME IN AVALANCHE (ms)

Figure 9. Unclamped Inductive Switching Capability

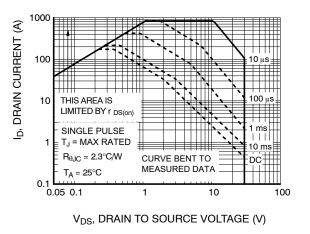
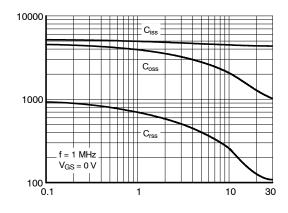
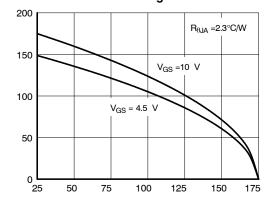




Figure 11. Forward Bias Safe Operating Area

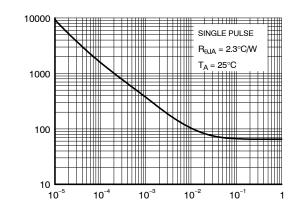

V_{DS}, DRAIN TO SOURCE VOLTAGE (V)

Figure 8. Capacitance vs Drain to Source Voltage

T_C, CASE TEMPERATURE (°C)

Figure 10. Maximum Continuous Drain Current vs Case Temperature

t, PULSE WIDTH (sec)

Figure 12. Single Pulse Maximum Power Dissipation

P_(PK), PEAK TRANSIENT POWER (W)

TYPICAL CHARACTERISTICS (continued)

 T_J = 25°C Unless Otherwise Noted

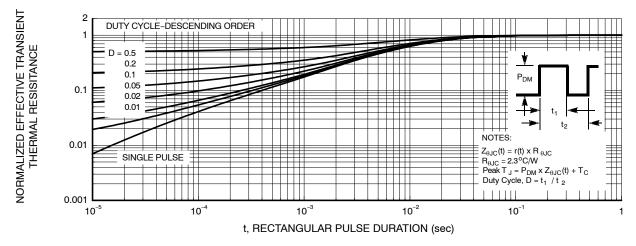


Figure 13. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

1. CONTROLLING DIMENSION: MILLIMETERS.

2. COPLANARITY APPLIES TO THE EXPOSED

3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

DISTANCE FROM THE SEATING PLANE TO THE

MILLIMETERS

NOM

0.75

-

0.32

0.20

3.30

2.27 REF

0.52 REF

3.30

1.95

0.65 BSC

1.95 BSC

0.33 REF

0.40

0.34 REF

0.10

0.10

0.10

0.05

0.05

LOWEST POINT ON THE PACKAGE BODY.

MIN

0.70

-

0.27

0.15

3.20

3.20

1.85

0.30

PADS AS WELL AS THE TERMINALS.

4. SEATING PLANE IS DEFINED BY THE TERMINALS. 'A1' IS DEFINED AS THE

DIM

A

A1

b

С

D

D1

D2

Е

E1

е

e1

k

L

L1

aaa bbb

ccc

ddd

eee

WDFN8 3.3X3.3, 0.65P CASE 483AW

ISSUE A

NOTES:

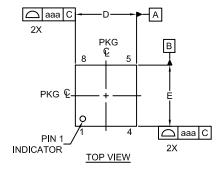
DATE 10 SEP 2019

MAX

0.80

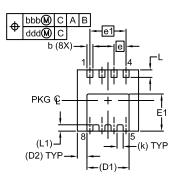
0.05

0.37

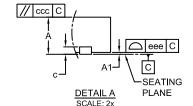

0.25

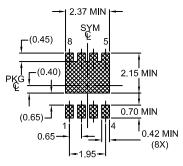
3.40

3.40


2.05

0.50





FRONT VIEW

BOTTOM VIEW

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code A = Assembly Location

- A = Assemble AY = Year
- WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13672G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	: WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1			
ON Semiconductor and 🔟 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

_____I

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>