- State-of-the-Art Advanced BiCMOS
 Technology (ABT) Widebus™ Design for
 2.5-V and 3.3-V Operation and Low Static
 Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Power Off Disables Outputs, Permitting Live Insertion
- High-Impedance State During Power Up and Power Down Prevents Driver Conflict
- Uses Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
- Output Ports Have Equivalent 30-Ω Series Resistors, So No External Resistors Are Required
- Auto3-State Eliminates Bus Current Loading When Output Exceeds V_{CC} + 0.5 V
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model; and Exceeds 1000 V Using Charged-Device Model, Robotic Method
- Flow-Through Architecture Facilitates
 Printed Circuit Board Layout
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

NOTE: For order entry:

The DGG package is abbreviated to G, and the DGV package is abbreviated to V.

description

The 'ALVTH162827 devices are 20-bit buffers/line drivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

SN54ALVTH162827 . . . WD PACKAGE SN74ALVTH162827 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

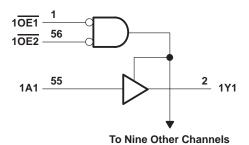
1				
10E1	1	\cup	56	10E2
1Y1	2		55	1A1
1Y2	3		54	1A2
GND[4		53	GND
1Y3[5		52] 1A3
1Y4[6		51] 1A4
v _{cc} [7		50] v _{cc}
1Y5[8		49] 1A5
1Y6[9		48] 1A6
1Y7[10		47] 1A7
GND[11		46	GND
1Y8[12		45] 1A8
1Y9[13		44] 1A9
1Y10[14		43] 1A10
2Y1[15		42] 2A1
2Y2[16		41] 2A2
2Y3[17		40	2A3
GND[18		39	GND
2Y4[19		38] 2A4
2Y5[20		37] 2A5
2Y6	21		36	2A6
V _{CC}	22		35	□ v _{cc}
2Y7	23		34	2A7
2Y8	24		33	2A8
GND [25		32	GND
2Y9	26		31	2A9
2Y10	27		30	2 <u>A10</u>
20E1	28		29	20E2
	_			,

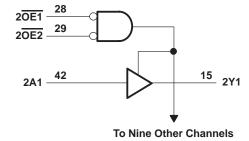
description (continued)

The devices are composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable (1OE1 and 1OE2, or 2OE1 and 2OE2) inputs must be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance state.

When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

All outputs are designed to sink up to 12 mA, and include equivalent 30- Ω resistors to reduce overshoot and undershoot.


Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.


The SN54ALVTH162827 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH162827 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each 10-bit section)

	INPUTS	OUTPUT	
OE1	OE2	Α	Y
L	L	L	L
L	L	Н	Н
Н	X	Χ	Z
Х	Н	Χ	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state, V _O (see Note 1)	0.5 V to 7 V
Output current in the low state, I _O : SN54ALVTH162827	96 mA
SN74ALVTH162827	128 mA
Output current in the high state, IO: SN54ALVTH162827	–48 mA
SN74ALVTH162827	–64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DGV package	86°C/W
DL package	74°C/W
Storage temperature range, T _{stq}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

				SN54ALVTH162827			SN74ALVTH162827		
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vcc	Supply voltage		2.3		2.7	2.3		2.7	V
VIH	High-level input voltage		1.7		7	1.7			V
V _{IL}	Low-level input voltage			Š	0.7			0.7	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
IOH	High-level output current			1	-6			-8	mA
loL	Low-level output current			2	8			12	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	0	3	10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
T _A	Operating free-air temperature	·	-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54ALVTH162827, SN74ALVTH162827 2.5-V/3.3-V 20-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCES079E - JULY 1996 - REVISED DECEMBER 1998

recommended operating conditions, V_{CC} = 3.3 V \pm 0.3 V (see Note 3)

			SN54ALVTH162827			SN74ALVTH162827			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vcc	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage		2		7	2			V
V _{IL}	Low-level input voltage			Š	0.8			0.8	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
IOH	High-level output current			1	-8			-12	mA
loL	Low-level output current			3	8			12	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	,O,	3	10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate	·	200			200			μs/V
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54A	SN54ALVTH162827			SN74ALVTH162827			
Ρ/	ARAWETER	1251 C	MIN TYPT MAX MIN TYP		TYP [†]	MAX	UNIT				
٧ıK		$V_{CC} = 2.3 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.	2		V _{CC} -0	.2			
VOH		V _{CC} = 2.3 V	$I_{OH} = -6 \text{ mA}$	1.7						V	
		VCC = 2.3 V	$I_{OH} = -8 \text{ mA}$				1.7				
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	$I_{OL} = 100 \mu A$			0.2			0.2		
VOL		V _{CC} = 2.3 V	I _{OL} = 8 mA			0.7				V	
		VCC = 2.3 V	$I_{OL} = 12 \text{ mA}$						0.7		
	Control inputs	$V_{CC} = 2.7 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V			10			10		
II			V _I = 5.5 V			10			10	μΑ	
	Data inputs	vits $V_{CC} = 2.7 \text{ V}$	VI = VCC			\$ 1	1				
			V _I = 0		Š	– 5			– 5		
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V		PA	7			±100	μΑ	
I _{BHL} ‡		$V_{CC} = 2.3 \text{ V},$	$V_{I} = 0.7 \ V$		115			115		μΑ	
I _{BHH} §	}	$V_{CC} = 2.3 \text{ V},$	V _I = 1.7 V		S –10			-10		μΑ	
IBHLO	,¶	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	300	, , , , , , , , , , , , , , , , , , ,		300			μΑ	
Івнно) [#]	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	-300			-300			μΑ	
ΙΕΧ		$V_{CC} = 2.3 \text{ V},$	V _O = 5.5 V			125			125	μΑ	
I _{OZ(PI}	U/PD)☆	$V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{\text{OE}} \text{ V}$ V _I = GND or V _{CC} , $\overline{\text{OE}}$ =	/ to V _{CC} , don't care			±100			±100	μΑ	
lozh		V _{CC} = 2.7 V	$V_O = 2.3 \text{ V},$ $V_I = 0.7 \text{ V or } 1.7 \text{ V}$			5			5	μΑ	
lozL		V _{CC} = 2.7 V	V _O = 0.5 V, V _I = 0.7 V or 1.7 V			- 5			-5	μΑ	
		V _{CC} = 2.7 V,	Outputs high		0.04	0.1		0.04	0.1		
ICC		$I_{O} = 0$,	Outputs low		2.3	5		2.3	5	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		0.04	0.1		0.04	0.1		
Ci		V _{CC} = 2.5 V,	V _I = 2.5 V or 0		3.5			3.5		pF	
Co		V _{CC} = 2.5 V,	V _O = 2.5 V or 0		6			6		pF	

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

[¶] An external driver must source at least IBHLO to switch this node from low to high.

[#]An external driver must sink at least IBHHO to switch this node from high to low.

 $[\]parallel$ Current into an output in the high state when $V_O > V_{CC}$

^{*}High-impedance state during power up or power down

SN54ALVTH162827, SN74ALVTH162827 2.5-V/3.3-V 20-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCES079E - JULY 1996 - REVISED DECEMBER 1998

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TEST O	ONDITIONS	SN54A	ALVTH16	62827	SN74	ALVTH16	62827	UNIT	
		lesi C	ONDITIONS	MIN	TYP	MAX	MIN	TYP†	MAX	UNII	
VIK		V _{CC} = 3 V,	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.	2		V _{CC} -0	.2			
Vон		VCC = 3 V	I _{OH} = -8 mA	2						V	
		∧CC = 2 ∧	$I_{OH} = -12 \text{ mA}$				2	2			
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	$I_{OL} = 100 \mu\text{A}$			0.2			0.2		
VOL		V _{CC} = 3 V	$I_{OL} = 8 \text{ mA}$			8.0				V	
		VCC = 3 V	$I_{OL} = 12 \text{ mA}$						0.8		
	Control inputs	$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			10			10		
Ц			V _I = 5.5 V			10			10	μΑ	
	Data inputs	ts $V_{CC} = 3.6 \text{ V}$	AI = ACC			1			1		
			V _I = 0			<u>√</u> –5			- 5		
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V		Š	2			±100	μΑ	
I _{BHL} ‡		$V_{CC} = 3 V$,	V _I = 0.8 V	75	Q ²		75			μΑ	
I _{BHH} §		$V_{CC} = 3 V$,	V _I = 2 V	-75	5		-75			μΑ	
IBHLO	Ī	$V_{CC} = 3.6 \text{ V},$	$V_I = 0$ to V_{CC}	500	2		500			μΑ	
Івнно ^і	#	$V_{CC} = 3.6 \text{ V},$	$V_I = 0$ to V_{CC}	-500)		-500			μΑ	
{IEX}		$V{CC} = 3 V$,	$V_0 = 5.5 \text{ V}$	Q		125			125	μΑ	
I _{OZ(PU}	//PD)☆	$V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{\text{OE}}$ V _I = GND or V_{CC} , $\overline{\text{OE}}$ =	√ to V _{CC} , = don't care			±100			±100	μΑ	
lozh		V _{CC} = 3.6 V	V _O = 3 V, V _I = 0.8 V or 2 V			5			5	μА	
lozL		V _{CC} = 3.6 V	V _O = 0.5 V, V _I = 0.8 V or 2 V			- 5			-5	μА	
		V _{CC} = 3.6 V,	Outputs high	1	0.07	0.1		0.07	0.1		
ICC		$I_{O} = 0$,	Outputs low		3.2	5.5		3.2	5.5	mA	
		V _I = V _{CC} or GND	Outputs disabled		0.07	0.1		0.07	0.1		
∆lcc□		V _{CC} = 3 V to 3.6 V, One Other inputs at V _{CC} or				0.4			0.4	mA	
Ci		V _{CC} = 3.3 V,	V _I = 3.3 V or 0	1	3.5			3.5		pF	
Со		V _{CC} = 3.3 V,	V _O = 3.3 V or 0		6			6		pF	

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡]The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL}should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

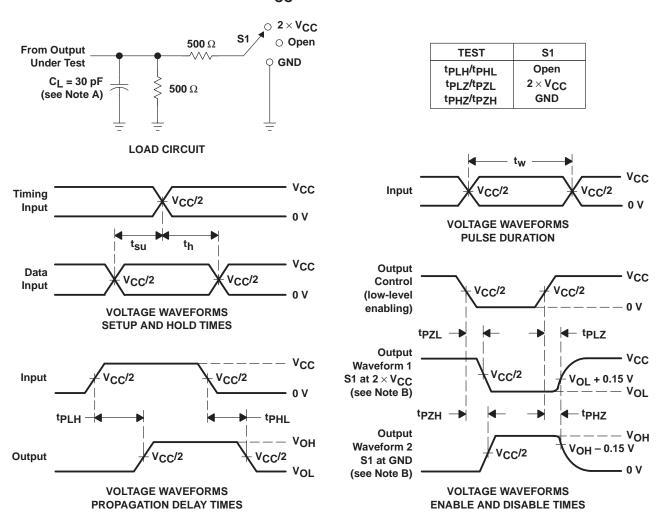
 $[\]P$ An external driver must source at least $I_{\mbox{\footnotesize{BHLO}}}$ to switch this node from low to high.

[#] An external driver must sink at least I_{BHHO} to switch this node from high to low.

 $[\]parallel$ Current into an output in the high state when $\vee_{O} > \vee_{CC}$

[★]High-impedance state during power up or power down

[□]This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

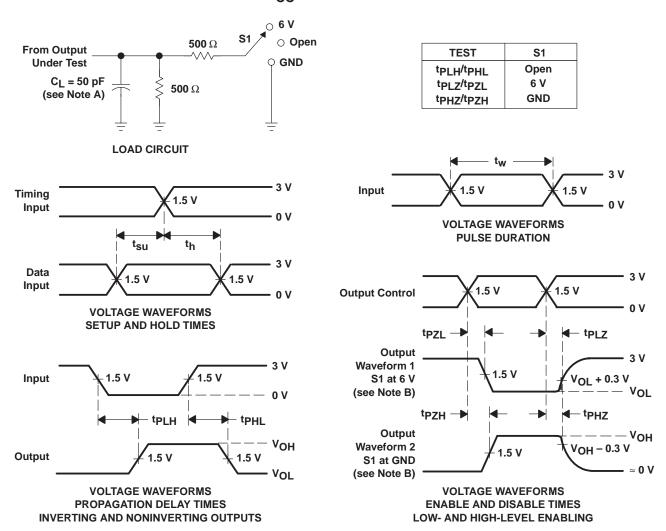

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	SN54ALVT	H162827	SN74ALVTI	1162827	UNIT
PARAMETER	(INPUT)	(INPUT) (OUTPUT)		MAX	MIN	MAX	UNIT
t _{PLH}	۸		1.7	4.1	1.7	4.1	ns
^t PHL	А	1	1.6	4	1.6	4	115
^t PZH	ŌĒ		2.1	4.8	2.1	4.8	ns
^t PZL) OE	1	1.9	4.8	1.9	4.8	115
^t PHZ	ŌĒ		2.4	6	2.4	6	ns
t _{PLZ}	OE	'	2 1.7	5	1.7	5	115

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVTH162827	SN74ALVT	H162827	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN MAX	MIN	MAX	UNIT	
t _{PLH}	۸	A V		1	3.9	ne	
^t PHL	A	'	1.5 🚜 3.7	1.5	3.7	ns	
^t PZH	ŌĒ	V	1 5.6	1	5.6	ns	
t _{PZL}] 05	'	1.7 4.1	1.7	4.1	115	
^t PHZ	ŌĒ	V	3.6 6.3	3.6	6.3	ns	
^t PLZ	OE .	,	1.7 5.1	1.7	5.1	113	

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform22 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated