Preferred Device

Self-Protected FET with Temperature and Current Limit

42 V, 14 A, Single N-Channel, SOT-223

HDPlus™ devices are an advanced series of power MOSFETs which utilize ON Semiconductors latest MOSFET technology process to achieve the lowest possible on–resistance per silicon area while incorporating smart features. Integrated thermal and current limits work together to provide short circuit protection. The devices feature an integrated Drain–to–Gate Clamp that enables them to withstand high energy in the avalanche mode. The Clamp also provides additional safety margin against unexpected voltage transients. Electrostatic Discharge (ESD) protection is provided by an integrated Gate–to–Source Clamp.

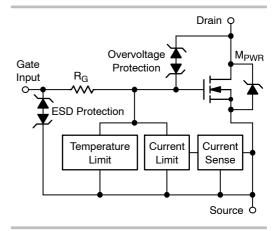
Features

- Short Circuit Protection/Current Limit
- Thermal Shutdown with Automatic Restart
- I_{DSS} Specified at Elevated Temperature
- Avalanche Energy Specified
- Slew Rate Control for Low Noise Switching
- Overvoltage Clamped Protection
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

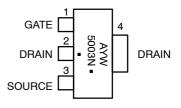
Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V_{DSS}	42	Vdc
Gate-to-Source Voltage	V _{GS}	±14	Vdc
Drain Current Continuous	I _D	Internally Li	mited
Total Power Dissipation @ T _A = 25°C (Note 1) @ T _A = 25°C (Note 2)	P _D	1.25 1.9	V
Thermal Resistance Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$egin{array}{l} R_{ hetaJC} \ R_{ hetaJA} \ R_{ hetaJA} \end{array}$	12 100 65	°C/W
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 25 Vdc, V_{GS} = 5.0 Vdc, I_{L} = 7.0 Apk, L = 9.5 mH, R_{G} = 25 Ω)	E _{AS}	233	mJ
Operating and Storage Temperature Range (Note 3)	T _J , T _{stg}	-55 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- 1. Surface mounted onto minimum pad size (0.412" square) FR4 PCB, 1 oz cu.
- 2. Mounted onto 1" square pad size (1.127" square) FR4 PCB, 1 oz cu.
- 3. Normal pre-fault operating range. See thermal limit range conditions.

ON Semiconductor®

http://onsemi.com


V _{DSS} (Clamped)	R _{DS(on)} TYP	I _D MAX (Limited)
42 V	53 mΩ @ 10 V	14 A

SOT-223 CASE 318E STYLE 3

MARKING DIAGRAM

A = Assembly Location

Y = Year W = Work Week

5003N = Specific Device Code ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

NIF5003N

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS		•		•		
Drain-to-Source Clamped Breakdown Voltage $ \begin{array}{l} (V_{GS}=0 \text{ Vdc, I}_D=250 \mu\text{Adc}) \\ (V_{GS}=0 \text{ Vdc, I}_D=250 \mu\text{Adc, T}_J=-40^{\circ}\text{C to 150^{\circ}\text{C}}) \end{array} $			42 40	46 45	51 51	Vdc mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{J} =$	150°C)	I _{DSS}	- -	0.6 2.5	5.0 -	μAdc
Gate Input Current (V _{GS} = 5.0 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	50	125	μAdc
ON CHARACTERISTICS				•	•	
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 1.2 \text{ mAdc})$ Threshold Temperature Coefficient	(Negative)	V _{GS(th)}	1.0	1.7 5.0	2.2	Vdc mV/°C
	25°C)	R _{DS(on)}	- -	53 95	68 123	mΩ
Static Drain-to-Source On-Resistance (Note 4) ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 3.0 \text{ Adc}$, $T_J @ 25^{\circ}\text{C}$) ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 3.0 \text{ Adc}$, $T_J @ 150^{\circ}\text{C}$)			- -	63 105	76 135	mΩ
Source–Drain Forward On Voltage $(I_S = 7.0 \text{ A}, V_{GS} = 0 \text{ V})$			_	0.95	1.1	V
SWITCHING CHARACTERISTICS		•				
Turn-on Time (V _{in} to 90% I _D)	$R_L = 4.7 \ \Omega, \ V_{in} = 0 \text{ to } 10 \ V, \ V_{DD} = 12 \ V$	T _(on)	-	16	20	μs
Turn-off Time (V _{in} to 10% I _D)	R_L = 4.7 Ω , V_{in} = 10 to 0 V, V_{DD} = 12 V	T _(off)	-	80	100	μs
Slew Rate On	$R_L = 4.7 \ \Omega,$ $V_{in} = 0 \text{ to } 10 \ V, \ V_{DD} = 12 \ V$	-dV _{DS} /dt _{on}	=	1.4	-	V/µs
Slew Rate Off	$R_L = 4.7 \Omega$, $V_{in} = 10 \text{ to } 0 \text{ V}, V_{DD} = 12 \text{ V}$	dV _{DS} /dt _{off}	-	0.5	_	V/µs
SELF PROTECTION CHARACTERIST	TICS (T _J = 25°C unless otherwise noted) (Note	e 5)		•	•	•
Current Limit	$(V_{GS} = 5.0 \text{ Vdc})$ $V_{DS} = 10 \text{ V } (V_{GS} = 5.0 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	I _{LIM}	12 7.0	18 13	24 18	Adc
Current Limit	(V _{GS} = 10 Vdc) V _{DS} = 10 V (V _{GS} = 10 Vdc, T _J = 150°C)	I _{LIM}	18 13	22 18	30 25	Adc
Temperature Limit (Turn-off) V _{GS} = 5.0 Vdc		T _{LIM(off)}	150	175	200	°C
Thermal Hysteresis	nal Hysteresis V _{GS} = 5.0 Vdc		-	15	-	°C
Temperature Limit (Turn-off)	V _{GS} = 10 Vdc	T _{LIM(off)}	150	165	185	°C
Thermal Hysteresis V _{GS} = 10 Vdc		$\Delta T_{LIM(on)}$	-	15	-	°C
ESD ELECTRICAL CHARACTERIST	CS (T _J = 25°C unless otherwise noted)					
Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	4000	-	_	V
Electro-Static Discharge Capability	Machine Model (MM)	ESD	400	_	_	V

Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
 Fault conditions are viewed as beyond the normal operating range of the part.

NIF5003N

TYPICAL PERFORMANCE CURVES

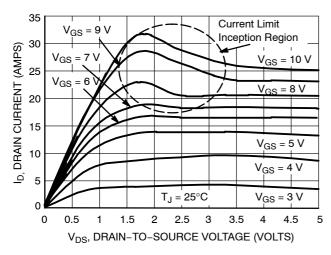


Figure 1. On-Region Characteristics

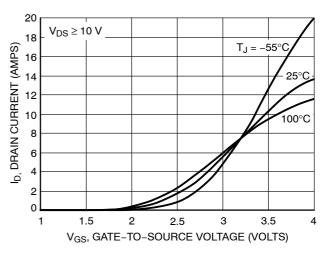


Figure 2. Transfer Characteristics

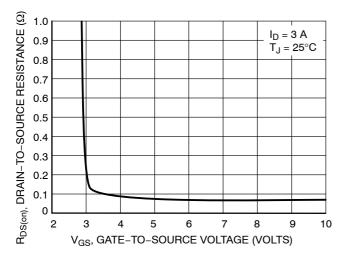


Figure 3. On-Resistance vs. Gate-to-Source Voltage

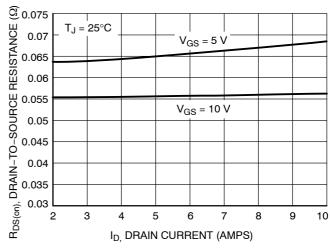


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

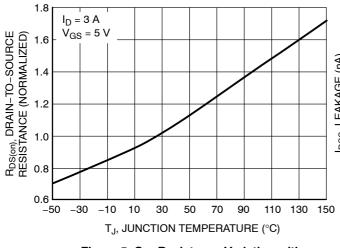


Figure 5. On–Resistance Variation with Temperature

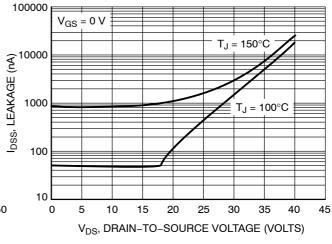


Figure 6. Drain-to-Source Leakage Current vs. Voltage

NIF5003N

TYPICAL PERFORMANCE CURVES

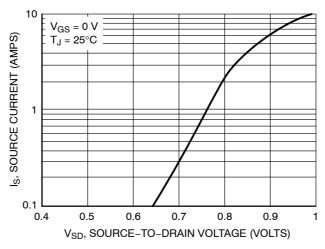
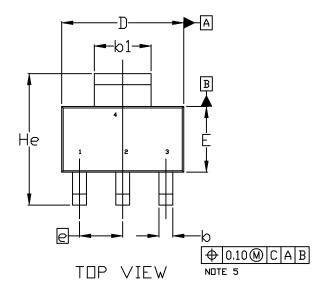
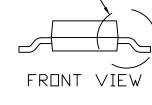


Figure 7. Diode Forward Voltage vs. Current

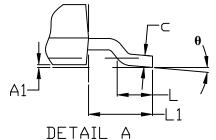
ORDERING INFORMATION

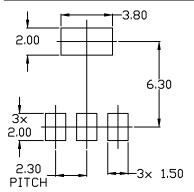

Device	Package	Shipping [†]
NIF5003NT1	SOT-223	1000 / Tape & Reel
NIF5003NT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NIF5003NT3	SOT-223	4000 / Tape & Reel
NIF5003NT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



SOT-223 (TO-261) CASE 318E-04 ISSUE R


DATE 02 OCT 2018


SEE DETAIL A

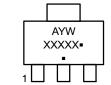
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS		
DIM	MIN.	N□M.	MAX.
Α	1.50	1.63	1.75
A1	0.02	0.06	0.10
Ø	0.60	0.75	0.89
b1	2.90	3.06	3.20
U	0.24	0.29	0.35
D	6.30	6.50	6.70
E	3.30	3.50	3.70
е	2.30 BSC		
L	0.20		
L1	1.50	1.75	2.00
He	6.70	7.00	7.30
θ	0°		10°

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

 $XXXXX \ = Specific \ Device \ Code$

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative