CHANGE NOTIFICATION

April 16, 2014

Dear Sir/Madam: PCN# 041614

Subject: Notification of Change to LTC4413-1, LTC4413-2 Datasheet

Please be advised that Linear Technology Corporation has made a minor change to the LTC4413 product datasheet to improve manufacturability. We have changed the upper limit for Enable Input Current to 5uA from 4uA. No other functional or parametric specifications are affected. A redlined datasheet characteristics table is attached. Product shipped after June 17, 2014 will be tested to the new limits.

Should you have any further questions, please feel free to contact me at 408-432-1900 ext. 2077, or by email at JASON.HU@LINEAR.COM. If I do not hear from you by June 17, 2014, we will consider this change to be approved by your company.

Sincerely,

Jason Hu Quality Assurance Engineer

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. (Notes 2, 6)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IQROUTB	Quiescent Current While in Reverse Turn-Off. Current Drawn from V _{OUTA} When OUTB Supplies Chip Power	V _{INA} = V _{INB} = 0V, V _{OUTA} = 3.6V, V _{OUTB} = 5.5V	•		3.5	6.5	μА
Iqoff	Quiescent Current with Both ENBA and ENBB High	V _{INA} = V _{INB} = 3.6V, V _{ENBA} = V _{ENBB} = 1V	•		28	38	μА
V _{RTO}	Reverse Turn-Off Voltage (V _{OUT} - V _{IN})	V _{IN} = 3.6V	•	-5		10	mV
V _{FWD}	Forward Voltage Drop (V _{IN} – V _{OUT}) at I _{OUT} = –1mA	V _{IN} = 3.6V	•		18	24	mV
R _{FWD}	On-Resistance, R_{RWD} Regulation (Measured as $\Delta V/\Delta I$)	V _{IN} = 3.6V, I _{OUT} = -100mA to -500mA (Note 5)			100	140	mΩ
R _{ON}	On-Resistance, R _{ON} Regulation (Measured as V/I at I _{IN} = 1A)	V _{IN} = 3.6V, I _{IN} = 1A (Note 5)			140	200	mΩ
ton	PowerPath Turn-On Time	V _{IN} = 3.6V, from ENB Falling to I _{OUT} Ramp Starting			11		μs
t _{OFF}	PowerPath Turn-Off Time	V_{IN} = 3.6V, from ENB Rising with I_{IN} = 100mA Falling to 0mA			2		μs
Short-Circu	it Response						
loc	Current Limit	VINA OR B = 3.6V (Note 5)		1.8			А
IQOC	Quiescent Current While in Overcurrent Operation	V _{INA OR B} = 3.6V, I _{OUT} = 1.8A (Note 5)			100	130	μА
STAT Outpu	t						
I _{SOFF}	STAT Off Current	Shut Down	•	-1	0	1	μА
I _{SON}	STAT Sink Current	$V_{IN} > V_{OUT}$, $V_{CTL} < V_{IL}$, $T_J < 135$ °C, $I_{OUT} < I_{MAX}$	•	7	11	15	μА
t _{S(ON)}	STAT Pin Current Turn-On Time	V _{IN} = 3.6V, from ENB Falling			1.8		μs
ts(OFF)	STAT Pin Current Turn-Off Time	V _{IN} = 3.6V, from ENB Rising			0.8		μs
ENB Inputs				5	\vdash		
VENBIH	ENB Inputs Rising Threshold Voltage	V _{ENB} Rising	•		540	600	mV
VENBIL	ENB Inputs Falling Threshold Voltage	V _{ENB} Falling	•	400	460		mV
V _{ENBHYST}	ENB Input Hysteresis	V _{ENBHYST} = (V _{ENBIH} - V _{ENBIL})			90	7	mV
I _{ENB}	ENB Inputs Pull-Down Current	$V_{OUT} < V_{IN} = 3.6 V$, $V_{ENB} < V_{IL}$	•	2	3	4	μА
OVI Input (l	TC4413-2 Only)						
V _{OVIH}	OVI Input Rising Threshold Voltage	V _{OVI} Rising			5.9	6.2	V
V _{OVIL}	OVI Input Falling Threshold Voltage	V _{OVI} Falling		5.4	5.6		V
V _{OVID}	OVI-OVP Voltage Drop	V _{OVI} = 8V, No Load at OVP			100		mV
I _{OVI}	OVI Bias Current	V _{OVI} = 8V			80		μА

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The LTC4413-1/LTC4413-2 are guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

Note 3: Quiescent current increases with diode current: refer to plot of $I_{\rm QF}$ vs $I_{\rm QUT}$.

Note 4: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Overtemperature protection will become active at a junction temperature greater than the maximum operating temperature. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

Note 5: Specification is guaranteed by correlation to wafer-level measurements.

Note 6: Unless otherwise specified, current into a pin is positive and current out of a pin is negative. All voltages referenced to GND.

441312fd

