PCN Number: 2022		21010	10002.1		PCN Date:		October 11, 2022	
Title:Qualification of new Fab site (FFAB) using qualified Process Technology, Die Revision, Datasheet update and additional Assembly BOM options for select devices						5,,		
Custo	mer Contact:	<u>P</u> (CN M	anager	Dept:	Dept:		Quality Services
Proposed 1st Ship Date: Ja			an 11			nple requests epted until:		Nov 11, 2022*
*Sample requests received after November 11, 2022 will not be supported.								
Chang	је Туре:							
Assembly Site			Assembly Process		\boxtimes	Assembly Materials		
Design		\boxtimes	Electrical Specification			Mechanical Specification		
Test Site			Packing/Shipping/Labeling			Test Process		
Wafer Bump Site			Wafer Bump Material			Wafer Bump Process		
🛛 Wafer Fab Site		X	Wafer Fab Materials		\square	Wafer Fab Process		
Part number change								
Notification Details								

Description of Change:

Texas Instruments is pleased to announce the qualification of a new fab & process technology (FFAB, BICOM3XHV) die revision, and Assembly BOM options for selected devices as listed below in the product affected section. Construction differences are noted below:

Cı	urrent Fab Sit	e	Additional Fab Site			
Current Fab Site	Process	Wafer Diameter	New Fab Site	Process	Wafer Diameter	
Semefab	D1-450	100 mm	FFAB	BICOM3XHV	200 mm	
Semetab	D1-450	100 mm	FFAB	BICOM3XHV	200 mm	

The die was also changed as a result of the process change.

The datasheets will be changing as a result of the above mentioned changes. The datasheet change details can be reviewed in the datasheet revision history. The links to the revised datasheets are available in the table below.

J ia	Texas	
Y	Instruments	

_	INSTRUMENTS SBOS027C - SEPTEMBER 2000 - REVISED SEPTEMBER 2022
Cł	anges from Revision B (April 2019) to Revision C (September 2022) Page
•	Changed minimum supply voltage from ±1.35 V to ±2.25 V and from 2.7 V to 4.5 V throughout document1
•	Changed Applications to link to latest end-equipment on ti.com1
•	Changed resistors in Simplified Schematic from 60 kΩ to 40 kΩ1
•	Changed minimum and maximum input common-mode voltage from V ⁻ + 1.1 V and V ⁺ – 1 V to V ⁻ + 2 V and
	V ⁺ – 2 V respectively in Recommended Operating Conditions
•	Changed minimum and maximum ambient temperature from -55°C and +150°C to -40°C and +125°C
	respectively in Recommended Operating Conditions
•	Added V _{CM} = 0 V to test conditions below title in <i>Electrical Characteristics</i>
•	Changed input offset voltage vs temperature test condition from $T_A = T_{MIN}$ to T_{MAX} to $T_A = -40^{\circ}$ C to +85°C in
	Electrical Characteristics
•	Changed input offset voltage vs power supply test condition from $V_S = \pm 1.35$ V to ± 18 V to $V_S = \pm 2.25$ V to
	±18 V in <i>Electrical Characteristics</i>
•	Changed high-side linear input voltage range from $(V^+) - 1 V$ minimum and $(V^+) - 0.65 V$ typical to $(V^+) - 2 V$
	minimum and (V ⁺) – 1.4 V typical in <i>Electrical Characteristics</i>
•	Changed low-side linear input voltage range from $(V^-) + 1.1 \text{ V}$ minimum and $(V^-) + 0.95 \text{ V}$ typical to $(V^-) + 2$
	V minimum and (V ⁻) + 1.2 V typical in <i>Electrical Characteristics</i>
•	Added test condition of $T_A = -40^{\circ}$ C to +85°C to bias current vs temperature and offset current vs temperature
	in Electrical Characteristics
•	Added test condition of $T_A = -40^{\circ}$ C to +85°C to gain vs temperature and 50-k Ω resistance vs temperature in
	Electrical Characteristics
•	Changed single supply output voltage test condition from $V_S = 2.7 \text{ V/0 V}$ to $V^+ = 4.5 \text{ V}$, $V^- = 0 \text{ V}$ in <i>Electrical</i>
	Characteristics
•	Deleted power supply voltage range specification from <i>Electrical Characteristics</i>
•	Deleted temperature range specifications from <i>Electrical Characteristics</i>
•	Changed Figures 7-3, 7-4, 7-5, 7-6, 7-7, 7-8, 7-11, 7-12, 7-18, 7-19, and 7-20 in Typical Characteristics8
•	Changed FET transistor input current limit from approximately 1.5-5 mA to 6 mA in Overview12
•	Deleted internal node equations in Overview and Functional Block Diagram
•	Changed schematic in Functional Block Diagram12
•	Changed linear input voltage range in Input Common-Mode Range and Single-Supply Operation13
•	Changed FET transistor input current limit from approximately 1.5-5 mA to 6 mA in Input Protection13
•	Changed resistors in Figure 9-1 from 60 kΩ to 40 kΩ in Typical Application14
(Changed Figure 10-5 to use a 5-V supply voltage1

Product Folder	Current Datasheet Number	New Datasheet Number	Link to full datasheet
INA118	SBOS027B	SBOS027C	http://www.ti.com/product/INA118

Additionally, there will be BOM options introduced for these devices as shown below:

	MLA Current	MLA Alternate
Wire type	1.2 mil Au	1.0mil Cu
Mount compound	4205846	4147858
Mold compound	4209640	4226323
Die Coat	4221706	No Die Coat
MSL level	3	2

Qual details are provided in the Qual Data Section.

Reason for Change:

Continuity of supply

Anticipated impact on Fit, Form, Function, Quality or Reliability (positive / negative): None

Changes to product identification resulting from this PCN:

Fab Site Information:

SEMFAB4	DISOL	USA DEU	GLENROTHES Freising
Chip Site	Chip Site Origin Code (20L)	Chip Site Country Code (21L)	Chip Site City

Die Rev:

Current	lew
Die Rev [2P]	Die Rev [2P]
A	Α

Sample product shipping label (not actual product label)

OPT:	3/29/04 46 4		(D) 0336 59047MLA
INA118U	INA118U/2K5G4	INA118UB/2K5	INA118UG4
INA118U/2K5	INA118UB	INA118UBG4	

Qualification Report Approve Date 19-SEPTEMBER-2022

Qualification Results

Data Displayed as: Number of lots / Total sample size / Total failed

Туре	#	Test Name	Condition	Duration	Qual Device: <u>INA118UB</u>	QBS Process Reference: <u>INA828ID</u>	QBS Package Reference: <u>INA849DR</u>	QBS Product Reference: <u>INA818ID</u>
HAST	A2	Biased HAST	130C	96 Hours	-	3/231/0	-	-
HAST	A2	Temperature Humidity Bias	85C/85%RH	1000 Hours	-	-	3/231/0	-
UHAST	A3	Unbiased HAST	130C/85%RH	96 Hours	-	3/231/0	3/231/0	-
TC	A4	Temperature Cycle	-65/150C	500 Cycles	-	3/231/0	3/231/0	-
HTSL	A6	High Temperature Storage Life	150C	1000 Hours	-	3/231/0	-	-
HTSL	A6	High Temperature Storage Life	170C	420 Hours	-	-	3/231/0	-
HTOL	B1	Life Test	100C ^B	300 Hours	-	-	1/77/0	-
HTOL	B1	Life Test	125C	1000 Hours	-	3/231/0	-	-
ESD	E2	ESD CDM	-	500 Volts	-	1/3/0	1/3/0	1/3/0
ESD	E2	ESD HBM	-	1000 Volts	-	1/3/0	1/3/0	1/3/0
LU	E4	Latch-Up	Per JESD78	-	-	1/6/0	3/18/0	1/6/0
CHAR	E5	Electrical Characterization	Per Datasheet Parameters	-	1/30/0	3/90/0	1/30/0	1/30/0

- · QBS: Qual By Similarity
- Qual Device INA118UB is qualified at MSL2 260C
- Preconditioning was performed for Autoclave, Unbiased HAST, THB/Biased HAST, Temperature Cycle, Thermal Shock, and HTSL, as applicable
- The following are equivalent HTOL options based on an activation energy of 0.7eV : 125C/1k Hours, 140C/480 Hours, 150C/300 Hours, and 155C/240 Hours
- The following are equivalent HTSL options based on an activation energy of 0.7eV : 150C/1k Hours, and 170C/420 Hours
- The following are equivalent Temp Cycle options per JESD47 : -55C/125C/700 Cycles and -65C/150C/500 Cycles

Quality and Environmental data is available at TI's external Web site: http://www.ti.com/

Green/Pb-free Status:

Qualified Pb-Free(SMT) and Green

TI Qualification ID: R-CHG-2108-031

^B Tj of device at 150C

For questions regarding this notice, e-mails can be sent to the contact below or your local Field Sales Representative.

Location	E-Mail
WW Change Management Team	<u>PCN ww admin team@list.ti.com</u>

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (<u>www.ti.com/legal/termsofsale.html</u>) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.