

# TMUX1208-Q1 5-V Bidirectional 8:1 Multiplexer with 1.8-V Logic

### 1 Features

AEC-Q100 Qualified for Automotive Applications Temperature Grade 1: –40°C to 125°C, T<sub>A</sub>

Low On-resistance: 5 Ω

Wide Supply Range: 1.08 V to 5.5 V

Rail to Rail Operation

**Bidirectional Signal Path** 

1.8 V Logic Compatible

Fail-Safe Logic

Low Supply Current: 10 nA

Transition Time: 14 ns

Break-before-make Switching ESD Protection HBM: 2000 V

Small QFN Package

## 2 Applications

Analog and Digital Multiplexing / Demultiplexing

**Automotive Head Unit** 

**Telematics Control Unit** 

Emergency Call (eCall)

Infotainment

**Body Control Modules (BCM)** 

**Body Electronics and Lighting** 

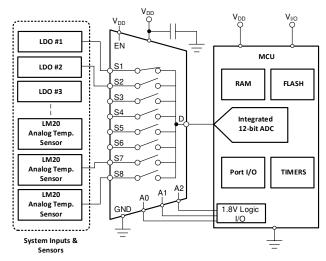
**Battery Management Systems (BMS)** 

**HVAC Controller Module** 

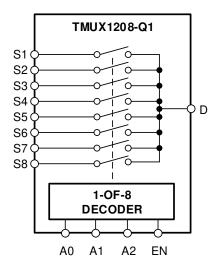
**ADAS Domain Controller** 

## 3 Description

The TMUX1208-Q1 is a general purpose complementary metal-oxide semiconductor (CMOS) multiplexer (MUX). The TMUX1208-Q1 is an 8:1 mux configuration allowing 8 different signal paths to be switched to a common output pin. Wide operating supply of 1.08 V to 5.5 V allows for use in automotive applications with varying power supply requirements. The device supports bidirectional analog and digital signals on the source (Sx) and drain (D) pins ranging from GND to  $V_{DD}$ .


The TMUX1208-Q1 comes in a small QFN package to enable reduced system size requirements. The device has low on-resistance of  $5\Omega$  typical to minimize the impact of distortion and signal integrity issues when the device is not connected to a high impedance signal path.

All logic inputs have 1.8 V logic compatible thresholds, ensuring both TTL and CMOS logic compatibility when operating in the valid supply voltage range. Fail-Safe Logic circuitry allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage.


### **Device Information**

| PART NUMBER(1) | PACKAGE  | BODY SIZE (NOM)   |
|----------------|----------|-------------------|
| TMUX1208-Q1    | QFN (16) | 2.60 mm x 1.80 mm |

For all available packages, see the package option addendum at the end of the data sheet.



**Application Example** 



TMUX1208-Q1 Block Diagram



## **Table of Contents**

| 1 Features1                                           | 7.6 t <sub>ON(EN)</sub> and t <sub>OFF(EN)</sub>      | . 15 |
|-------------------------------------------------------|-------------------------------------------------------|------|
| 2 Applications1                                       | 7.7 Charge Injection                                  | . 16 |
| 3 Description1                                        | 7.8 Off Isolation                                     |      |
| 4 Revision History2                                   | 7.9 Crosstalk                                         | . 17 |
| 5 Pin Configuration and Functions3                    | 7.10 Bandwidth                                        | . 17 |
| Pin Functions3                                        | 8 Detailed Description                                | 18   |
| 6 Specifications4                                     | 8.1 Overview                                          |      |
| 6.1 Absolute Maximum Ratings4                         | 8.2 Functional Block Diagram                          | .18  |
| 6.2 ESD Ratings4                                      | 8.3 Feature Description                               | 18   |
| 6.3 Recommended Operating Conditions4                 | 9 Power Supply Recommendations                        | 21   |
| 6.4 Thermal Information4                              | 10 Layout                                             | 22   |
| 6.5 Electrical Characteristics (VDD = 5 V ±10 %)5     | 10.1 Layout Guidelines                                | . 22 |
| 6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)7   | 10.2 Layout Example                                   | . 22 |
| 6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)9   | 11 Device and Documentation Support                   | 24   |
| 6.8 Electrical Characteristics (VDD = 1.2 V ±10 %) 11 | 11.1 Third-Party Products Disclaimer                  | . 24 |
| 7 Parameter Measurement Information13                 | 11.2 Documentation Support                            | . 24 |
| 7.1 On-Resistance13                                   | 11.3 Receiving Notification of Documentation Updates. | . 24 |
| 7.2 Off-Leakage Current13                             | 11.4 Support Resources                                | . 24 |
| 7.3 On-Leakage Current14                              | 11.5 Trademarks                                       |      |
| 7.4 Transition Time14                                 | 12 Electrostatic Discharge Caution                    | . 24 |
| 7.5 Break-Before-Make15                               | 13 Glossary                                           | . 24 |
|                                                       |                                                       |      |

## **4 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| C | hanges from Revision * (August, 2019) to Revision A (July, 2020) | Page |
|---|------------------------------------------------------------------|------|
| • | Releasing data sheet as production data                          |      |



# **5 Pin Configuration and Functions**

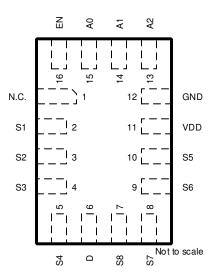



Figure 5-1. RSV Package 16-Pin QFN Top View

### **Pin Functions**

| PIN  |      | TYPE <sup>(1)</sup> | DESCRIPTION                                                                                                                                                                                                 |  |  |
|------|------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NAME | UQFN | ITPE(*)             | DESCRIPTION                                                                                                                                                                                                 |  |  |
| A0   | 15   | I                   | Address line 0. Controls the switch configuration as shown in Table 8-1.                                                                                                                                    |  |  |
| EN   | 16   | I                   | Active high logic input. When this pin is low, all switches are turned off. When this pin is high, the A[2:0] address inputs determine which switch is turned on.                                           |  |  |
| N.C. | 1    | Not Connected       | Not Connected                                                                                                                                                                                               |  |  |
| S1   | 2    | I/O                 | Source pin 1. Can be an input or output.                                                                                                                                                                    |  |  |
| S2   | 3    | I/O                 | Source pin 2. Can be an input or output.                                                                                                                                                                    |  |  |
| S3   | 4    | I/O                 | Source pin 3. Can be an input or output.                                                                                                                                                                    |  |  |
| S4   | 5    | I/O                 | Source pin 4. Can be an input or output.                                                                                                                                                                    |  |  |
| D    | 6    | I/O                 | Drain pin. Can be an input or output.                                                                                                                                                                       |  |  |
| S8   | 7    | I/O                 | Source pin 8. Can be an input or output.                                                                                                                                                                    |  |  |
| S7   | 8    | I/O                 | Source pin 7. Can be an input or output.                                                                                                                                                                    |  |  |
| S6   | 9    | I/O                 | Source pin 6. Can be an input or output.                                                                                                                                                                    |  |  |
| S5   | 10   | I/O                 | Source pin 5. Can be an input or output.                                                                                                                                                                    |  |  |
| VDD  | 11   | Р                   | Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 $\mu$ F to 10 $\mu$ F between V <sub>DD</sub> and GND. |  |  |
| GND  | 12   | Р                   | Ground (0 V) reference                                                                                                                                                                                      |  |  |
| A2   | 13   | I                   | Address line 2. Controls the switch configuration as shown in Table 8-1.                                                                                                                                    |  |  |
| A1   | 14   | I _                 | Address line 1. Controls the switch configuration as shown in Table 8-1.                                                                                                                                    |  |  |

(1) I = input, O = output, I/O = input and output, P = power



## **6 Specifications**

## **6.1 Absolute Maximum Ratings**

over operating free-air temperature range (unless otherwise noted)(1) (2) (3)

|                                         |                                                  | MIN  | MAX                  | UNIT |
|-----------------------------------------|--------------------------------------------------|------|----------------------|------|
| $V_{DD}$                                | Supply voltage                                   | -0.3 | 6                    | V    |
| V <sub>LOGIC</sub>                      | Logic control input pin voltage (EN, A0, A1, A2) | -0.3 | 6                    | V    |
| I <sub>LOGIC</sub>                      | Logic control input pin current (EN, A0, A1, A2) | -30  | 30                   | mA   |
| V <sub>S</sub> or V <sub>D</sub>        | Source or drain voltage (Sx, D)                  | -0.5 | V <sub>DD</sub> +0.5 | V    |
| I <sub>S</sub> or I <sub>D (CONT)</sub> | Source or drain continuous current (Sx, D)       | -30  | 30                   | mA   |
| I <sub>IK</sub>                         | Diode clamp current <sup>(4)</sup>               | -30  | 30                   | mA   |
| T <sub>stg</sub>                        | Storage temperature                              | -65  | 150                  | °C   |
| T <sub>J</sub>                          | Junction temperature                             |      | 150                  | °C   |

- (1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) Signal path pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.

### 6.2 ESD Ratings

|                    |                                                                                           |                                                                               | VALUE | UNIT |
|--------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|------|
| Electrostatic      | Human body model (HBM), per AEC Q100-002 <sup>(1)</sup><br>HBM ESD Classification Level 2 | ±2000                                                                         |       |      |
| V <sub>(ESD)</sub> |                                                                                           | Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C4B | ±750  | V    |

<sup>(1)</sup> AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

## **6.3 Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)

|                                  |                                                                | MIN  | NOM MAX  | UNIT |
|----------------------------------|----------------------------------------------------------------|------|----------|------|
| $V_{DD}$                         | Supply voltage                                                 | 1.08 | 5.5      | V    |
| V <sub>S</sub> or V <sub>D</sub> | Signal path input/output voltage (source or drain pin) (Sx, D) | 0    | $V_{DD}$ | V    |
| V <sub>LOGIC</sub>               | Logic control input pin voltage (EN, A0, A1, A2)               | 0    | 5.5      | V    |
| T <sub>A</sub>                   | Ambient temperature                                            | -40  | 125      | °C   |

### 6.4 Thermal Information

|                        |                                              | TMUX1208-Q1 |      |
|------------------------|----------------------------------------------|-------------|------|
|                        | THERMAL METRIC(1)                            | RSV (QFN)   | UNIT |
|                        |                                              | 16 PINS     |      |
| $R_{\theta JA}$        | Junction-to-ambient thermal resistance       | 134.6       | °C/W |
| R <sub>0</sub> JC(top) | Junction-to-case (top) thermal resistance    | 74.3        | °C/W |
| $R_{\theta JB}$        | Junction-to-board thermal resistance         | 62.8        | °C/W |
| $\Psi_{JT}$            | Junction-to-top characterization parameter   | 4.3         | °C/W |
| $\Psi_{JB}$            | Junction-to-board characterization parameter | 61.1        | °C/W |
| R <sub>0JC(bot)</sub>  | Junction-to-case (bottom) thermal resistance | N/A         | °C/W |

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: TMUX1208-Q1



# 6.5 Electrical Characteristics (VDD = 5 V ±10 %)

at  $T_A = 25$ °C,  $V_{DD} = 5$  V (unless otherwise noted)

|                                    | PARAMETER                                 | TEST CONDITIONS                                         | TA              | MIN TYP | MAX                                                      | UNIT |
|------------------------------------|-------------------------------------------|---------------------------------------------------------|-----------------|---------|----------------------------------------------------------|------|
| ANALO                              | G SWITCH                                  |                                                         | <u> </u>        |         |                                                          |      |
|                                    |                                           | $V_S = 0 V \text{ to } V_{DD}$                          | 25°C            | 5       |                                                          | Ω    |
| R <sub>ON</sub>                    | On-resistance                             | I <sub>SD</sub> = 10 mA                                 | -40°C to +85°C  |         | 7                                                        | Ω    |
|                                    |                                           | Refer to Figure 7-1                                     | -40°C to +125°C |         | 9                                                        | Ω    |
|                                    |                                           | V <sub>S</sub> = 0 V to V <sub>DD</sub>                 | 25°C            | 0.15    |                                                          | Ω    |
| $\Delta R_{ON}$                    | On-resistance matching between channels   | I <sub>SD</sub> = 10 mA                                 | -40°C to +85°C  |         | 1                                                        | Ω    |
|                                    | S. Marin G. G.                            | Refer to Figure 7-1                                     | -40°C to +125°C |         | 1                                                        | Ω    |
| _                                  |                                           | V <sub>S</sub> = 0 V to V <sub>DD</sub>                 | 25°C            | 1.5     |                                                          | Ω    |
| R <sub>ON</sub><br>FLAT            | On-resistance flatness                    | I <sub>SD</sub> = 10 mA                                 | -40°C to +85°C  | 2       |                                                          | Ω    |
| FLAI                               |                                           | Refer to Figure 7-1                                     | -40°C to +125°C | 3       | 5 7 9 0.15 1 1 1.5 2 3 ±75 150 175 ±200 500 750 5.5 0.87 | Ω    |
|                                    |                                           | V <sub>DD</sub> = 5 V                                   | 25°C            | ±75     |                                                          | nA   |
| la                                 | Source off leakage current <sup>(1)</sup> | Switch Off<br>V <sub>D</sub> = 4.5 V / 1 V              | -40°C to +85°C  | -150    | 150                                                      | nA   |
| I <sub>S(OFF)</sub>                | Jource on leakage current                 | $V_S = 1 \text{ V} / 4.5 \text{ V}$ Refer to Figure 7-2 | -40°C to +125°C | -175    | 175                                                      | nA   |
|                                    |                                           | V <sub>DD</sub> = 5 V                                   | 25°C            | ±200    |                                                          | nA   |
| I <sub>D(OFF)</sub>                | Drain off leakage current <sup>(1)</sup>  | Switch Off<br>V <sub>D</sub> = 4.5 V / 1 V              | -40°C to +85°C  | -500    | 500                                                      | nA   |
|                                    |                                           | $V_S = 1 \text{ V} / 4.5 \text{ V}$ Refer to Figure 7-2 | -40°C to +125°C | -750    | 750                                                      | nA   |
|                                    |                                           | V <sub>DD</sub> = 5 V                                   | 25°C            | ±200    |                                                          | nA   |
| I <sub>D(ON)</sub>                 | Channel on leakage current                | Switch On $V_D = V_S = 4.5 \text{ V} / 1 \text{ V}$     | -40°C to +85°C  | -500    | 500                                                      | nA   |
| I <sub>S(ON)</sub>                 |                                           | Refer to Figure 7-3                                     | -40°C to +125°C | -750    | 750                                                      | nA   |
| LOGIC                              | INPUTS (EN, A0, A1, A2)                   |                                                         |                 |         |                                                          |      |
| V <sub>IH</sub>                    | Input logic high                          |                                                         | -40°C to 125°C  | 1.49    | 5.5                                                      | V    |
| V <sub>IL</sub>                    | Input logic low                           |                                                         | -40°C to 125°C  | 0       | 0.87                                                     | V    |
| I <sub>IH</sub><br>I <sub>IL</sub> | Input leakage current                     |                                                         | 25°C            | ±0.005  |                                                          | μA   |
| I <sub>IH</sub><br>I <sub>IL</sub> | Input leakage current                     |                                                         | -40°C to +125°C |         | ±0.10                                                    | μA   |
| C <sub>IN</sub>                    | Logic input capacitance                   |                                                         | 25°C            | 1       |                                                          | pF   |
| C <sub>IN</sub>                    | Logic input capacitance                   |                                                         | -40°C to +125°C |         | 2                                                        | pF   |
| POWER                              | SUPPLY                                    | -                                                       |                 |         |                                                          |      |
|                                    | V aupply aurrent                          | Logio inputo = 0 V or E 5 V                             | 25°C            | 0.02    |                                                          | μΑ   |
| I <sub>DD</sub>                    | V <sub>DD</sub> supply current            | Logic inputs = 0 V or 5.5 V                             | -40°C to +125°C |         | 2.7                                                      | μΑ   |



|                                      | PARAMETER                        | TEST CONDITIONS                                                            | TA              | MIN | TYP | MAX      | UNIT |
|--------------------------------------|----------------------------------|----------------------------------------------------------------------------|-----------------|-----|-----|----------|------|
| DYNAM                                | IC CHARACTERISTICS               |                                                                            |                 |     |     | <u> </u> |      |
|                                      |                                  | V <sub>S</sub> = 3 V                                                       | 25°C            |     | 14  |          | ns   |
| t <sub>TRAN</sub>                    | Transition time between channels | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  |     |     | 33       | ns   |
|                                      |                                  | Refer to Figure 7-4                                                        | -40°C to +125°C |     |     | 33       | ns   |
|                                      |                                  | V <sub>S</sub> = 3 V                                                       | 25°C            |     | 8   |          | ns   |
| (BBM)                                | Break before make time           | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  | 1   |     |          | ns   |
| (BBIVI)                              |                                  | Refer to Figure 7-5                                                        | -40°C to +125°C | 1   |     |          | ns   |
|                                      |                                  | V <sub>S</sub> = 3 V                                                       | 25°C            |     | 14  |          | ns   |
| t <sub>ON(EN)</sub>                  | Enable turn-on time              | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  |     |     | 20 20 20 | ns   |
|                                      |                                  | Refer to Figure 7-6                                                        | -40°C to +125°C |     |     | 20       | ns   |
|                                      |                                  | V <sub>S</sub> = 3 V                                                       | 25°C            |     | 11  |          | ns   |
| t <sub>OFF(EN)</sub>                 | Enable turn-off time             | $R_L = 200 \Omega$ , $C_L = 15 pF$<br>Refer to Figure 7-6                  | -40°C to +85°C  |     |     | 20       | ns   |
|                                      |                                  |                                                                            | -40°C to +125°C |     |     | 20       | ns   |
| Q <sub>C</sub>                       | Charge Injection                 | $V_S = V_{DD}/2$<br>$R_S = 0 \Omega$ , $C_L = 1 nF$<br>Refer to Figure 7-7 | 25°C            |     | -8  |          | рС   |
|                                      |                                  | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 1 MHz<br>Refer to Figure 7-8       | 25°C            |     | -62 |          | dB   |
| O <sub>ISO</sub>                     | Off Isolation                    | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 10 MHz<br>Refer to Figure 7-8      | 25°C            |     | -42 |          | dB   |
| · ·                                  |                                  | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 1 MHz<br>Refer to Figure 7-9       | 25°C            |     | -62 |          | dB   |
| X <sub>TALK</sub>                    | Crosstalk                        | $R_L$ = 50 $\Omega$ , $C_L$ = 5 pF<br>f = 10 MHz<br>Refer to Figure 7-9    | 25°C            |     | -42 |          | dB   |
| BW                                   | Bandwidth                        | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>Refer to Figure 7-10                   | 25°C            |     | 65  |          | MHz  |
| C <sub>SOFF</sub>                    | Source off capacitance           | f = 1 MHz                                                                  | 25°C            |     | 13  |          | pF   |
| C <sub>DOFF</sub>                    | Drain off capacitance            | f = 1 MHz                                                                  | 25°C            |     | 76  |          | pF   |
| C <sub>SON</sub><br>C <sub>DON</sub> | On capacitance                   | f = 1 MHz                                                                  | 25°C            |     | 85  |          | pF   |

<sup>(1)</sup> When  $\rm V_S$  is 4.5 V,  $\rm V_D$  is 1.5 V or when  $\rm V_S$  is 1.5 V,  $\rm V_D$  is 4.5 V.



# 6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)

at  $T_A = 25$ °C,  $V_{DD} = 3.3$  V (unless otherwise noted)

|                                    | PARAMETER                                 | TEST CONDITIONS                                                                                     | TA              | MIN TYP | MAX   | UNIT |
|------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------|---------|-------|------|
| ANALO                              | G SWITCH                                  | <u>'</u>                                                                                            |                 |         |       |      |
|                                    |                                           | V <sub>S</sub> = 0 V to V <sub>DD</sub>                                                             | 25°C            | 9       |       | Ω    |
| R <sub>ON</sub>                    | On-resistance                             | I <sub>SD</sub> = 10 mA                                                                             | -40°C to +85°C  |         | 15    | Ω    |
|                                    |                                           | Refer to Figure 7-1                                                                                 | -40°C to +125°C |         | 17    | Ω    |
|                                    |                                           | V <sub>S</sub> = 0 V to V <sub>DD</sub>                                                             | 25°C            | 0.15    |       | Ω    |
| $\Delta R_{ON}$                    | On-resistance matching between channels   | I <sub>SD</sub> = 10 mA                                                                             | -40°C to +85°C  |         | 1     | Ω    |
|                                    | S. Marinois                               | Refer to Figure 7-1                                                                                 | -40°C to +125°C |         | 9     | Ω    |
|                                    |                                           | V <sub>S</sub> = 0 V to V <sub>DD</sub>                                                             | 25°C            | 3       |       | Ω    |
| R <sub>ON</sub>                    | On-resistance flatness                    | I <sub>SD</sub> = 10 mA                                                                             | -40°C to +85°C  | 5       |       | Ω    |
| FLAT                               |                                           | Refer to Figure 7-1                                                                                 | -40°C to +125°C | 6       |       | Ω    |
|                                    |                                           | V <sub>DD</sub> = 3.3 V                                                                             | 25°C            | ±75     |       | nA   |
| I                                  | Source off leakage current <sup>(1)</sup> | Switch Off<br>V <sub>D</sub> = 3 V / 1 V                                                            | -40°C to +85°C  | -150    | 150   | nA   |
| I <sub>S(OFF)</sub>                | Source on leakage current                 | $V_D = 3 \text{ V} / 1 \text{ V}$<br>$V_S = 1 \text{ V} / 3 \text{ V}$<br>Refer to Figure 7-2       | –40°C to +125°C | -175    | 175   | nA   |
| I <sub>D(OFF)</sub>                | Drain off leakage current <sup>(1)</sup>  | $V_{DD}$ = 3.3 V<br>Switch Off<br>$V_{D}$ = 3 V / 1 V<br>$V_{S}$ = 1 V / 3 V<br>Refer to Figure 7-2 | 25°C            | ±200    |       | nA   |
|                                    |                                           |                                                                                                     | -40°C to +85°C  | -500    | 500   | nA   |
|                                    |                                           |                                                                                                     | –40°C to +125°C | -750    | 750   | nA   |
|                                    |                                           | V <sub>DD</sub> = 3.3 V                                                                             | 25°C            | ±200    |       | nA   |
| $I_{D(ON)}$                        | Channel on leakage current                | Switch On<br>V <sub>D</sub> = V <sub>S</sub> = 3 V / 1 V                                            | –40°C to +85°C  | -500    | 500   | nA   |
| I <sub>S(ON)</sub>                 |                                           | Refer to Figure 7-3                                                                                 | -40°C to +125°C | -750    | 750   | nA   |
| LOGIC                              | INPUTS (EN, A0, A1, A2)                   |                                                                                                     |                 |         |       |      |
| V <sub>IH</sub>                    | Input logic high                          |                                                                                                     | -40°C to 125°C  | 1.35    | 5.5   | V    |
| V <sub>IL</sub>                    | Input logic low                           |                                                                                                     | -40°C to 125°C  | 0       | 0.8   | V    |
| I <sub>IH</sub><br>I <sub>IL</sub> | Input leakage current                     |                                                                                                     | 25°C            | ±0.005  |       | μA   |
| I <sub>IH</sub><br>I <sub>IL</sub> | Input leakage current                     |                                                                                                     | -40°C to +125°C |         | ±0.10 | μA   |
| C <sub>IN</sub>                    | Logic input capacitance                   |                                                                                                     | 25°C            | 1       |       | pF   |
| C <sub>IN</sub>                    | Logic input capacitance                   |                                                                                                     | -40°C to +125°C |         | 2     | pF   |
| POWER                              | RSUPPLY                                   |                                                                                                     |                 |         |       |      |
|                                    | V gunnhy gurront                          | Logio inputo = 0 V oz 5 5 V                                                                         | 25°C            | 0.01    |       | μΑ   |
| I <sub>DD</sub>                    | V <sub>DD</sub> supply current            | Logic inputs = 0 V or 5.5 V                                                                         | -40°C to +125°C |         | 1.5   | μΑ   |



|                                                                                                    | PARAMETER                        | TEST CONDITIONS                                                            | TA              | MIN | TYP | MAX      | UNIT |
|----------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------|-----------------|-----|-----|----------|------|
| DYNAM                                                                                              | IC CHARACTERISTICS               |                                                                            | <u>'</u>        |     |     | <u> </u> |      |
|                                                                                                    |                                  | V <sub>S</sub> = 2 V                                                       | 25°C            |     | 14  |          | ns   |
| t <sub>TRAN</sub>                                                                                  | Transition time between channels | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  |     |     | 25       | ns   |
|                                                                                                    |                                  | Refer to Figure 7-4                                                        | -40°C to +125°C |     |     | 25       | ns   |
|                                                                                                    |                                  | V <sub>S</sub> = 2 V                                                       | 25°C            |     | 8   |          | ns   |
| topen                                                                                              | Break before make time           | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  | 1   |     |          | ns   |
| ttran  topen (BBM)  ton(EN)  toff(EN)   Toff(EN)  Toff(EN)  Toff(EN)  Toff(EN)  Toff(EN)  Toff(EN) |                                  | Refer to Figure 7-5                                                        | -40°C to +125°C | 1   |     |          | ns   |
|                                                                                                    |                                  | V <sub>S</sub> = 2 V                                                       | 25°C            |     | 17  |          | ns   |
| t <sub>ON(EN)</sub>                                                                                | Enable turn-on time              | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  |     |     | 4        | ns   |
|                                                                                                    |                                  | Refer to Figure 7-6                                                        | -40°C to +125°C |     |     | 25       | ns   |
|                                                                                                    |                                  | V <sub>S</sub> = 2 V                                                       | 25°C            |     | 7   |          | ns   |
| t <sub>OFF(EN)</sub>                                                                               | Enable turn-off time             | $R_L = 200 \Omega$ , $C_L = 15 pF$<br>Refer to Figure 7-6                  | -40°C to +85°C  |     |     | 13       | ns   |
|                                                                                                    |                                  |                                                                            | -40°C to +125°C |     |     | 13       | ns   |
| Q <sub>C</sub>                                                                                     | Charge Injection                 | $V_S = V_{DD}/2$<br>$R_S = 0 \Omega$ , $C_L = 1 nF$<br>Refer to Figure 7-7 | 25°C            |     | ±7  |          | рС   |
|                                                                                                    |                                  | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 1 MHz<br>Refer to Figure 7-8       | 25°C            |     | -62 |          | dB   |
| O <sub>ISO</sub>                                                                                   | Off Isolation                    | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 10 MHz<br>Refer to Figure 7-8      | 25°C            |     | -42 |          | dB   |
| · ·                                                                                                |                                  | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 1 MHz<br>Refer to Figure 7-9       | 25°C            |     | -62 |          | dB   |
| X <sub>TALK</sub>                                                                                  | Crosstalk                        | $R_L$ = 50 $\Omega$ , $C_L$ = 5 pF<br>f = 10 MHz<br>Refer to Figure 7-9    | 25°C            |     | -42 |          | dB   |
| BW                                                                                                 | Bandwidth                        | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>Refer to Figure 7-10                   | 25°C            |     | 65  |          | MHz  |
| C <sub>SOFF</sub>                                                                                  | Source off capacitance           | f = 1 MHz                                                                  | 25°C            |     | 13  |          | pF   |
| C <sub>DOFF</sub>                                                                                  | Drain off capacitance            | f = 1 MHz                                                                  | 25°C            |     | 76  |          | pF   |
| C <sub>SON</sub><br>C <sub>DON</sub>                                                               | On capacitance                   | f = 1 MHz                                                                  | 25°C            |     | 85  |          | pF   |

<sup>(1)</sup> When  $V_S$  is 3 V,  $V_D$  is 1 V or when  $V_S$  is 1 V,  $V_D$  is 3 V.

# 6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)

at  $T_A = 25$ °C,  $V_{DD} = 1.8 \text{ V}$  (unless otherwise noted)

| PARAMETER                          |                                           | TEST CONDITIONS                                            | TA              | MIN  | TYP   | MAX   | UNIT |
|------------------------------------|-------------------------------------------|------------------------------------------------------------|-----------------|------|-------|-------|------|
| ANALO                              | G SWITCH                                  |                                                            |                 |      |       |       |      |
|                                    |                                           | $V_S = 0 \text{ V to } V_{DD}$                             | 25°C            |      | 40    |       | Ω    |
| R <sub>ON</sub>                    | On-resistance                             | I <sub>SD</sub> = 10 mA                                    | -40°C to +85°C  |      |       | 80    | Ω    |
|                                    |                                           | Refer to Figure 7-1                                        | -40°C to +125°C |      |       | 80    | Ω    |
|                                    |                                           | $V_S = 0 \text{ V to } V_{DD}$                             | 25°C            |      | 0.15  |       | Ω    |
| $\Delta R_{ON}$                    | On-resistance matching between channels   | I <sub>SD</sub> = 10 mA                                    | -40°C to +85°C  |      |       | 1.5   | Ω    |
|                                    | Granners                                  | Refer to Figure 7-1                                        | -40°C to +125°C |      |       | 1.5   | Ω    |
|                                    |                                           | V <sub>DD</sub> = 1.98 V                                   | 25°C            |      | ±75   |       | nA   |
| la (acc)                           | Source off leakage current <sup>(1)</sup> | Switch Off<br>V <sub>D</sub> = 1.8 V / 1 V                 | -40°C to +85°C  | -150 |       | 150   | nA   |
| I <sub>S(OFF)</sub>                | Source on leakage current(1)              | $V_S = 1 \text{ V} / 1.8 \text{ V}$ Refer to Figure 7-2    | -40°C to +125°C | -175 |       | 175   | nA   |
|                                    | Drain off leakage current <sup>(1)</sup>  | V <sub>DD</sub> = 1.98 V                                   | 25°C            |      | ±200  |       | nA   |
| I <sub>D(OFF)</sub>                |                                           | Switch Off<br>V <sub>D</sub> = 1.8 V / 1 V                 | -40°C to +85°C  | -500 |       | 500   | nA   |
|                                    |                                           | $V_S = 1.3 \text{ V/ } 1.8 \text{ V}$ Refer to Figure 7-2  | -40°C to +125°C | -750 |       | 750   | nA   |
|                                    | Channel on leakage current                | V <sub>DD</sub> = 1.98 V                                   | 25°C            |      | ±200  |       | nA   |
| I <sub>D(ON)</sub>                 |                                           | Switch On<br>V <sub>D</sub> = V <sub>S</sub> = 1.8 V / 1 V | -40°C to +85°C  | -500 |       | 500   | nA   |
| I <sub>S(ON)</sub>                 |                                           | Refer to Figure 7-3                                        | -40°C to +125°C | -750 |       | 750   | nA   |
| LOGIC                              | INPUTS (EN, A0, A1, A2)                   |                                                            |                 |      |       |       |      |
| V <sub>IH</sub>                    | Input logic high                          |                                                            | -40°C to +125°C | 1.07 |       | 5.5   | V    |
| V <sub>IL</sub>                    | Input logic low                           |                                                            | -40°C to +125°C | 0    |       | 0.68  | V    |
| I <sub>IH</sub><br>I <sub>IL</sub> | Input leakage current                     |                                                            | 25°C            | ±(   | 0.005 |       | μΑ   |
| I <sub>IH</sub><br>I <sub>IL</sub> | Input leakage current                     |                                                            | -40°C to +125°C |      |       | ±0.10 | μΑ   |
| C <sub>IN</sub>                    | Logic input capacitance                   |                                                            | 25°C            |      | 1     |       | pF   |
| ∪IN                                | Logic input capacitance                   |                                                            | -40°C to +125°C |      |       | 2     | pF   |
| POWER                              | RSUPPLY                                   |                                                            |                 |      |       |       |      |
| laa.                               | V <sub>DD</sub> supply current            | Logic inputs = 0 V or 5.5 V                                | 25°C            | (    | 0.006 |       | μΑ   |
| I <sub>DD</sub>                    | ADD anbbis content                        | Logic Inputs – 0 v of 3.5 v                                | -40°C to +125°C |      |       | 0.95  | μA   |



|                                      | PARAMETER                        | TEST CONDITIONS                                                            | TA              | MIN | TYP | MAX | UNIT |
|--------------------------------------|----------------------------------|----------------------------------------------------------------------------|-----------------|-----|-----|-----|------|
| DYNAM                                | IC CHARACTERISTICS               |                                                                            |                 |     |     |     |      |
|                                      |                                  | V <sub>S</sub> = 1 V                                                       | 25°C            |     | 28  |     | ns   |
| t <sub>TRAN</sub>                    | Transition time between channels | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  |     |     | 48  | ns   |
|                                      |                                  | Refer to Figure 7-4                                                        | -40°C to +125°C |     |     | 48  | ns   |
|                                      |                                  | V <sub>S</sub> = 1 V                                                       | 25°C            |     | 16  |     | ns   |
| (BBM)                                | Break before make time           | $R_L = 200 \Omega, C_L = 15 pF$                                            | –40°C to +85°C  | 1   |     |     | ns   |
| (BBIVI)                              |                                  | Refer to Figure 7-5                                                        | -40°C to +125°C | 1   |     |     | ns   |
|                                      |                                  | V <sub>S</sub> = 1 V                                                       | 25°C            |     | 28  |     | ns   |
| t <sub>ON(EN)</sub>                  | Enable turn-on time              | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  |     |     | 48  | ns   |
|                                      |                                  | Refer to Figure 7-6                                                        | -40°C to +125°C |     |     | 48  | ns   |
|                                      |                                  | V <sub>S</sub> = 1 V                                                       | 25°C            |     | 16  |     | ns   |
| t <sub>OFF(EN)</sub>                 | Enable turn-off time             | $R_L = 200 \Omega, C_L = 15 pF$                                            | –40°C to +85°C  |     |     | 27  | ns   |
|                                      |                                  | Refer to Figure 7-6                                                        | -40°C to +125°C |     |     | 27  | ns   |
| Q <sub>C</sub>                       | Charge Injection                 | $V_S = V_{DD}/2$<br>$R_S = 0 \Omega$ , $C_L = 1 nF$<br>Refer to Figure 7-7 | 25°C            |     | -2  |     | рС   |
|                                      | Off Isolation                    | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 1 MHz<br>Refer to Figure 7-8       | 25°C            |     | -62 |     | dB   |
| O <sub>ISO</sub>                     |                                  | $R_L$ = 50 Ω, $C_L$ = 5 pF<br>f = 10 MHz<br>Refer to Figure 7-8            | 25°C            |     | -42 |     | dB   |
| V                                    | 0                                | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 1 MHz<br>Refer to Figure 7-9       | 25°C            |     | -62 |     | dB   |
| X <sub>TALK</sub>                    | Crosstalk                        | $R_L$ = 50 $\Omega$ , $C_L$ = 5 pF<br>f = 10 MHz<br>Refer to Figure 7-9    | 25°C            |     | -42 |     | dB   |
| BW                                   | Bandwidth                        | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>Refer to Figure 7-10                   | 25°C            |     | 65  |     | MHz  |
| C <sub>SOFF</sub>                    | Source off capacitance           | f = 1 MHz                                                                  | 25°C            |     | 13  |     | pF   |
| C <sub>DOFF</sub>                    | Drain off capacitance            | f = 1 MHz                                                                  | 25°C            |     | 76  |     | pF   |
| C <sub>SON</sub><br>C <sub>DON</sub> | On capacitance                   | f = 1 MHz                                                                  | 25°C            |     | 85  |     | pF   |

<sup>(1)</sup> When  $V_S$  is 1.8 V,  $V_D$  is 1 V or when  $V_S$  is 1 V,  $V_D$  is 1.8 V.



# 6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)

at  $T_A = 25$ °C,  $V_{DD} = 1.2 \text{ V}$  (unless otherwise noted)

| PARAMETER                          |                                           | TEST CONDITIONS                                            | TA              | MIN TY | P MAX | UNIT |
|------------------------------------|-------------------------------------------|------------------------------------------------------------|-----------------|--------|-------|------|
| ANALO                              | G SWITCH                                  |                                                            |                 |        |       |      |
|                                    |                                           | $V_S = 0 \text{ V to } V_{DD}$                             | 25°C            | 7      | 70    | Ω    |
| R <sub>ON</sub>                    | On-resistance                             | I <sub>SD</sub> = 10 mA                                    | -40°C to +85°C  |        | 105   | Ω    |
|                                    |                                           | Refer to Figure 7-1                                        | -40°C to +125°C |        | 105   | Ω    |
|                                    |                                           | $V_S = 0 \text{ V to } V_{DD}$                             | 25°C            | 0.1    | 15    | Ω    |
| $\Delta R_{ON}$                    | On-resistance matching between channels   | I <sub>SD</sub> = 10 mA                                    | –40°C to +85°C  |        | 1.5   | Ω    |
|                                    | Granners                                  | Refer to Figure 7-1                                        | -40°C to +125°C |        | 1.5   | Ω    |
|                                    |                                           | V <sub>DD</sub> = 1.32 V                                   | 25°C            | ±7     | 75    | nA   |
| la (acc)                           | Source off leakage current <sup>(1)</sup> | Switch Off<br>V <sub>D</sub> = 1.2 V / 1 V                 | -40°C to +85°C  | -150   | 150   | nA   |
| I <sub>S(OFF)</sub>                | Source of leakage current                 | $V_S = 1 \text{ V} / 1.2 \text{ V}$ Refer to Figure 7-2    | -40°C to +125°C | -175   | 175   | nA   |
|                                    | Drain off leakage current <sup>(1)</sup>  | V <sub>DD</sub> = 1.32 V                                   | 25°C            | ±20    | 00    | nA   |
| I <sub>D(OFF)</sub>                |                                           | Switch Off<br>V <sub>D</sub> = 1.2 V / 1 V                 | -40°C to +85°C  | -500   | 500   | nA   |
|                                    |                                           | $V_S = 1.2 \text{ V/ } 1.2 \text{ V}$ Refer to Figure 7-2  | -40°C to +125°C | -750   | 750   | nA   |
|                                    | Channel on leakage current                | V <sub>DD</sub> = 1.32 V                                   | 25°C            | ±20    | 00    | nA   |
| I <sub>D(ON)</sub>                 |                                           | Switch On<br>V <sub>D</sub> = V <sub>S</sub> = 1.2 V / 1 V | -40°C to +85°C  | -500   | 500   | nA   |
| I <sub>S(ON)</sub>                 |                                           | Refer to Figure 7-3                                        | -40°C to +125°C | -750   | 750   | nA   |
| LOGIC                              | INPUTS (EN, A0, A1, A2)                   |                                                            |                 |        |       |      |
| V <sub>IH</sub>                    | Input logic high                          |                                                            | -40°C to +125°C | 0.96   | 5.5   | V    |
| V <sub>IL</sub>                    | Input logic low                           |                                                            | -40°C to +125°C | 0      | 0.36  | V    |
| I <sub>IH</sub><br>I <sub>IL</sub> | Input leakage current                     |                                                            | 25°C            | ±0.00  | )5    | μA   |
| I <sub>IH</sub><br>I <sub>IL</sub> | Input leakage current                     |                                                            | -40°C to +125°C |        | ±0.10 | μA   |
| C <sub>IN</sub>                    | Logic input capacitance                   |                                                            | 25°C            |        | 1     | pF   |
| ∪IN                                | Logic input capacitance                   |                                                            | -40°C to +125°C |        | 2     | pF   |
| POWER                              | RSUPPLY                                   |                                                            |                 |        |       |      |
| laa.                               | V <sub>DD</sub> supply current            | Logic inputs = 0 V or 5.5 V                                | 25°C            | 0.00   | )5    | μA   |
| I <sub>DD</sub>                    | ADD anbbis content                        | Logic inputs – 0 v oi 3.5 v                                | -40°C to +125°C |        | 0.8   | μA   |



| PARAMETER                            |                                  | TEST CONDITIONS                                                            | TA              | MIN | TYP | MAX      | UNIT |
|--------------------------------------|----------------------------------|----------------------------------------------------------------------------|-----------------|-----|-----|----------|------|
| DYNAM                                | IC CHARACTERISTICS               |                                                                            |                 |     |     | <u> </u> |      |
|                                      |                                  | V <sub>S</sub> = 1 V                                                       | 25°C            |     | 60  |          | ns   |
| t <sub>TRAN</sub>                    | Transition time between channels | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  |     |     | 210      | ns   |
|                                      |                                  | Refer to Figure 7-4                                                        | -40°C to +125°C |     |     | 210      | ns   |
|                                      |                                  | V <sub>S</sub> = 1 V                                                       | 25°C            |     | 32  |          | ns   |
| t <sub>OPEN</sub>                    | Break before make time           | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  | 1   |     |          | ns   |
| (BBM)                                |                                  | Refer to Figure 7-5                                                        | -40°C to +125°C | 1   |     |          | ns   |
|                                      |                                  | V <sub>S</sub> = 1 V                                                       | 25°C            |     | 60  |          | ns   |
| t <sub>ON(EN)</sub>                  | Enable turn-on time              | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  |     |     | 190      | ns   |
|                                      |                                  | Refer to Figure 7-6                                                        | -40°C to +125°C |     |     | 190      | ns   |
|                                      |                                  | V <sub>S</sub> = 1 V                                                       | 25°C            |     | 45  |          | ns   |
| t <sub>OFF(EN)</sub>                 | Enable turn-off time             | $R_L = 200 \Omega, C_L = 15 pF$                                            | -40°C to +85°C  |     |     | 150      | ns   |
|                                      |                                  | Refer to Figure 7-6                                                        | -40°C to +125°C |     |     | 150      | ns   |
| Q <sub>C</sub>                       | Charge Injection                 | $V_S = V_{DD}/2$<br>$R_S = 0 \Omega$ , $C_L = 1 nF$<br>Refer to Figure 7-7 | 25°C            |     | -2  |          | рС   |
|                                      | Off Isolation                    | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 1 MHz<br>Refer to Figure 7-8       | 25°C            |     | -62 |          | dB   |
| O <sub>ISO</sub>                     |                                  | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 10 MHz<br>Refer to Figure 7-8      | 25°C            |     | -42 |          | dB   |
| · ·                                  |                                  | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>f = 1 MHz<br>Refer to Figure 7-9       | 25°C            |     | -62 |          | dB   |
| X <sub>TALK</sub>                    | Crosstalk                        | $R_L$ = 50 $\Omega$ , $C_L$ = 5 pF<br>f = 10 MHz<br>Refer to Figure 7-9    | 25°C            |     | -42 |          | dB   |
| BW                                   | Bandwidth                        | $R_L = 50 \Omega$ , $C_L = 5 pF$<br>Refer to Figure 7-10                   | 25°C            |     | 65  |          | MHz  |
| C <sub>SOFF</sub>                    | Source off capacitance           | f = 1 MHz                                                                  | 25°C            |     | 13  |          | pF   |
| C <sub>DOFF</sub>                    | Drain off capacitance            | f = 1 MHz                                                                  | 25°C            |     | 76  |          | pF   |
| C <sub>SON</sub><br>C <sub>DON</sub> | On capacitance                   | f = 1 MHz                                                                  | 25°C            |     | 85  |          | pF   |

<sup>(1)</sup> When  $V_S$  is 1.2 V,  $V_D$  is 1 V or when  $V_S$  is 1 V,  $V_D$  is 1.2 V.

### 7 Parameter Measurement Information

#### 7.1 On-Resistance

The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol  $R_{ON}$  is used to denote on-resistance. The measurement setup used to measure  $R_{ON}$  is shown below. Voltage (V) and current ( $I_{SD}$ ) are measured using this setup, and  $R_{ON}$  is computed as shown in Figure 7-1 with  $R_{ON} = V / I_{SD}$ :

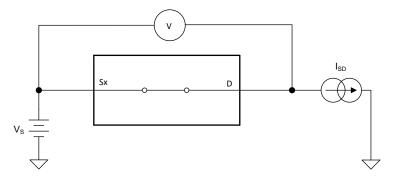



Figure 7-1. On-Resistance Measurement Setup

### 7.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- 1. Source off-leakage current
- 2. Drain off-leakage current

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol  $I_{S(OFF)}$ .

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol  $I_{D(OFF)}$ .

The setup used to measure both off-leakage currents is shown in Figure 7-2.

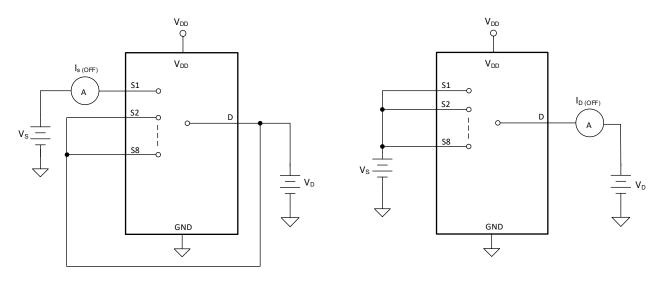



Figure 7-2. Off-Leakage Measurement Setup



### 7.3 On-Leakage Current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol  $I_{S(ON)}$ .

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol  $I_{D(ON)}$ .

Either the source pin or drain pin is left floating during the measurement. Figure 7-3 shows the circuit used for measuring the on-leakage current, denoted by  $I_{S(ON)}$  or  $I_{D(ON)}$ .

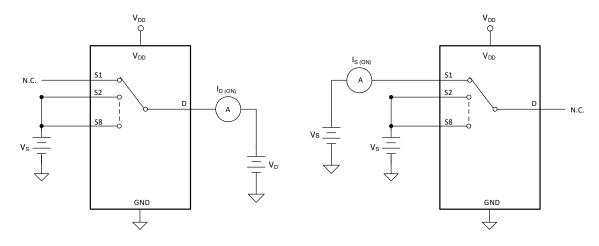



Figure 7-3. On-Leakage Measurement Setup

### 7.4 Transition Time

Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of the device, system level timing can then account for the time constant added from the load resistance and load capacitance. Figure 7-4 shows the setup used to measure transition time, denoted by the symbol transition.

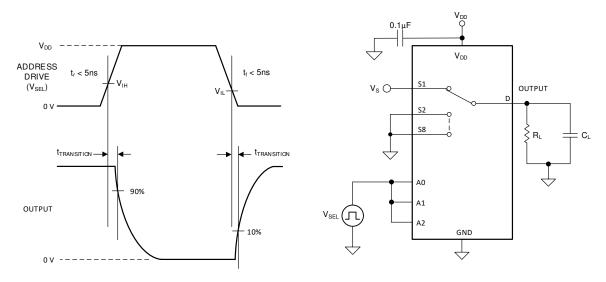



Figure 7-4. Transition-Time Measurement Setup

### 7.5 Break-Before-Make

Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is switching. The output first breaks from the on-state switch before making the connection with the next on-state switch. The time delay between the *break* and the *make* is known as break-before-make delay. Figure 7-5 shows the setup used to measure break-before-make delay, denoted by the symbol t<sub>OPEN(BBM)</sub>.

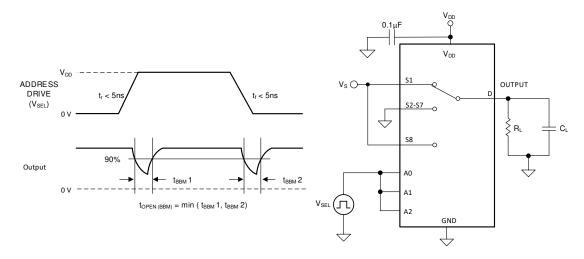



Figure 7-5. Break-Before-Make Delay Measurement Setup

## 7.6 t<sub>ON(EN)</sub> and t<sub>OFF(EN)</sub>

Turn-on time is defined as the time taken by the output of the device to rise to 10% after the enable has risen past the logic threshold. The 10% measurement is utilized to provide the timing of the device, system level timing can then account for the time constant added from the load resistance and load capacitance. Figure 7-6 shows the setup used to measure transition time, denoted by the symbol  $t_{ON(EN)}$ .

Turn-off time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen past the logic threshold. The 90% measurement is utilized to provide the timing of the device, system level timing can then account for the time constant added from the load resistance and load capacitance. Figure 7-6 shows the setup used to measure transition time, denoted by the symbol t<sub>OFF(EN)</sub>.

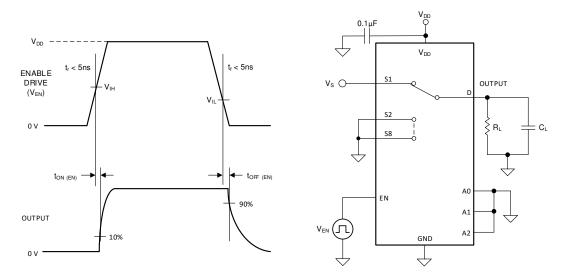



Figure 7-6. Turn-On and Turn-Off Time Measurement Setup



### 7.7 Charge Injection

The TMUX1208-Q1 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol  $Q_C$ . Figure 7-7 shows the setup used to measure charge injection from source (Sx) to drain (D).

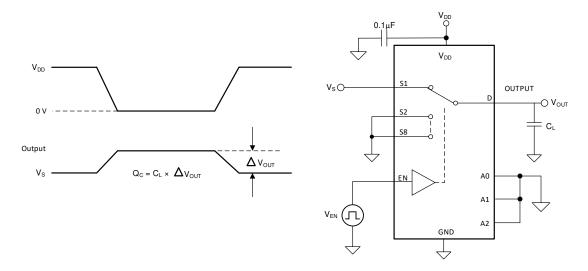



Figure 7-7. Charge-Injection Measurement Setup

### 7.8 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the source pin (Sx) of an off-channel. Figure 7-8 shows the setup used to measure, and the equation to compute off isolation.

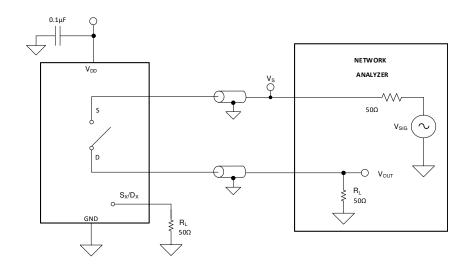



Figure 7-8. Off Isolation Measurement Setup

Off Isolation = 
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (1)

### 7.9 Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. Figure 7-9 shows the setup used to measure, and the equation used to compute crosstalk.

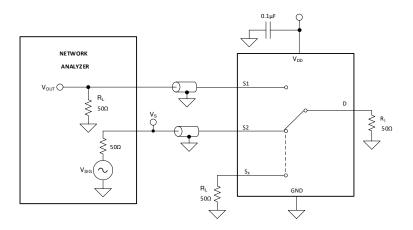



Figure 7-9. Channel-to-Channel Crosstalk Measurement Setup

Channel-to-Channel Crosstalk = 
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (2)

### 7.10 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. Figure 7-10 shows the setup used to measure bandwidth.

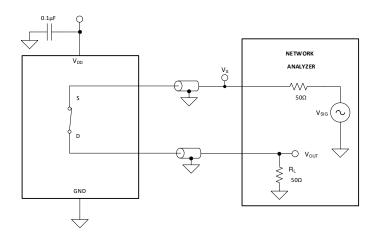
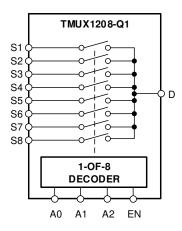



Figure 7-10. Bandwidth Measurement Setup

Attenuation = 
$$20 \cdot \text{Log}\left(\frac{V_2}{V_1}\right)$$
 (3)




## 8 Detailed Description

### 8.1 Overview

The TMUX1208-Q1 is an 8:1, single-ended (1-channel), mux. Each channel is turned on or off based on the state of the address lines and enable pin.

### 8.2 Functional Block Diagram



## 8.3 Feature Description

### 8.3.1 Bidirectional Operation

The TMUX1208-Q1 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each channel has very similar characteristics in both directions and supports both analog and digital signals.

### 8.3.2 Rail to Rail Operation

The valid signal path input/output voltage for TMUX1208-Q1 ranges from GND to  $V_{DD}$ .

#### 8.3.3 1.8 V Logic Compatible Inputs

The TMUX1208-Q1 has 1.8-V logic compatible control for all logic control inputs. The logic input thresholds scale with supply but still provide 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level inputs allows the multiplexers to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches

### 8.3.4 Fail-Safe Logic

The TMUX1208-Q1 has Fail-Safe Logic on the control input pins (EN, A0. A1, A2) allowing for operation up to 5.5 V, regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic feature allows the select pins of the TMUX1208-Q1 to be ramped to 5.5 V while  $\text{V}_{DD} = 0 \text{ V}$ . Additionally, the feature enables operation of the multiplexers with  $\text{V}_{DD} = 1.2 \text{ V}$  while allowing the select pins to interface with a logic level of another device up to 5.5 V.

Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

#### 8.3.5 Device Functional Modes

When the EN pin of the TMUX1208-Q1 is pulled high, one of the switches is closed based on the state of the address lines. When the EN pin is pulled low, all the switches are in an open state regardless of the state of the address lines.

The TMUX1208-Q1 can be operated without any external components except for the supply decoupling capacitors. Unused logic control pins should be tied to GND or V<sub>DD</sub> in order to ensure the device does not consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (Sx or D) should be connected to GND.

### 8.3.6 Truth Tables

Table 8-1 shows the truth tables for the TMUX1208-Q1.

ΕN **A2** Selected Inputs Connected To Drain (D) Pin χ<mark>(1)</mark> X<sup>(1)</sup> X<sup>(1)</sup> 0 All channels are off 0 0 S1 1 0 1 1 S2 0 0 S3 1 0 1 0 1 0 1 1 S4 0 1 1 0 S5 1 0 1 S6 1 1 1 1 0 S7

S8

Table 8-1. TMUX1208-Q1 Truth Table

1

1 1

<sup>1</sup> X denotes don't care.

## **Application and Implementation**

#### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

### 9.1 Application Information

The TMUX12xx family offers good system performance across a wide operating supply (1.08 V to 5.5 V). These devices include 1.8 V logic compatible control input pins that enable operation in systems with 1.8 V I/O rails. Additionally, the control input pins support Fail-Safe Logic which allows for operation up to 5.5 V, regardless of the state of the supply pin. This protection stops the logic pins from back-powering the supply rail. These features make the TMUX12xx a family of general purpose multiplexers and switches that can reduce system complexity, board size, and overall system cost.

### 9.2 Typical Application

One useful application to take advantage of the TMUX1208-Q1 features is multiplexing various signals into an ADC that is integrated into a MCU. Using an integrated ADC in a MCU allows a system to minimize cost with a potential tradeoff of system performance when compared to an external ADC. The multiplexer allows for multiple inputs/sensors to be monitored with a single ADC pin of the device, which is critical in systems with limited I/O.

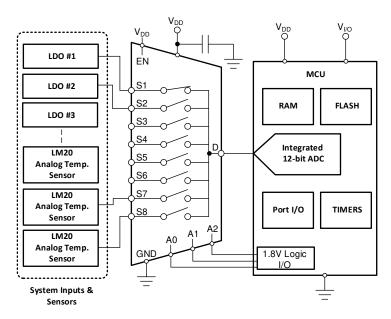



Figure 9-1. Multiplexing Signals to Integrated ADC

### 9.3 Design Requirements

For this design example, use the parameters listed in Table 9-1.

**Table 9-1. Design Parameters** 

| PARAMETERS                | VALUES                                |  |  |  |
|---------------------------|---------------------------------------|--|--|--|
| Supply (V <sub>DD</sub> ) | 5.0 V                                 |  |  |  |
| I/O signal range          | 0 V to V <sub>DD</sub> (Rail to Rail) |  |  |  |
| Control logic thresholds  | 1.8 V compatible                      |  |  |  |

Submit Document Feedback

### 9.4 Detailed Design Procedure

The TMUX1208-Q1 can be operated without any external components except for the supply decoupling capacitors. If the parts desired power-up state is disabled, the enable pin should have a weak pull-down resistor and be controlled by the MCU via GPIO. All inputs being muxed to the ADC of the MCU must fall within the recommend operating conditions of the TMUX1208-Q1 including signal range and continuous current. For this design with a supply of 5 V, the signal range can be 0 V to 5 V and the max continuous current can be 30 mA.

### 9.5 Application Curve

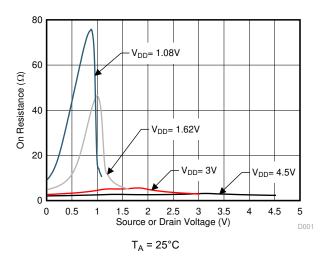



Figure 9-2. On-Resistance vs Source or Drain Voltage

## 9 Power Supply Recommendations

The TMUX1208-Q1 operate across a wide supply range of 1.08 V to 5.5 V. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the  $V_{DD}$  supply to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1  $\mu$ F to 10  $\mu$ F from  $V_{DD}$  to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground planes.



### 10 Layout

## 10.1 Layout Guidelines

### 10.1.1 Layout Information

When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. Figure 10-1 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

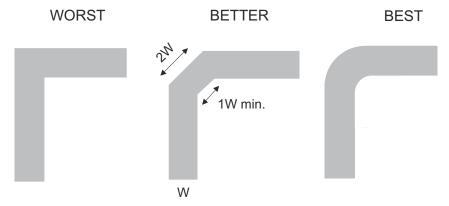



Figure 10-1. Trace Example

Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

### 10.1.2

Figure 10-2 illustrates an example of a PCB layout with the TMUX1208-Q1. Some key considerations are:

- Decouple the V<sub>DD</sub> pin with a 0.1-μF capacitor, placed as close to the pin as possible. Make sure that the
  capacitor voltage rating is sufficient for the V<sub>DD</sub> supply.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

### 10.2 Layout Example

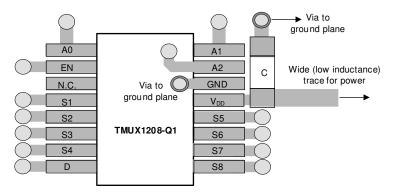



Figure 10-2. TMUX1208-Q1 Layout Example



Copyright © 2020 Texas Instruments Incorporated



## 11 Device and Documentation Support

## 11.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

### 11.2 Documentation Support

#### 11.2.1 Related Documentation

Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches.

Texas Instruments, QFN/SON PCB Attachment.

Texas Instruments, Quad Flatpack No-Lead Logic Packages.

### 11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

### 11.4 Support Resources

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

#### 11.5 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

### 12 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 13 Glossary

**TI Glossary** 

This glossary lists and explains terms, acronyms, and definitions.

### Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated



10-Dec-2020

#### PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking (4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|----------------------|---------|
| TMUX1208QRSVRQ1  | ACTIVE        | UQFN         | RSV                | 16   | 3000           | RoHS & Green | (6)<br>NIPDAUAG               | Level-1-260C-UNLIM | -40 to 125   | 208Q                 | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

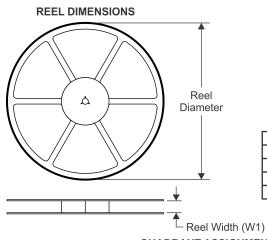
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

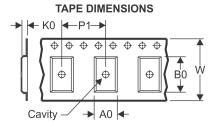
#### OTHER QUALIFIED VERSIONS OF TMUX1208-Q1:



## **PACKAGE OPTION ADDENDUM**

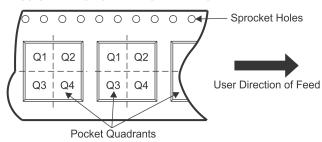
10-Dec-2020


NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

## **PACKAGE MATERIALS INFORMATION**

www.ti.com 2-Aug-2020


## TAPE AND REEL INFORMATION





| Α0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

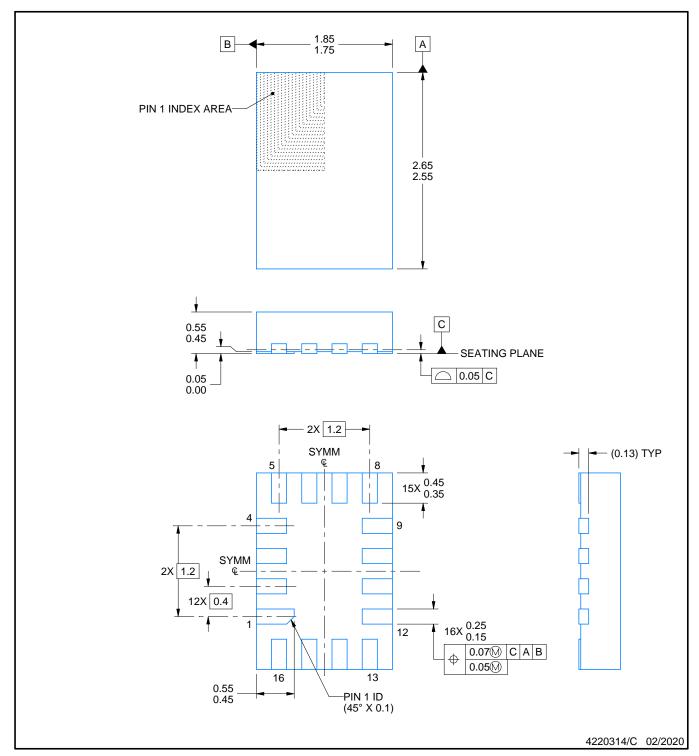


### \*All dimensions are nominal

| Device          | Package<br>Type | Package<br>Drawing |    |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TMUX1208QRSVRQ1 | UQFN            | RSV                | 16 | 3000 | 178.0                    | 13.5                     | 2.1        | 2.9        | 0.75       | 4.0        | 12.0      | Q1               |

**PACKAGE MATERIALS INFORMATION** 

www.ti.com 2-Aug-2020

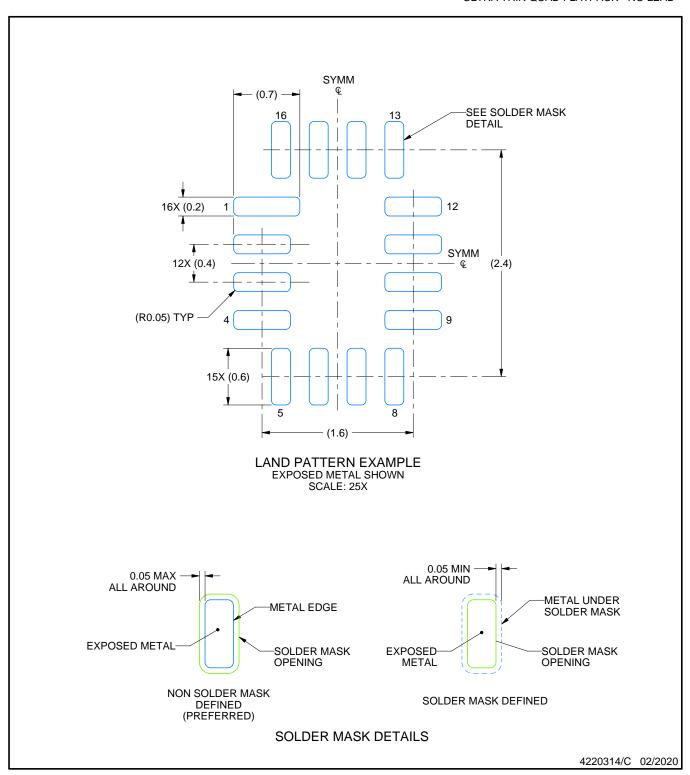



### \*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TMUX1208QRSVRQ1 | UQFN         | RSV             | 16   | 3000 | 189.0       | 185.0      | 36.0        |



ULTRA THIN QUAD FLATPACK - NO LEAD

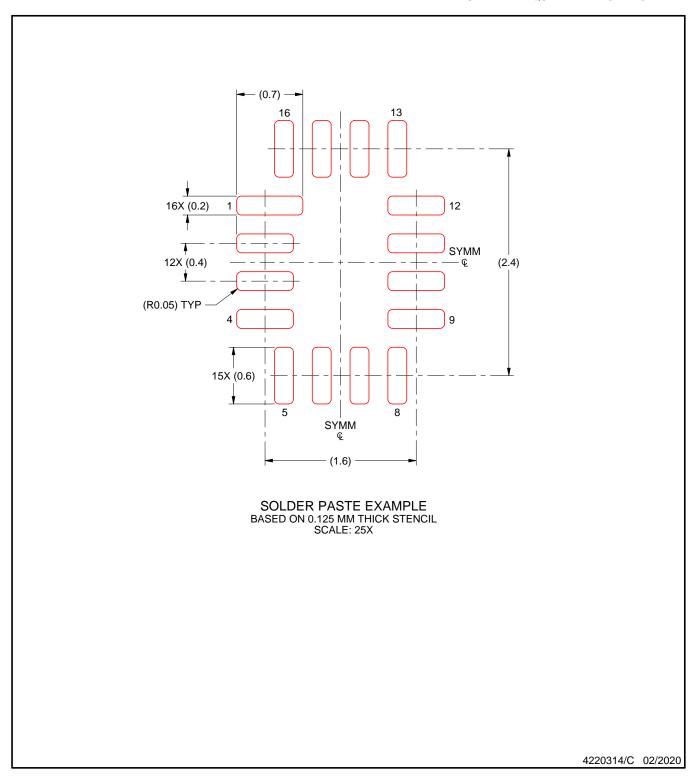



### NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
   This drawing is subject to change without notice.



ULTRA THIN QUAD FLATPACK - NO LEAD




NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



ULTRA THIN QUAD FLATPACK - NO LEAD



NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (<a href="www.ti.com/legal/termsofsale.html">www.ti.com/legal/termsofsale.html</a>) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated