4-20mA CURRENT LOOP TRANSMITTERS

FEATURES

- LOW QUIESCENT CURRENT: $200 \mu \mathrm{~A}$
- 5V REGULATOR FOR EXTERNAL CIRCUITS
- $\mathrm{V}_{\text {REF }}$ FOR SENSOR EXCITATION:

XTR115: 2.5V
XTR116: 4.096V

- LOW SPAN ERROR: 0.05\%
- LOW NONLINEARITY ERROR: 0.003\%
- WIDE LOOP SUPPLY RANGE: 7.5 V to 36 V
- SO-8 PACKAGE

DESCRIPTION

The XTR115 and XTR116 are precision current output converters designed to transmit analog 4 -to- 20 mA signals over an industry standard current loop. They provide accurate current scaling and output current limit functions.
The on-chip voltage regulator (5 V) can be used to power external circuitry. A precision on-chip $\mathrm{V}_{\text {REF }}$ (2.5V for XTR115 and 4.096 V for XTR116) can be

APPLICATIONS

- 2-WIRE, 4-20mA CURRENT LOOP TRANSMITTER
- SMART TRANSMITTER
- INDUSTRIAL PROCESS CONTROL
- TEST SYSTEMS
- COMPATIBLE WITH HART MODEM
- CURRENT AMPLIFIER
- VOLTAGE-TO-CURRENT AMPLIFIER
used for offsetting or to excite transducers. A current return pin ($\mathrm{I}_{\mathrm{RET}}$) senses any current used in external circuitry to assure an accurate control of the output current.

The XTR115 is a fundamental building block of smart sensors using 4-to-20mA current transmission. The XTR115 and XTR116 are specified for operation over the extended industrial temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

[^0]
SPECIFICATIONS

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=24 \mathrm{~V}, \mathrm{R}_{\text {IN }}=20 \mathrm{k} \Omega$, and TIP29C external transistor, unless otherwise noted.

PARAMETER		CONDITIONS	XTR115U XTR116U			XTR115UA XTR116UA			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
OUTPUT Output Current Equation I_{O} Output Current, Linear Range \quad Over-Scale Limit $\mathrm{I}_{\text {LIM }}$ Under-Scale Limit $\mathrm{I}_{\text {MIN }}$			$\mathrm{I}_{\mathrm{REG}}=0, \mathrm{I}_{\text {REF }}=0$	0.25	$\begin{gathered} \mathrm{I}_{\mathrm{N}} \cdot 1 \\ 32 \\ 0.2 \end{gathered}$	$\begin{gathered} 25 \\ 0.25 \end{gathered}$	*	* * *	* *	mA mA mA
SPAN Span (Current Gain) Error ${ }^{(1)}$ vs Temperature Nonlinearity		$\begin{aligned} & \mathrm{I}_{\mathbb{N}}=250 \mu \mathrm{~A} \text { to } 25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathbb{N}}=250 \mu \mathrm{~A} \text { to } 25 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 100 \\ \pm 0.05 \\ \pm 3 \\ \pm 0.003 \end{gathered}$	$\begin{gathered} \pm 0.2 \\ \pm 20 \\ \pm 0.01 \end{gathered}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \pm 0.4 \\ * \\ \pm 0.02 \end{gathered}$	$\begin{gathered} \mathrm{A} / \mathrm{A} \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \end{gathered}$	
INPUT Offset Voltage (Op Amp) V_{OS} vs Temperature vs Supply Voltage, V+ Bias Current vs Temperature I_{B} Noise: 0.1 Hz to 10 Hz e_{n}		$\begin{gathered} \mathrm{I}_{\mathrm{N}}=40 \mu \mathrm{~A} \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}+=7.5 \mathrm{~V} \text { to } 36 \mathrm{~V} \end{gathered}$		$\begin{array}{r} \pm 100 \\ \pm 0.7 \\ \pm 0.1 \\ -35 \\ 150 \\ 0.6 \end{array}$	± 250 ± 3 ± 2		$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \pm 500 \\ \pm 6 \\ * \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{Vp}-\mathrm{p} \end{gathered}$	
DYNAMIC RESPONSE Small Signal Bandwidth Slew Rate		$C_{\text {LOOP }}=0, R_{L}=0$		380 3.2			*		$\begin{gathered} \mathrm{kHz} \\ \mathrm{~mA} / \mu \mathrm{s} \end{gathered}$	
$\mathrm{V}_{\mathrm{REF}}{ }^{(2)}$ XTR115 XTR116 Voltage Accuracy vs Temperature vs Supply Voltage, V_{+} vs Load Noise: 0.1 Hz to 10 Hz Short-Circuit Current		$\begin{gathered} \mathrm{I}_{\mathrm{REF}}=0 \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}+=7.5 \mathrm{~V} \text { to } 36 \mathrm{~V} \\ \mathrm{I}_{\mathrm{REF}}=0 \mathrm{~mA} \text { to } 2.5 \mathrm{~mA} \end{gathered}$		$\begin{gathered} 2.5 \\ 4.096 \\ \pm 0.05 \\ \pm 20 \\ \pm 1 \\ \pm 100 \\ 10 \\ 16 \end{gathered}$	$\begin{gathered} \pm 0.25 \\ \pm 35 \\ \pm 10 \end{gathered}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \pm 0.5 \\ \pm 75 \\ * \end{gathered}$	V V \% $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm/V ppm/mA $\mu \mathrm{Vp}$-p mA	
$\mathrm{V}_{\mathrm{REG}}{ }^{(2)}$ Voltage Voltage Accuracy vs Temperature vs Supply Voltage, V_{+} vs Output Current Short-Circuit Current		$\begin{gathered} \mathrm{I}_{\mathrm{REG}}=0 \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}+=7.5 \mathrm{~V} \text { to } 36 \mathrm{~V} \end{gathered}$		$\begin{gathered} 5 \\ \pm 0.05 \\ \pm 0.1 \\ 1 \end{gathered}$ Typical 12	± 0.1 es		$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ \mathrm{mV} / \mathrm{V} \\ \mathrm{~mA} \end{gathered}$	
POWER SUPPLY Specified Voltage Range Quiescent Current Over Temperature, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	V_{+}		+7.5	$\begin{aligned} & +24 \\ & \\ & 200 \\ & 240 \end{aligned}$	$\begin{aligned} & +36 \\ & 250 \\ & 300 \end{aligned}$	*	* * *	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \end{gathered}$	
TEMPERATURE RANGE Specification Operating Storage Thermal Resistance	θ_{JA}		-40 -55 -55	150	$\begin{gathered} +85 \\ +125 \\ +125 \end{gathered}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	*	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	

* Specifications the same as XTR115U and XTR116U.

NOTES: (1) Does not include initial error or TCR of $R_{I N}$. (2) Voltage measured with respect to $I_{\text {RET }}$ pin.

PIN CONFIGURATION

Top View

 SO-8

PACKAGE/ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Power Supply, V+ (referenced to $\mathrm{I}_{0} \mathrm{pin}$) 40V	
Input Voltage (referenced to $\mathrm{I}_{\text {RET }}$ pin) OV to V_{+}	
Output Current Limit	Continuous
$V_{\text {REG }}$, Short-Circuit	... Continuous
$V_{\text {REF }}$, Short-Circuit	Continuous
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	- $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Junction Temperature	.. $+165^{\circ} \mathrm{C}$

NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability.

- ELECTROSTATIC OA DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{IN}}=20 \mathrm{k} \Omega$, and TIP29C external transistor, unless otherwise noted.

APPLICATIONS INFORMATION

The XTR115 and XTR116 are identical devices except for the reference voltage output, pin 1 . This voltage is available for external circuitry and is not used internally. Further discussions that apply to both devices will refer to the "XTR115/6."

Figure 1 shows basic circuit connections with representative simplified input circuitry. The XTR115/6 is a two-wire current transmitter. Its input signal (pin 2) controls the output current. A portion of this current flows into the V+ power supply, pin 7. The remaining current flows in Q1. External input circuitry connected to the XTR115/6 can be powered from $\mathrm{V}_{\text {REG }}$ or $\mathrm{V}_{\text {REF }}$. Current drawn from these terminals must be returned to $\mathrm{I}_{\text {RET }}$, pin 3. This $\mathrm{I}_{\text {RET }}$ pin is a "local ground" for input circuitry driving the XTR115/6.
The XTR115/6 is a current-input device with a gain of 100 . A current flowing into pin 2 produces $\mathrm{I}_{\mathrm{O}}=100 \cdot \mathrm{I}_{\mathrm{IN}}$. The input voltage at the $\mathrm{I}_{\text {IN }}$ pin is zero (referred to the $\mathrm{I}_{\text {RET }}$ pin). A voltage input is created with an external input resistor, as shown. Common full-scale input voltages range from 1 V
and upward. Full-scale inputs greater than 0.5 V are recommend to minimize the effect of offset voltage and drift of A1.

EXTERNAL TRANSISTOR

The external transistor, Q1, conducts the majority of the fullscale output current. Power dissipation in this transistor can approach 0.8 W with high loop voltage (40 V) and 20 mA output current. The XTR115/6 is designed to use an external transistor to avoid on-chip thermal-induced errors. Heat produced by Q1 will still cause ambient temperature changes that can affect the XTR115/6. To minimize these effects, locate Q1 away from sensitive analog circuitry, including XTR115/6. Mount Q1 so that heat is conducted to the outside of the transducer housing.
The XTR115/6 is designed to use virtually any NPN transistor with sufficient voltage, current and power rating. Case style and thermal mounting considerations often influence the choice for any given application. Several possible choices are listed in Figure 1. A MOSFET transistor will not improve the accuracy of the XTR115/6 and is not recommended.

FIGURE 1. Basic Circuit Connections.

MINIMUM-SCALE CURRENT

The quiescent current of the XTR115/6 (typically 200 $\mu \mathrm{A}$) is the lower limit of its output current. Zero input current $\left(\mathrm{I}_{\mathrm{IN}}=0\right)$ will produce an I_{O} equal to the quiescent current. Output current will not begin to increase until $\mathrm{I}_{\mathrm{IN}}>\mathrm{I}_{\mathrm{Q}} / 100$. Current drawn from $\mathrm{V}_{\text {REF }}$ or $\mathrm{V}_{\text {REG }}$ will add to this minimum output current. This means that more than 3.7 mA is available to power external circuitry while still allowing the output current to go below 4 mA .

OFFSETTING THE INPUT

A low scale of 4 mA is produced by creating a $40 \mu \mathrm{~A}$ input current. This can be created with the proper value resistor from $\mathrm{V}_{\mathrm{REF}}$ (Figure 2), or by generating offset in the input drive circuitry.

FIGURE 2. Creating Low-Scale Offset.

MAXIMUM OUTPUT CURRENT

The XTR115/6 provides accurate, linear output up to 25 mA . Internal circuitry limits the output current to approximately 32 mA to protect the transmitter and loop power/measurement circuitry.
It is possible to extend the output current range of the XTR115/6 by connecting an external resistor from pin 3 to pin 5, to change the current limit value. Since all output current must flow through internal resistors, it is possible to damage with excessive current. Output currents greater than 45 mA may cause permanent damage.

FIGURE 3. Digital Control Methods.

REVERSE-VOLTAGE PROTECTION

The XTR115/6 low compliance voltage rating (7.5 V) permits the use of various voltage protection methods without compromising operating range. Figure 4 shows a diode bridge circuit which allows normal operation even when the voltage connection lines are reversed. The bridge causes a two diode drop (approximately 1.4 V) loss in loop supply voltage. This results in a compliance voltage of approximately 9 V -satisfactory for most applications. A diode can be inserted in series with the loop supply voltage and the $\mathrm{V}+$ pin to protect against reverse output connection lines with only a 0.7 V loss in loop supply voltage.

OVER-VOLTAGE SURGE PROTECTION

Remote connections to current transmitters can sometimes be subjected to voltage surges. It is prudent to limit the maximum surge voltage applied to the XTR115/6 to as low as practical. Various zener diode and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36 V protection diode will assure proper transmitter operation at normal loop voltages, yet will provide an appropriate level of protection against voltage surges. Characterization tests on several production lots showed no damage with loop supply voltages up to 65 V .

Most surge protection zener diodes have a diode characteristic in the forward direction that will conduct excessive current, possibly damaging receiving-side circuitry if the loop connections are reversed. If a surge protection diode is used, a series diode or diode bridge should be used for protection against reversed connections.

RADIO FREQUENCY INTERFERENCE

The long wire lengths of current loops invite radio frequency interference. RF can be rectified by the input circuitry of the XTR115/6 or preceding circuitry. This generally appears as an unstable output current that varies with the position of loop supply or input wiring.
Interference may also enter at the input terminals. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current loop connections.

FIGURE 4. Reverse Voltage Operation and Over-Voltage Surge Protection.

If capacitive loading must be placed on the $\mathrm{V}_{\text {REF }} \mathrm{pin}$, one of the compensation schemes shown below must be used to ensure stable operation. Values of capacitance must remain within the given ranges.

NOTE: (1) Required compensation components.

FIGURE 5. Stable Operation with Capacitive Load on $\mathrm{V}_{\text {REF }}$.

Texas InsTruments

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
XTR115U	ACTIVE	SOIC	D	8	75	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 115 \mathrm{U} \end{aligned}$	Samples
XTR115U/2K5	ACTIVE	SOIC	D	8	2500	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 115 \mathrm{U} \end{aligned}$	Samples
XTR115UA	ACTIVE	SOIC	D	8	75	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 115 \mathrm{U} \\ & \text { A } \end{aligned}$	Samples
XTR115UA/2K5	ACTIVE	SOIC	D	8	2500	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 115 \mathrm{U} \\ & \text { A } \end{aligned}$	Samples
XTR116U	ACTIVE	SOIC	D	8	75	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 116 \mathrm{U} \\ & \hline \end{aligned}$	Samples
XTR116U/2K5	ACTIVE	SOIC	D	8	2500	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 116 \mathrm{U} \end{aligned}$	Samples
XTR116U/2K5G4	ACTIVE	SOIC	D	8	2500	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 116 \mathrm{U} \end{aligned}$	Samples
XTR116UA	ACTIVE	SOIC	D	8	75	RoHS \& Green	Call TI	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 116 \mathrm{U} \\ & \text { A } \\ & \hline \end{aligned}$	Samples
XTR116UA/2K5	ACTIVE	SOIC	D	8	2500	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 116 \mathrm{U} \\ & \text { A } \\ & \hline \end{aligned}$	Samples
XTR116UA/2K5E4	ACTIVE	SOIC	D	8	2500	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { XTR } \\ & 116 \mathrm{U} \\ & \text { A } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. Tl may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TeXAS

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width ($\mathbf{(m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
XTR115U/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
XTR115UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
XTR116U/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
XTR116UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
XTR115U/2K5	SOIC	D	8	2500	853.0	449.0	35.0
XTR115UA/2K5	SOIC	D	8	2500	853.0	449.0	35.0
XTR116U/2K5	SOIC	D	8	2500	853.0	449.0	35.0
XTR116UA/2K5	SOIC	D	8	2500	853.0	449.0	35.0

TUBE

B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	$\mathbf{L}(\mathbf{m m})$	$\mathbf{W}(\mathbf{m m})$	$\mathbf{T}(\boldsymbol{\mu m})$	$\mathbf{B}(\mathbf{m m})$
XTR115U	D	SOIC	8	75	506.6	8	3940	4.32
XTR115UA	D	SOIC	8	75	506.6	8	3940	4.32
XTR116U	D	SOIC	8	75	506.6	8	3940	4.32
XTR116UA	D	SOIC	8	75	506.6	8	3940	4.32

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed . 006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

SOLDER MASK DETAILS

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: All trademarks are the property of their respective owners.

