## MUN5231DW1, NSBC123EDXV6

## Dual NPN Bias Resistor Transistors

 $R 1=2.2 \mathrm{k} \Omega$, $\mathbf{R 2} \mathbf{=} \mathbf{2 . 2} \mathbf{~ k} \Omega$ NPN Transistors with Monolithic Bias Resistor NetworkThis series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

## Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


## MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$, common for $Q_{1}$ and $Q_{2}$, unless otherwise noted)

| Rating | Symbol | Max | Unit |
| :--- | :---: | :---: | :---: |
| Collector-Base Voltage | $\mathrm{V}_{\mathrm{CBO}}$ | 50 | Vdc |
| Collector-Emitter Voltage | $\mathrm{V}_{\mathrm{CEO}}$ | 50 | Vdc |
| Collector Current - Continuous | $\mathrm{I}_{\mathrm{C}}$ | 100 | mAdc |
| Input Forward Voltage | $\mathrm{V}_{\mathrm{IN}(\mathrm{fwd})}$ | 12 | Vdc |
| Input Reverse Voltage | $\mathrm{V}_{\mathrm{IN}(\mathrm{rev})}$ | 10 | Vdc |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

## ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :--- | :---: | :---: |
| MUN5231DW1T1G | SOT-363 | $3,000 /$ Tape \& Reel |
| NSBC123EDXV6T1G | SOT-563 | $4,000 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

PIN CONNECTIONS
(3)
(1)

(4)
(5)
(6)

## MARKING DIAGRAMS



SOT-363 CASE 419B


7H = Specific Device Code
$\mathrm{M}=$ Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

THERMAL CHARACTERISTICS

| Characteristic |  | Symbol | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| MUN5231DW1 (SOT-363) ONE JUNCTION HEATED |  |  |  |  |
| Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> Derate above $25^{\circ} \mathrm{C}$ | (Note 1) (Note 2) (Note 1) (Note 2) | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 187 \\ & 256 \\ & 1.5 \\ & 2.0 \end{aligned}$ | $\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Thermal Resistance, Junction to Ambient | (Note 1) (Note 2) | $\mathrm{R}_{\text {өJA }}$ | $\begin{aligned} & \hline 670 \\ & 490 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

MUN5231DW1 (SOT-363) BOTH JUNCTION HEATED (Note 3)

| Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> Derate above $25^{\circ} \mathrm{C}$ | (Note 1) <br> (Note 2) <br> (Note 1) (Note 2) | $\mathrm{P}_{\mathrm{D}}$ | $\begin{aligned} & 250 \\ & 385 \\ & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance, Junction to Ambient | (Note 1) (Note 2) | $\mathrm{R}_{\text {өJA }}$ | $\begin{aligned} & 493 \\ & 325 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Resistance, Junction to Lead | (Note 1) (Note 2) | $\mathrm{R}_{\text {өJL }}$ | $\begin{aligned} & 188 \\ & 208 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction and Storage Temperature Range |  | $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

NSBC123EDXV6 (SOT-563) ONE JUNCTION HEATED
$\left.\begin{array}{|lr|c|c|c|}\hline \text { Total Device Dissipation } & & & \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \text { Derate above } 25^{\circ} \mathrm{C}\end{array} \quad \begin{array}{c}\text { (Note 1) } \\ \text { (Note 1) }\end{array}\right)$

NSBC123EDXV6 (SOT-563) BOTH JUNCTION HEATED (Note 3)

| Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> Derate above $25^{\circ} \mathrm{C}$ | (Note 1) (Note 1) | $\mathrm{P}_{\mathrm{D}}$ | $\begin{gathered} 500 \\ 4.0 \end{gathered}$ | $\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~mW}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance, Junction to Ambient | (Note 1) | $\mathrm{R}_{\text {өJA }}$ | 250 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction and Storage Temperature Range |  | $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

1. FR-4 @ Minimum Pad.
2. FR-4 @ $1.0 \times 1.0$ Inch Pad.
3. Both junction heated values assume total power is sum of two equally powered channels.

## MUN5231DW1, NSBC123EDXV6

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, common for $Q_{1}$ and $Q_{2}$, unless otherwise noted)

| Characteristic | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OFF CHARACTERISTICS |  |  |  |  |  |
| Collector-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$ | $\mathrm{I}_{\text {cbo }}$ | - | - | 100 | nAdc |
| Collector-Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\right)$ | $I_{\text {CEE }}$ | - | - | 500 | nAdc |
| Emitter-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$ | $\mathrm{I}_{\text {ebo }}$ | - | - | 2.3 | mAdc |
| Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\right)$ | $\mathrm{V}_{\text {(BR) }}$ CBO | 50 | - | - | Vdc |
| Collector-Emitter Breakdown Voltage (Note 4) $\left(I_{C}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$ | $\mathrm{V}_{\text {(BR)CEO }}$ | 50 | - | - | Vdc |

## ON CHARACTERISTICS

| DC Current Gain (Note 4) $\left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}\right.$ ) | $\mathrm{h}_{\text {FE }}$ | 8.0 | 15 | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Collector-Emitter Saturation Voltage (Note 4) $\left(I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5.0 \mathrm{~mA}\right)$ | $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ | - | - | 0.25 | V |
| Input Voltage (Off) $\left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}\right)$ | $\mathrm{V}_{\text {( } \text { (ff) }}$ | - | 1.3 | - | Vdc |
| Input Voltage (On) $\left(\mathrm{V}_{\mathrm{CE}}=0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}\right)$ | $\mathrm{V}_{\text {i(on) }}$ | - | 1.8 | - | Vdc |
| Output Voltage (On) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$ | $\mathrm{V}_{\text {OL }}$ | - | - | 0.2 | Vdc |
| Output Voltage (Off) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$ | $\mathrm{V}_{\mathrm{OH}}$ | 4.9 | - | - | Vdc |
| Input Resistor | R1 | 1.5 | 2.2 | 2.9 | k $\Omega$ |
| Resistor Ratio | $\mathrm{R}_{1} / \mathrm{R}_{2}$ | 0.8 | 1.0 | 1.2 |  |

4. Pulsed Condition: Pulse Width $=300 \mathrm{~ms}$, Duty Cycle $\leq 2 \%$.

(1) SOT-363; $1.0 \times 1.0$ Inch Pad
(2) SOT-563; Minimum Pad

Figure 1. Derating Curve

# MUN5231DW1, NSBC123EDXV6 

TYPICAL CHARACTERISTICS
MUN5231DW1, NSBC123EDXV6


Figure 2. $\mathbf{V}_{\text {CE(sat) }}$ vs. $\mathbf{I C}_{\mathbf{C}}$


Figure 4. Output Capacitance


Figure 3. DC Current Gain


Figure 5. Output Current vs. Input Voltage


Figure 6. Input Voltage vs. Output Current



## RECOMMENDED SOLDERING FOOTPRINT*


*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
DATUMS A AND B ARE DETERMINED AT DATUM H
4. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE O.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

|  | MILLIMETERS |  |  | INCHES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | NOM | MAX | MIN | NOM | MAX |
| A | --- | --- | 1.10 | --- | --- | 0.043 |
| A1 | 0.00 | --- | 0.10 | 0.000 | --- | 0.004 |
| A2 | 0.70 | 0.90 | 1.00 | 0.027 | 0.035 | 0.039 |
| b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 |
| C | 0.08 | 0.15 | 0.22 | 0.003 | 0.006 | 0.009 |
| D | 1.80 | 2.00 | 2.20 | 0.070 | 0.078 | 0.086 |
| E | 2.00 | 2.10 | 2.20 | 0.078 | 0.082 | 0.086 |
| E1 | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 |
| e | 0.65 BSC |  |  | 0.026 BSC |  |  |
| L | 0.26 | 0.36 |  | 0.46 | 0.010 | 0.014 |
| L2 | 0.15 BSC |  |  | 0.006 BSC |  |  |
| aaa | 0.15 |  |  | 0.006 |  |  |
| bbb | 0.30 |  |  | 0.012 |  |  |
| ccc | 0.10 |  |  | 0.004 |  |  |
| ddd | 0.10 |  |  | 0 |  |  |

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e ~ i n d i c a t o r, ~ " G " ~ o r ~ m i c r o d o t ~ " " ", ~ m a y ~$ or may not be present. Some products may not follow the Generic Marking.


## STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

## SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:
CANCELLED

STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAIN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

| STYLE 3 : <br> CANCELLED | STYLE 4: <br> PIN 1. CATHODE <br> 2. CATHODE <br> 3. COLLECTOR <br> 4. EMITTER <br> 5. BASE <br> 6. ANODE | STYLE 5: <br> PIN 1. ANODE <br> 2. ANODE <br> 3. COLLECTOR <br> 4. EMITTER <br> 5. BASE <br> 6. CATHODE | STYLE 6: <br> PIN 1. ANODE 2 <br> 2. $\mathrm{N} / \mathrm{C}$ <br> 3. CATHODE 1 <br> 4. ANODE 1 <br> 5. $\mathrm{N} / \mathrm{C}$ <br> 6. CATHODE 2 |
| :---: | :---: | :---: | :---: |
| STYLE 9: | STYLE 10: | STYLE 11: | STYLE 12: |
| PIN 1. EMITTER 2 | PIN 1. SOURCE 2 | PIN 1. CATHODE 2 | PIN 1. ANODE 2 |
| 2. EMITTER 1 | 2. SOURCE 1 | 2. CATHODE 2 | 2. ANODE 2 |
| 3. COLLECTOR 1 | 3. GATE 1 | 3. ANODE 1 | 3. CATHODE 1 |
| 4. BASE 1 | 4. DRAIN 1 | 4. CATHODE 1 | 4. ANODE 1 |
| 5. BASE 2 | 5. DRAIN 2 | 5. CATHODE 1 | 5. ANODE 1 |
| 6. COLLECTOR 2 | 6. GATE 2 | 6. ANODE 2 | 6. CATHODE 2 |
| STYLE 15: | STYLE 16: | STYLE 17: | STYLE 18: |
| PIN 1. ANODE 1 | PIN 1. BASE 1 | PIN 1. BASE 1 | PIN 1. VIN1 |
| 2. ANODE 2 | 2. EMITTER 2 | 2. EMITTER 1 | 2. VCC |
| 3. ANODE 3 | 3. COLLECTOR 2 | 3. COLLECTOR 2 | 3. VOUT2 |
| 4. CATHODE 3 | 4. BASE 2 | 4. BASE 2 | 4. VIN2 |
| 5. CATHODE 2 | 5. EMITTER 1 | 5. EMITTER 2 | 5. GND |
| 6. CATHODE 1 | 6. COLLECTOR 1 | 6. COLLECTOR 1 | 6. VOUT1 |
| STYLE 21: | STYLE 22: | STYLE 23: | STYLE 24: |
| PIN 1. ANODE 1 | PIN 1. D1 (i) | PIN 1. Vn | PIN 1. CATHODE |
| 2. $\mathrm{N} / \mathrm{C}$ | 2. GND | 2. CH 1 | 2. ANODE |
| 3. ANODE 2 | 3. D2 (i) | 3. Vp | 3. CATHODE |
| 4. CATHODE 2 | 4. D2 (c) | 4. N/C | 4. CATHODE |
| 5. N/C | 5. VBUS | 5. CH 2 | 5. CATHODE |
| 6. CATHODE 1 | 6. D1 (c) | 6. N/C | 6. CATHODE |
| STYLE 27: | STYLE 28: | STYLE 29: | STYLE 30: |
| PIN 1. BASE 2 | PIN 1. DRAIN | PIN 1. ANODE | PIN 1. SOURCE 1 |
| 2. BASE 1 | 2. DRAIN | 2. ANODE | 2. DRAIN 2 |
| 3. COLLECTOR 1 | 3. GATE | 3. COLLECTOR | 3. DRAIN 2 |
| 4. EMITTER 1 | 4. SOURCE | 4. EMITTER | 4. SOURCE 2 |
| 5. EMITTER 2 | 5. DRAIN | 5. BASE/ANODE | 5. GATE 1 |
| 6. COLLECTOR 2 | 6. DRAIN | 6. CATHODE | 6. DRAIN 1 |

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

[^1]```
SOT-563, }6\mathrm{ LEAD
    CASE 463A
    ISSUE H
```

DATE 26 JAN 2021
SCALE 4:1
NDTES:

1. DIMENSIDNING AND TQLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSIDN: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF BASE MATERIAL.


RECDMMENDED MIUNTING FEDTPRINT*

* For additional information on our Pb-Free strategy and soldering details, please download the ZN Semiconductor Soldering and Mounting Techniques Reference Manual, SGLDERRM/D.

| DOCUMENT NUMBER: | 98AON11126D | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |  |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-563, 6 LEAD |  | PAGE 1 OF 2 |

ON Semiconductor and (0N are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
STYLE 1:
PIN 1 1. EMITTER 1
2. BASE 1
3. CDLLECTRR 2
4. EMITTER 2
5. BASE 2
6. CDLLECTAR 1
STYLE 4:
PIN 1. CDLLECTIR
2. CDLLECTIR
3. BASE
4. EMITTER
5. CILLECTIR
6. CDLLECTOR
STYLE 7:
PIN 1. CATHODE
2. ANDDE
3. CATHODE
4. CATHIDE
5. ANDDE
6. CATHIDE
STYLE 10:
PIN 1. CATHODE 1
2. N/C
3. CATHODE 2
4. ANDDE 2
5. N/C
6. ANDDE 1
STYLE
PIN 1.
1.
EMITTER 1
2. BASE 1
3. CDLLECTDR 2
4. EMITTER
6. CDLLECTOR 1
STYLE 2: STYLE 3:

STYLE 2
STYLE S: STYLE 3:
PIN 1. EMITTER 1
2. EMITTER 2
3. BASE 2
4. CDLLECTDR 2
5. BASE 1
6. CLLLECTIR 1

STYLE 5:
PIN 1. CATHODE
2. CATHIDE
3. ANDDE
4. ANDDE
5. CATHIDE
6. CATHIDE

STYLE 8:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. SDURCE
5. DRAIN
6. DRAIN

PIN 1. CATHODE 1
2. CATHIDE 1
3. ANDDE/ANDDE 2
4. CATHODE 2
5. CATHODE 2
6. ANDDE/ANDDE 1

STYLE 6:
PIN 1. CATHODE
2. ANDDE
3. CATHODE
4. CATHODE
5. CATHODE
6. CATHEDE

STYLE 9:
PIN 1. SIURCE 1
2. GATE 1
3. DRAIN 2
4. SIURCE 2
5. GATE ?
6. DRAIN 1

```
GENERIC MARKING DIAGRAM*
```



```
XX = Specific Device Code
M = Month Code
- = Pb-Free Package
```

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " F ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON11126D | Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| :---: | :---: | :---: |
| DESCRIPTION: | SOT-563, 6 LEAD | PAGE 20 F |

[^2]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com


[^0]:    onsemi and OnSeMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^1]:    onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^2]:    ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

