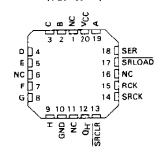
SDLS007

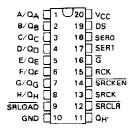
D2635, JANUARY 1981-REVISED MARCH 1988

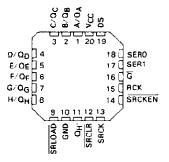
- 8-Bit Parallel Storage Register Inputs ('LS597)
- Parallel 3-State I/O, Storage Register Inputs, Shift Register Outputs ('LS598)
- Shift Register has Direct Overriding Load and Clear
- Accurate Shift-Frequency . . . DC to 20 MHz

description

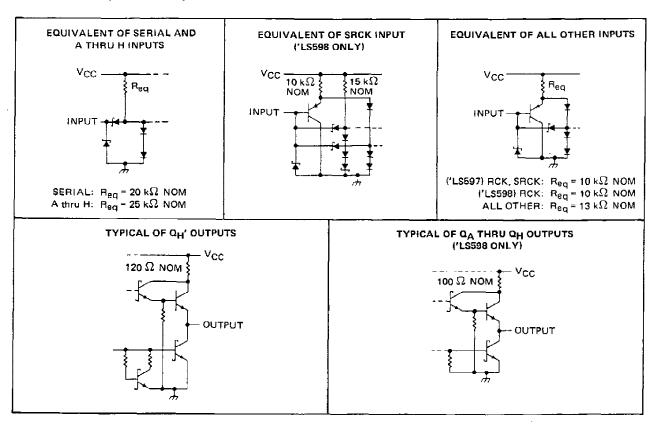

The 'LS597 comes in a 16-pin package and consists of an 8-bit storage latch feeding a parallel-in, serial-out 8-bit shift register. Both the storage register and shift register have positive-edge triggered clocks. The shift register also has direct load (from storage) and clear inputs.

The 'LS598 comes in a 20-pin package and has all the features of the 'LS597 plus 3-state I/O ports that provide parallel shift register outputs and also has multiplexed serial data inputs.

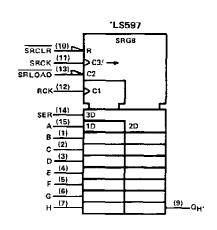

SN54LS597 . . . J OR W PACKAGE SN74LS597 . . . N PACKAGE (TOP VIEW)

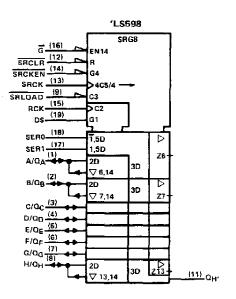

SN54LS597 . . . FK PACKAGE (TOP VIEW)

SN54LS598 . . . J OR W PACKAGE LS598 . . . DW OR N PACKAGE (TOP VIEW)

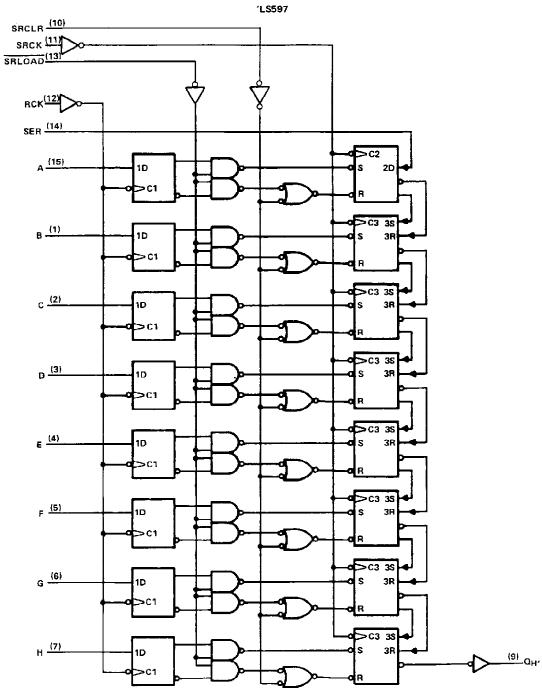


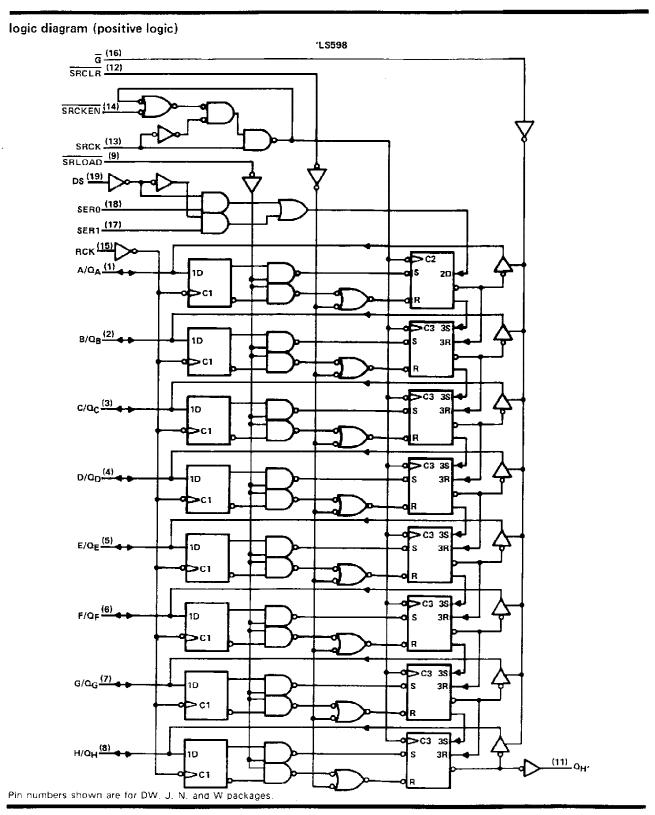
SN54LS598 . . . FK PACKAGE (TOP VIEW)




NC - No internal connection

schematics of inputs and outputs


logic symbols †



[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, N, and W packages.

logic diagram (positive logic)

Pin numbers shown are for DW, J, N, and W packages.

NOTE 1: Voltage values are with respect to the network ground terminal,

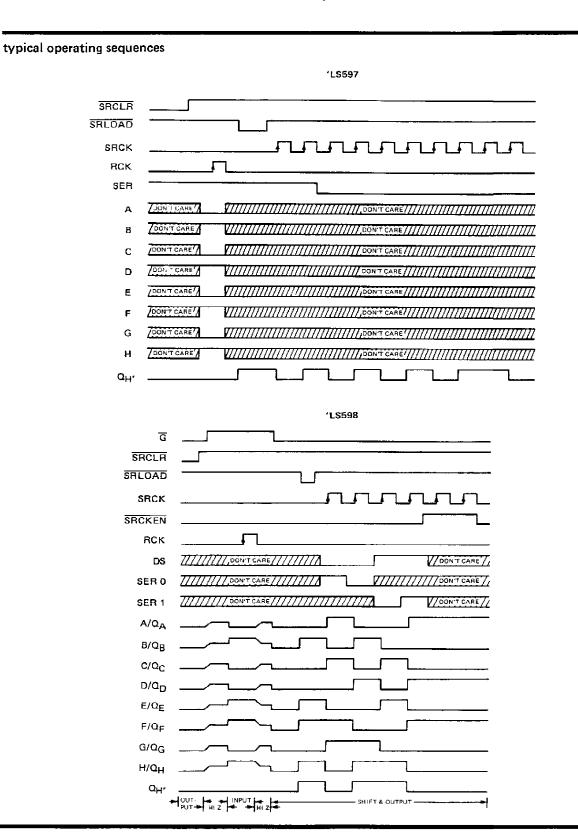
recommended operating conditions

				•	' SN54LS'				UNIT			
				1	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage				4.5	5	5.5	4.75	5	5.25	٧	
VIH	High-level input v	oltage			2			2			٧	
VIL	Low-level input vi	oltage					0.7			0.8	V	
	I Policia di Caracia		ΩH'		l		- 1			– 1	mΑ	
іон	High-level output	current	Q _A thru Q ₁	, 'L\$598 only			- 1		- 2.6		1000	
			ΩH	Q _H ,			8			16		
IOL	Low-level output	current	QA thru Q+	QA thru QH, 'LS598 only			12			24	mA	
fsck	Shift clock freque	псу	/				20	0		20	MHz	
			SRCK	hīgh	15			15				
			Shor	low	35			35				
t _w	Pulse duration		RCK	20			20			n\$		
			SRCLR	20			20					
			SRLOAD		40			40				
		Data before F	re RCK1					20			_	
	-	DS before SR		SRCK † ('L\$598 anly)				30				
		SRCK EN ION	SRCKEN low before SRCK † ('LS598 only)					20				
t _{su}	Setup time	SRCLR inact	SRCLR inactive before SRCK 1					25			⊓s	
		SRLOAD ina	SRLOAD inactive before SRCK †					30				
		RCK † before	RCK † before SRLOAD † (see Note 2) SER before SRCK †					40				
		SER before S						20				
th	Hold time							0			ns	
TA	Operating free-air	- 55		125	0		70	°C				

NOTE 2: The RCK 1 before SRLOAD 1 setup time ensures the data saved by RCK 1 will also be loaded into the shift register.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			TEST CONDITIONS [†]					. :	UNIT			
,	PARAMETER	•	MIN	TYP‡	MAX	MIN	TYP‡	MAX	CIVIT			
Vik		VCC = MIN,	I _I = - 18 mA				- 1.5			- 1.5	٧	
	T	VCC = MIN,	V= 2 V	I _{OH} = - 1 mA	2.4	3.2						
∨он	'LS598 Q	ACC - MAX	VIH - Z V,	I _{OH} = - 2.6 mA				2.4	3.1		V	
	α _H ′	VIL-WAX		i _{OH} = - 1 mA	2.4	3.2		2.4	3.2			
	'LS598 Q			I _{OL} = 12 mA		0.25	0.4		0.25	0.4		
Vo∟	C3396 G	V _{CC} = MIN,	$V_{1H} = 2 V$,	IOL = 24 mA					0.35	0.5	v	
VOL	ΩH,	V _{IL} ≃ MAX		IOL = 8 mA		0.25	0.4	ļ	0.25	0.4	•	
	ЧН	3		IOL = 16 mA				L	0.35	0.5		
lozh	'L\$598 Q	V _{CC} = MAX, V _O = 2.7 V	V _{IH} = 2 V,	V _{1L} = MAX,			20			20	μA	
lozt	'LS598 Q	V _{CC} = MAX, V _O = 0.4 V	V _{IH} = 2 V,	VIL = MAX,			- 0.4			- 0.4	mА	
	'LS598 Q		-	V ₁ = 5.5 V			0.1			0.1	mA	
11	Others	VCC = MAX		V ₁ = 7 V			0.1			0,1	m A	
ЧН	· · · · · · · · · · · · · · · · · · ·	VCC = MAX.	V _I = 2.7 V	•			20			20	μA	
	'L\$598 SRCK				Ì		- 0.8			- 0.8		
11L	SER, A Thru H	VCC = MAX,	V _I = 0.4 V				- 0.4			- 0.4	mA	
	Others						- 0.2			- 0.2		
los§	'LS598 Q	V _{CC} = MAX,	Vo = 0 V		- 30		- 130	- 30		- 130	m.A.	
אצטי	ΩH'	1 100 1100	•0 ••	v0-0 v			– 100	- 20		<u> </u>		
	'LS597 ICCH				<u> </u>	35	53		35	53		
	lccr	V _{CC} = MAX,				35 45	53		35	53		
lcc	Іссн	All possible inc	All possible inputs grounded,				68		45	68	mΑ	
	'LS598 ICCL	All outputs op	en			54	80		54	80		
	CCZ					56	85		56	85		


[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $[\]ddagger$ All typical values are at V_{CC} \pm 5 V, T_A \pm 25°C §Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, (see note 3)

	FROM	то			1 S597	,		UNIT			
PARAMETER	(INPUT)	(OUTPUT)	TEST CON	MIN TYP		MAX	MIN	TYP	MAX	ONII	
fmax	SRCK	a	$R_L = 667 \Omega$,	CL = 45 pF	20	35		20	35		MHz
f _{max}	SRCK	QH'	$R_L = 1 k\Omega$	C _L = 30 pF	20	35					MHz
tPLH	SRCK†	ΩH'				15	23	l	11	17	ns
tPHL	SPCK1	QH'	D 11.0	C _L = 30 pF		20	30		15	23	กร
†PLH	SRLOAD↓	ΩH,	H _L = 1 KW,			38	57		28	42	กร
^T PHL	SRLOAD↓	α _H '				29	44		20	30	ns
t _{PHL}	SRCLR	α _H '				24	36		18	27	ns
^t PLH	RCK1	α _H ′	$R_L = 1 \text{ k}\Omega.$	Ct = 30 pF		41	60		32	48	ns
[†] PHL	RCK1	αH.	SRLOAD = L			32	48	ĺ .	24	36	nş
[†] PLH	SRCKt	a						1	12	18	ns
[†] PHL	SRCK1	α	j	C _L = 45 pF					19	28	ПБ
^t PLH	SRLOAD↓	α				-			32	48	ns
[†] PHL	SRLOAD↓	α	RL = 667 Ω.						27	40	пз
TPHL	SRCLR+	α	_						25	38	ns
[†] PZH	G↓	a							26	31	ns
t PZL	G∔	Q							29	43	ns
t _{PHZ}	Gt	Q	D 667.6	C 55					25	38	ns
tPLZ	Gt	Q	$\mathbf{A_L} = 667 \Omega,$	CL = 5 pF					20	30	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

24-Feb-2022 www.ti.com

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-89444012A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 89444012A SNJ54LS 597FK	Samples
5962-8944401EA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8944401EA SNJ54LS597J	Samples
5962-8944401EA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8944401EA SNJ54LS597J	Samples
5962-8944401FA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8944401FA SNJ54LS597W	Samples
5962-8944401FA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8944401FA SNJ54LS597W	Samples
SN74LS597D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS597	Samples
SN74LS597D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS597	Samples
SN74LS597N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS597N	Samples
SN74LS597N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS597N	Samples
SN74LS598N	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS598N	Samples
SN74LS598N	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS598N	Samples
SNJ54LS597FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 89444012A SNJ54LS 597FK	Samples
SNJ54LS597FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 89444012A SNJ54LS 597FK	Samples
SNJ54LS597J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8944401EA SNJ54LS597J	Samples
SNJ54LS597J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8944401EA SNJ54LS597J	Samples

PACKAGE OPTION ADDENDUM

www.ti.com 24-Feb-2022

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54LS597W	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8944401FA SNJ54LS597W	Samples
SNJ54LS597W	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8944401FA SNJ54LS597W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

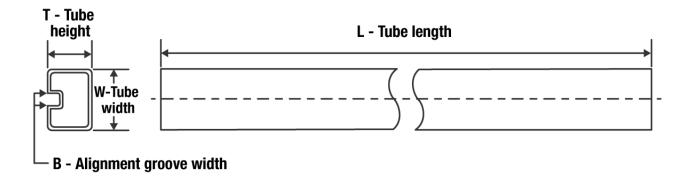
PACKAGE OPTION ADDENDUM

www.ti.com 24-Feb-2022

OTHER QUALIFIED VERSIONS OF SN54LS597, SN74LS597:

• Catalog : SN74LS597

Military: SN54LS597

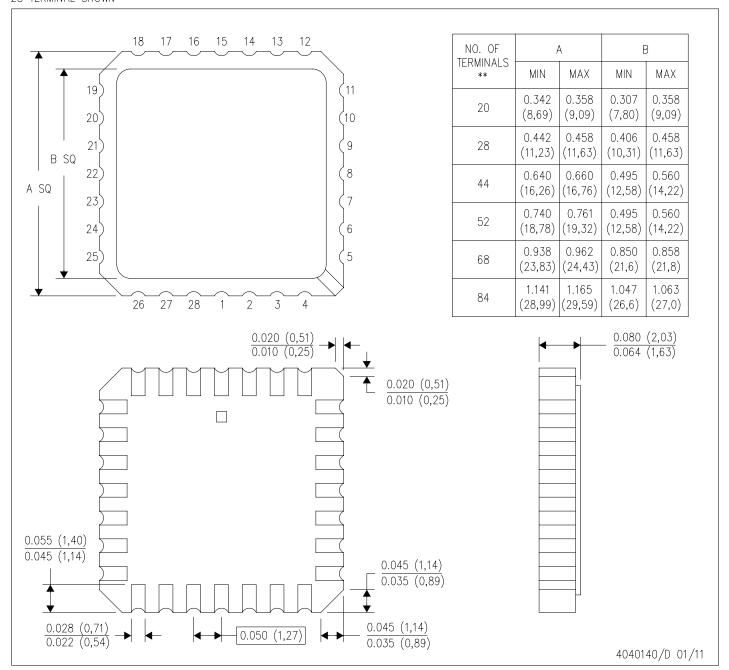

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

www.ti.com 5-Jan-2022

TUBE

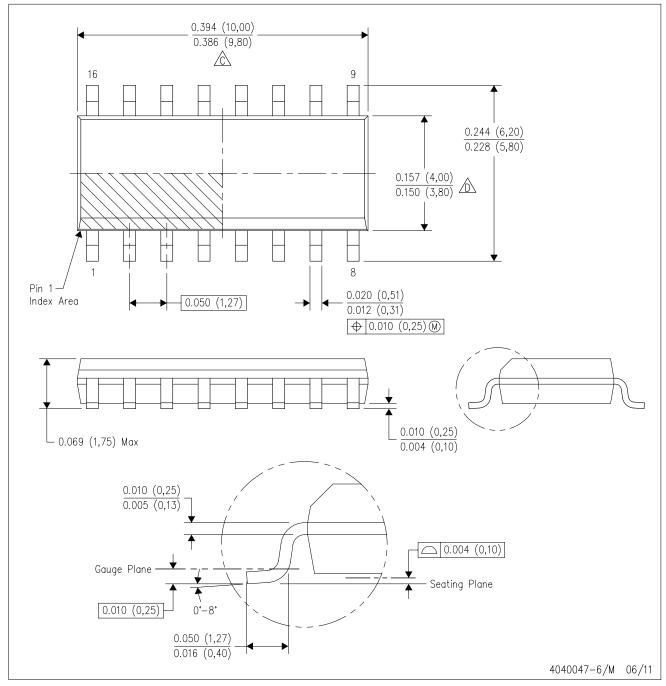

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-89444012A	FK	LCCC	20	1	506.98	12.06	2030	NA
SN74LS597D	D	SOIC	16	40	507	8	3940	4.32
SN74LS597N	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS597N	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS598N	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54LS597FK	FK	LCCC	20	1	506.98	12.06	2030	NA

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

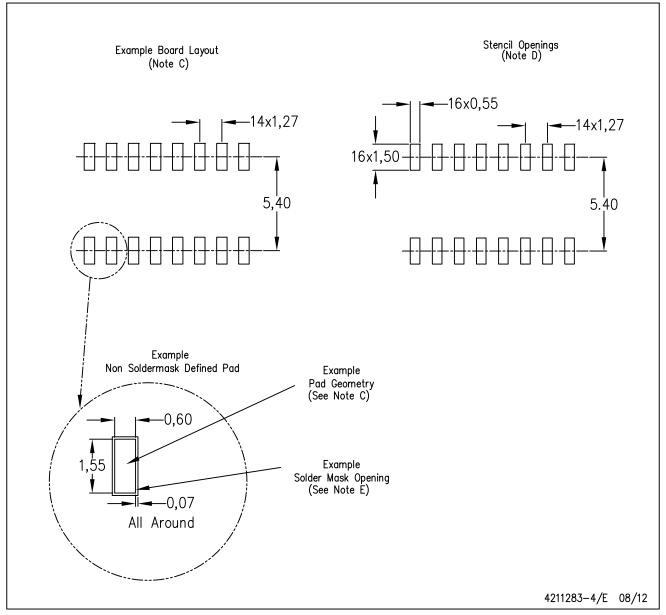
28 TERMINAL SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDS0-G16)

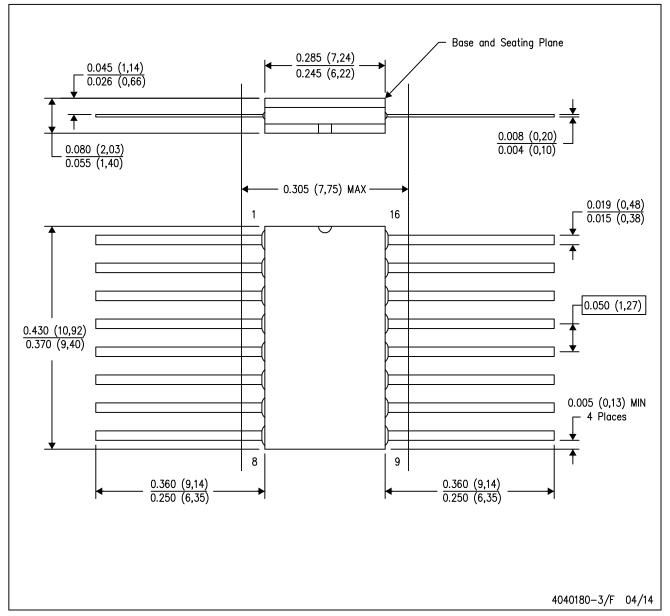
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

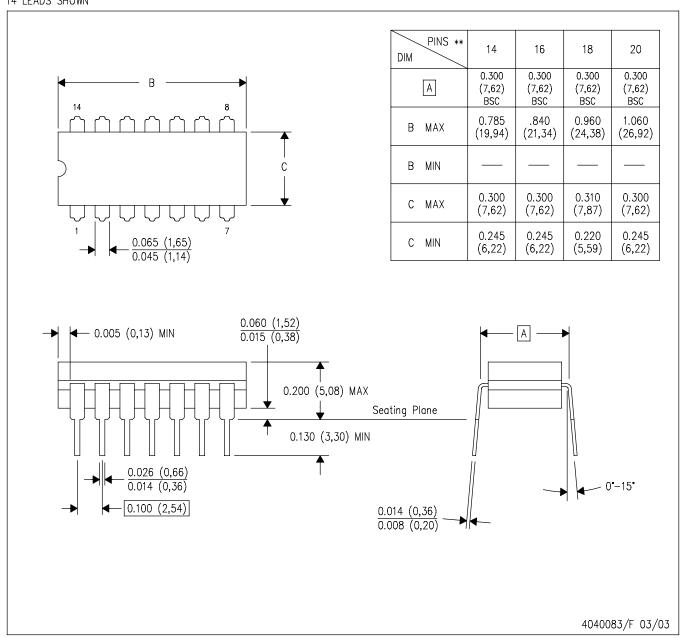
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

W (R-GDFP-F16)


CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated