

ES_LPC11U6x
Errata sheet LPC11U6x
Rev. 1.4 — 7 March 2018 Errata sheet

Document information

Info Content

Keywords LPC11U66JBD48; LPC11U67JBD48; LPC11U67JBD64;
LPC11U67JBD100; LPC11U68JBD48; LPC11U68JBD64;
LPC11U68JBD100; LPC11U6x errata

Abstract This errata sheet describes both the known functional problems and any
deviations from the electrical specifications known at the release date of
this document.

Each deviation is assigned a number and its history is tracked in a table.

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

Revision history

Rev Date Description

1.4 20180307 • USB_ROM.4.

1.3 20170804 • USB_ROM.3.

1.2 20151022 • Added UART.1.

• Added USB.1.

1.1 20140728 • Corrected USB_ROM.1 work-around.

• Corrected part marking information.

• Parts added: LPC11U67JBD100, LPC11U67JBD64, LPC11U66JBD48.

1 20140115 Initial version.
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 2 of 18

Contact information
For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
1. Product identification

The LPC11U6x devices typically have the following top-side marking for LQFP100
packages:

LPC11U6xJBD100

xxxxxx xx

xxxyywwxR[x]

The LPC11U6x devices typically have the following top-side marking for LQFP64
packages:

LPC11U6xJ

xxxxxx xx

xxxyywwxR[x]

The LPC11U6x devices typically have the following top-side marking for LQFP48
packages:

LPC11U6xJ

xx xx

xxxyy

wwxR[x]

Field ‘yy’ states the year the device was manufactured. Field ‘ww’ states the week the
device was manufactured during that year.

Field ‘R’ identifies the device revision. This Errata Sheet covers the following revisions of
the LPC11U6x:

2. Errata overview

Table 1. Device revision table

Revision identifier (R) Revision description

‘A’ Initial device revision

Table 2. Errata summary table

Functional
problems

Short description Revision identifier Detailed description

USB_ROM.1 The USB ROM driver routine hwUSB_ResetEP()
accidentally corrupts the subsequent word of memory
while clearing the STALL bit of the selected endpoint.

‘A’ Section 3.1

USB_ROM.2 The USBD ROM stack does not split EP0 transfer into
multiple packets of 8 bytes (MAXP allowed) in low
speed mode.

‘A’ Section 3.2

USB_ROM.3 FRAME_INT is cleared if new SetConfiguration or
USB_RESET are received.

‘A’ Section 3.3
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 3 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x

USB_ROM.4 USB full-speed device fail in the Command/Data/Status
Flow after bus reset and bus re-enumeration.

‘A’ Section 3.4

USB.1 The USB controller is unable to generate STALL on
EP0_OUT.

‘A’ Section 3.5

UART.1 The UART controller sets the Idle status bits for receive
and transmit before the transmission of the stop bit is
complete.

‘A’ Section 3.6

Table 2. Errata summary table …continued …continued

Functional
problems

Short description Revision identifier Detailed description

Table 3. AC/DC deviations table

AC/DC
deviations

Short description Revision identifier Detailed description

n/a n/a n/a n/a

Table 4. Errata notes table

Errata notes Short description Revision identifier Detailed description

n/a n/a n/a n/a
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 4 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
3. Functional problems detail

3.1 USB_ROM.1

Introduction:

The on-chip USB2.0 full-speed device controller uses the USB endpoint (EP)
Command/Status List organized in memory to store the EPs command/status information.
Bit 29 indicates the STALL status of the corresponding EP. The USB ROM driver routine
hwUSB_ResetEP(), which is called during SET_CONFIGURATION and
SET_INTERFACE requests for all EPs present in the corresponding
configuration/interface, clears the STALL bit of the selected EPs in Command/Status List
as part of EP reset procedure.

Problem:

During the EP reset procedure executed by the USB ROM driver routine
hwUSB_ResetEP(), it not only clears the STALL bit of the selected EP but also corrupts
the subsequent word of memory. This issue is caused by a software bug in the
hwUSB_ResetEP() routine.

Below is a summary of the runtime errors resulting from this issue:

• Case 1. When reset procedure is invoked on an EP which is at the end of the EP list,
this bug will accidentally corrupt the memory area following the EP Command/Status
List. In the current version of USB ROM driver this area is used for storing the receiver
buffer address for control endpoint (EP0). This corruption causes erratic behavior on
control OUT transaction.

• Case 2. When reset procedure is invoked on an EP which is in the beginning or
middle of the EP list, this bug will accidentally clear the STALL bit of the subsequent
EP in list.

– If hwUSB_ResetEP() is called during SET_CONFIGURATION, clearing the STALL
bit of the subsequent EP has no consequence since STALL condition is cleared for
all EPs during SET_CONFIGURATION procedure.

– If hwUSB_ResetEP() is called during SET_INTERFACE when selecting an ALT
interface, this issue could clear STALL condition (if exists) on the subsequent EP.
This condition is very rare.

Work-around:

The software work-around to address Case 1 is to specify one extra EP in the
max_num_ep field of the USBD_API_INIT_PARAM_T structure passed to the ROM
driver's hw->init() routine. This extra EP provides a padding buffer to avoid corruption to
the subsequent word of memory. This workaround is demonstrated with the line of code
highlighted in red in function usb_init() in the following example.

If your system is affected with Case 2, user should check the "ep_halt" member of
USB_CORE_CTRL_T structure in the SET_INTERFACE event and set STALL bit for any
EP which got cleared due to this bug. This condition is very rare. This workaround is
demonstrated with the function StallWorkAround () in the following example. Notice that
StallWorkAround is set to be an interface event in the usb_init() function (highlighted in
bold).
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 5 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
typedef volatile struct _EP_LIST {
 uint32_t buf_ptr;
 uint32_t buf_length;
} EP_LIST;

ErrorCode_t StallWorkAround(USBD_HANDLE_T hUsb)
{
 ErrorCode_t ret = LPC_OK;
 USB_CORE_CTRL_T *pCtrl = (USB_CORE_CTRL_T *) hUsb;
 EP_LIST *epQueue;
 int32_t i;

 /* WORKAROUND for Case 2:
 Code clearing STALL bits in endpoint reset routine corrupts memory area
 next to the endpoint control data.
 */
 if (pCtrl->ep_halt != 0) { /* check if STALL is set for any endpoint */
 /* get pointer to HW EP queue */
 epQueue = (EP_LIST *) LPC_USB->EPLISTSTART;
 /* check if the HW STALL bit for the endpoint is cleared due to bug. */
 for (i = 1; i < pCtrl->max_num_ep; i++) {
 /* check OUT EPs */
 if (pCtrl->ep_halt & (1 << i)) {
 /* Check if HW EP queue also has STALL bit = _BIT(29) is set */
 if ((epQueue[i << 1].buf_ptr & _BIT(29)) == 0) {
 /* bit not set, cleared by BUG. So set it back. */
 epQueue[i << 1].buf.ptr |= _BIT(29);
 }
 }
 /* Check IN EPs */
 if (pCtrl->ep_halt & (1 << (i + 16))) {
 /* Check if HW EP queue also has STALL bit = _BIT(29) is set */
 if ((epQueue[(i << 1) + 1].buf_ptr & _BIT(29)) == 0) {
 /* bit not set, cleared by BUG. So set it back. */
 epQueue[(i << 1) + 1].buf_ptr |= _BIT(29);
 }
 }
 }
 }

 return ret;
}

/* Initialize USB sub system */
static ErrorCode_t usbd_init(void)
{
 USBD_API_INIT_PARAM_T usb_param;
 USB_CORE_DESCS_T desc;
 ADC_INIT_PARAM_T adc_param;
 ErrorCode_t ret = LPC_OK;
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 6 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
 /* enable clocks and pinmux */
 usb_pin_clk_init();

 /* initialize USBD ROM API pointer. */
 g_pUsbApi = (const USBD_API_T *) LPC_ROM_API->usbdApiBase;
 /* initialize call back structures */
 memset((void *) &usb_param, 0, sizeof(USBD_API_INIT_PARAM_T));
 usb_param.usb_reg_base = LPC_USB0_BASE;
 /* WORKAROUND for Case 1

For example When EP0, EP1_IN, EP1_OUT and EP2_IN are used we need to specify
usb_param.max_num_ep as 3 here. But as a workaround for this issue specify
usb_param.max_num_ep as 4. So that extra EPs control structure acts as padding
buffer to avoid data corruption. Corruption of padding memory doesn't affect the
stack/program behavior.

 */
 usb_param.max_num_ep = 3 + 1;
 usb_param.USB_Interface_Event = StallWorkAround;

 usb_param.mem_base = USB_STACK_MEM_BASE;
 usb_param.mem_size = USB_STACK_MEM_SIZE;

 /* Set the USB descriptors */
 desc.device_desc = (uint8_t *) &USB_DeviceDescriptor[0];
 desc.string_desc = (uint8_t *) &USB_StringDescriptor[0];
 /* Note, to pass USBCV test full-speed only devices should have both
 descriptor arrays point to same location and device_qualifier set to 0.
 */
 desc.high_speed_desc = (uint8_t *) &USB_FsConfigDescriptor[0];
 desc.full_speed_desc = (uint8_t *) &USB_FsConfigDescriptor[0];
 desc.device_qualifier = 0;

 /* USB Initialization */
 ret = USBD_API->hw->Init(&g_hUsb, &desc, &usb_param);
 if (ret == LPC_OK) {
}

ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 7 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
3.2 USB_ROM.2

Introduction:

When USB device operates in low-speed mode the maximum packet length (MAXP) for
control transfer and interrupt transfers is restricted to 8 bytes. Hence when more than
8 bytes needs to be transferred, the data should be split into multiple 8 byte packets. But
the current ROM stack splits the control transfer into multiples of 64 bytes only.

Problem:

Device will not enumerate when used in low-speed mode.

Work-around:

The software work-around for this issue is to override the cases where the ROM stack
would queue a large transfer and split them into smaller 8 byte packet transfers. Since low
speed USB allows only interrupt endpoints, a workaround for HID class implementation is
shown below:

static ErrorCode_t HID_LowSpeedPatch(USBD_HANDLE_T hUsb, void *data, uint32_t event)
{

USB_CORE_CTRL_T *pCtrl = (USB_CORE_CTRL_T *) hUsb;
USB_HID_CTRL_T *pHidCtrl = (USB_HID_CTRL_T *) data;
ErrorCode_t ret = ERR_USBD_UNHANDLED;
uint16_t cnt = 0, len = 0;

switch (event) {
case USB_EVT_SETUP:

if (pCtrl->SetupPacket.bmRequestType.BM.Type == REQUEST_STANDARD) {

switch (pCtrl->SetupPacket.bRequest) {
case USB_REQUEST_GET_DESCRIPTOR:

/* handle HID descriptors first */
switch (pCtrl->SetupPacket.wValue.WB.H) {
case HID_HID_DESCRIPTOR_TYPE:

pCtrl->EP0Data.pData = pHidCtrl->hid_desc;
len = ((USB_COMMON_DESCRIPTOR *)
pHidCtrl->hid_desc)->bLength;
ret = LPC_OK;
break;

case HID_REPORT_DESCRIPTOR_TYPE:
ret = pHidCtrl->HID_GetReportDesc(pHidCtrl,
&pCtrl->SetupPacket,
&pCtrl->EP0Data.pData, &len);
break;

case HID_PHYSICAL_DESCRIPTOR_TYPE:
if (pHidCtrl->HID_GetPhysDesc == 0) {
ret = (ERR_USBD_STALL); /* HID Physical Descriptor is not
supported */
}
else {
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 8 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
ret = pHidCtrl->HID_GetPhysDesc(pHidCtrl,
&pCtrl->SetupPacket,&pCtrl->EP0Data.pData, &len);

}
break;

default:
ret = pCtrl->USB_ReqGetDescriptor(pCtrl);
break;

}
break;

case USB_REQUEST_GET_CONFIGURATION:
ret = pCtrl->USB_ReqGetConfiguration(pCtrl);
break;

case USB_REQUEST_GET_INTERFACE:
ret = pCtrl->USB_ReqGetInterface(pCtrl);
break;

default:
break;

}
}
else if ((pCtrl->SetupPacket.bmRequestType.BM.Type == REQUEST_CLASS) &&

(pCtrl->SetupPacket.bmRequestType.BM.Recipient ==
REQUEST_TO_INTERFACE) &&

pCtrl->SetupPacket.bRequest == HID_REQUEST_GET_REPORT)) {

pCtrl->EP0Data.pData = pCtrl->EP0Buf; /* point to data to be sent */
/* allow user to copy data to EP0Buf or change the pointer to his own
buffer */
ret = pHidCtrl->HID_GetReport(pHidCtrl, &pCtrl->SetupPacket,

&pCtrl->EP0Data.pData, &pCtrl->EP0Data.Count);
}
break;

case USB_EVT_IN:
if (pCtrl->SetupPacket.bmRequestType.BM.Dir == REQUEST_DEVICE_TO_HOST) {

ret = LPC_OK;
}
break;

}
if (ret == LPC_OK) {

if ((len != 0) && (pCtrl->EP0Data.Count > len)) {
pCtrl->EP0Data.Count = len;

}
cnt = (pCtrl->EP0Data.Count > USB_MAX_PACKET0) ? USB_MAX_PACKET0 :
pCtrl->EP0Data.Count;
cnt = USBD_API->hw->WriteEP(pCtrl, 0x80, pCtrl->EP0Data.pData, cnt);
pCtrl->EP0Data.pData += cnt;
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 9 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
pCtrl->EP0Data.Count -= cnt;
}
else if (ret == ERR_USBD_UNHANDLED) {

ret = g_defaultHidHdlr(hUsb, data, event);
}

return ret;
}

To install this patch handler do the following:

1. declare a global variable: static USB_EP_HANDLER_T g_defaultHidHdlr;

2. install the override handler during initialization phase:

ret = USBD_API->hid->init(hUsb, &hid_param);
if (ret == LPC_OK) {

g_defaultHidHdlr = pCtrl->ep0_hdlr_cb[pCtrl->num_ep0_hdlrs - 1];
/* store the default CDC handler and replace it with ours */
pCtrl->ep0_hdlr_cb[pCtrl->num_ep0_hdlrs - 1] = HID_LowSpeedPatch;

....
}

ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 10 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
3.3 USB_ROM.3: FRAME_INT is cleared if new SetConfiguration or
USB_RESET are received.

Introduction:

In the USB ROM API, the function call EnableEvent can be used to enable and disable
FRAME_INT.

Problem:

When the FRAME_INT is enabled through the USB ROM API call:

ErrorCode_t(* USBD_HW_API::EnableEvent)(USBD_HANDLE_T hUsb, uint32_t EPNum, uint32_t
event_type, uint32_t enable),

the FRAME_INT is cleared if new SetConfiguration or USB_RESET are received.

Work-around:

Implement the following software work-around in the ISR to ensure that the FRAME_INT
is enabled:

void USB_IRQHandler(void)
{
USBD_API->hw->EnableEvent(g_hUsb, 0, USB_EVT_SOF, 1);
USBD_API->hw->ISR(g_hUsb);
}

ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 11 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
3.4 USB_ROM.4: USB full-speed device fail in the Command/Data/Status
Flow after bus reset and bus re-enumeration

Introduction:

The LPC11U6x device family includes a USB full-speed interface that can operate in
device mode and also, includes USB ROM based drivers. A Bulk-Only Protocol
transaction begins with the host sending a CBW to the device and attempting to make the
appropriate data transfer (In, Out or none). The device receives the CBW, checks and
interprets it, attempts to satisfy the request of the host, and returns status via a CSW.

Problem:

When the device fails in the Command/Data/Status Flow, and the host does a bus reset /
bus re-enumeration without issuing a Bulk-Only Mass Storage Reset, the USB ROM
driver does not re-initialize the MSC variables. This causes the device to fail in the
Command/Data/Status Flow after the bus reset / bus re-enumeration.

Work-around:

Implement the following software work-around to re-initialize the MSC variables in the
USBD stack.

void *g_pMscCtrl;

ErrorCode_t mwMSC_Reset_workaround(USBD_HANDLE_T hUsb)

{

((USB_MSC_CTRL_T *)g_pMscCtrl)->CSW.dSignature = 0;

((USB_MSC_CTRL_T *)g_pMscCtrl)->BulkStage = 0;

return LPC_OK;

}

ErrorCode_t mscDisk_init(USBD_HANDLE_T hUsb, USB_CORE_DESCS_T *pDesc,
USBD_API_INIT_PARAM_T *pUsbParam)

{ USBD_MSC_INIT_PARAM_T msc_param;

ErrorCode_t ret = LPC_OK;

memset((void *) &msc_param, 0, sizeof(USBD_MSC_INIT_PARAM_T));

msc_param.mem_base = pUsbParam->mem_base;

msc_param.mem_size = pUsbParam->mem_size;

g_pMscCtrl = (void *)msc_param.mem_base;

ret = USBD_API->msc->init(hUsb, &msc_param);

/* update memory variables */

pUsbParam->mem_base = msc_param.mem_base;

pUsbParam->mem_size = msc_param.mem_size;
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 12 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
return ret;

}

usb_param.USB_Reset_Event = mwMSC_Reset_workaround;

ret = USBD_API->hw->Init(&g_hUsb, &desc, &usb_param);
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 13 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
3.5 USB.1: USB controller is unable to generate STALL on EP0_OUT

Introduction:

The LPC11U6x have a full-speed USB device controller with support for 10 physical
endpoints.

Problem:

The USB device controller is unable to return a STALL handshake on an OUT data packet
to endpoint zero. An NAK handshake is returned instead.

Work-around:

Endpoint zero is the control endpoint. All requests sent to the control endpoint consist of
three stages (SETUP / DATA / STATUS). When an unsupported ControlWrite request
(with data phase) is sent by the host to the device, the device is unable to STALL the data
phase of this request.

To solve this problem, the device firmware must accept the data transmitted during the
data phase of this ControlWrite request and return a STALL handshake when the IN token
for the STATUS stage is received.
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 14 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
3.6 UART.1

Introduction:

In receive mode, the UART controller provides a status bit (the RXIDLE bit in the UART
STAT register) to check whether the receiver is currently receiving data. If RXIDLE is set,
the receiver indicates it is idle and does not receive data.

In transmit mode, the UART controller provides two status bits (TXIDLE and TXDISSTAT
bits in the UART STAT register) to indicate whether the transmitter is currently transmitting
data. The TXIDLE bit is set by the controller after the last stop bit has been transmitted.
The TXDISSTAT bit is set by the controller after the transmitter has sent the last stop bit
and has become fully idle following a transmit disable executed by setting the TXDIS bit in
the UART CTRL register.

The status bits can be used to implement software flow control, but their setting does not
affect normal UART operation.
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 15 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
Problem:

The RXIDLE bit is incorrectly set for a fraction of the clock cycle between the reception of
the last data bit and the reception of the start bit of the next word, that is while the stop bit
is received. RXIDLE is cleared at the beginning of the start bit.

Both, TXIDLE and TXDISSTAT are set incorrectly between the last data bit and the stop
bit while the transfer is still ongoing.

Work-around:

When writing code that checks for the setting of any of the status bits RXIDLE, TXIDLE,
TXDISSTAT, check the value of the status bit in the STAT register:

• If status bit = 1, add a delay of one UART bit time (if STOPLEN = 0, one stop bit) or
two bit times (if STOPLEN = 1, two stop bits) and check the value of the status bit
again:

– If status bit = 1, the receiver is idle.

– If status bit = 0, the receiver is receiving data.

• If the status bit = 0, the receiver is receiving data.

Fig 1. Incorrect setting of RXIDLE during UART receive

D0 D0D1 D2 D3 D4 D5 D6 D7 PBSTART STARTSTOP

start bit
logic 0

stop bit
logic 1

parity bit
(optional)

not correct:
RXIDLE

set

data word 1
data word 2

Fig 2. Incorrect setting of TXIDLE and TXDISSTAT during UART transmit

D0 D1 D2 D3 D4 D5 D6 D7 PBSTART STOP

start bit
logic 0

stop bit
logic 1

parity bit
(optional)

not correct:
TXIDLE,

TXDISSTAT
set

correct:
TXIDLE,

TXDISSTAT
set

data word
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 16 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
4. Legal information

4.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.

4.2 Disclaimers

Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

4.3 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
ES_LPC11U6X All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Errata sheet Rev. 1.4 — 7 March 2018 17 of 18

NXP Semiconductors ES_LPC11U6x
Errata sheet LPC11U6x
5. Contents

1 Product identification . 3

2 Errata overview . 3

3 Functional problems detail 5
3.1 USB_ROM.1. 5
3.2 USB_ROM.2. 8
3.3 USB_ROM.3: FRAME_INT is cleared if new

SetConfiguration or USB_RESET are
received. 11

3.4 USB_ROM.4: USB full-speed device fail in the
Command/Data/Status Flow after bus reset and
bus re-enumeration . 12

3.5 USB.1: USB controller is unable to generate
STALL on EP0_OUT. 14

3.6 UART.1 . 15

4 Legal information. 17
4.1 Definitions. 17
4.2 Disclaimers . 17
4.3 Trademarks. 17

5 Contents . 18
© NXP B.V. 2018. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 March 2018

Document identifier: ES_LPC11U6X

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.

	1. Product identification
	2. Errata overview
	3. Functional problems detail
	3.1 USB_ROM.1
	Introduction:
	Problem:
	Work-around:
	3.2 USB_ROM.2
	Introduction:
	Problem:
	Work-around:
	3.3 USB_ROM.3: FRAME_INT is cleared if new SetConfiguration or USB_RESET are received.
	Introduction:
	Problem:
	Work-around:
	3.4 USB_ROM.4: USB full-speed device fail in the Command/Data/Status Flow after bus reset and bus re-enumeration
	Introduction:
	Problem:
	Work-around:
	3.5 USB.1: USB controller is unable to generate STALL on EP0_OUT
	Introduction:
	Problem:
	Work-around:
	3.6 UART.1
	Introduction:
	Problem:
	Work-around:

	4. Legal information
	4.1 Definitions
	4.2 Disclaimers
	4.3 Trademarks

	5. Contents

