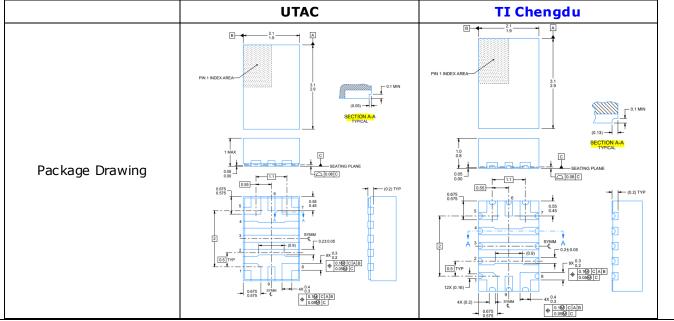
PCN	l Num	ber:	20230215003.2						PCN Date:	February 16, 2023
Title	e:	Qualification Assembly and					CDAT-PR) a	nd T	I Chengdu a	s an additional
Cus	tome	r Contact:	PCN Manag	<u>er</u>	Dep	t:	Quality Se	rvic	es	
Proj	posed	1 st Ship Date	Aug 1	6, 20	23	-	le request epted unti		Mar 16, 2023	*
*Sa	mple r	equests receiv	ed after (N	√ar 1	6, 20	23) will not	be support	ed.		
Cha	nge T	ype:								
\boxtimes	Asse	mbly Site			Des	ign			Wafer Bum	o Site
	Asse	mbly Process			Dat	a Sheet			Wafer Bum	o Material
\boxtimes	Asse	mbly Materials			Part	: number cl	nange		Wafer Bump Process	
	Mech	nanical Specific	ation		Tes	t Site			Wafer Fab 9	Site
□ Packing/Shipping/Labeling					Tes	t Process			Wafer Fab I	Materials
	□ Wafer Fab Process									
					PC	N Detail	s			

Description of Change:

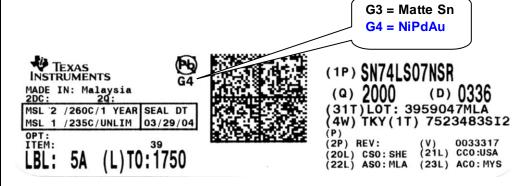
Texas Instruments is pleased to announce the qualification of CDAT-PR as additional wafer probe site and TI Chengdu as additional Assembly and Test Site for Select Devices listed in the "Product Affected" Section. Construction differences are as follows.


	Current	Additional
Probe Site	CLARK-PR	CDAT-PR
Final Test Site	UTL2	CDAT

	UTAC	TI Chengdu			
Lead finish	Matte Sn	NiPdAu			
Carrier tape width	12mm	8mm			

Upon expiry of this PCN TI will combine lead free solutions in a single <u>standard part number</u>, for the devices in the "Product Affected" Section. For example; <u>TPS62816QWRWYRQ1</u> – can ship with both Matte Sn and NiPdAu.

Test coverage, insertions, conditions will remain consistent with current testing.


Package Outline Drawing Differences:

Wettable Flank design	Step Cut		Dimple	
		l	·	
Reason for Change:				
Continuity of supply.	ama Fit Function Ou	alitus au Daliahilitus (m	asitiva / passtiva).	
None	orm, Fit, Function, Qu	ality or Reliability (p	ositive / negative):	
Impact on Environment	ral Patings			
-	-			
			implementation of this ociated environmental ratings. IEC 62474 No Change	
RoHS	REACH	Green Status		
No Change	No Change ■ No Change ■ No Change No Change ■ No Change No	⊠ No Change	☑ No Change	
Changes to product ide	ntification resulting fr	om this PCN:		

Assembly Site		
UTAC	Assembly Site Origin (22L)	ASO: NSE
CDAT	Assembly Site Origin (22L)	ASO: CDA

Sample product shipping label (not actual product label)

Group 1 Product Affected: TI Chengdu as additional Assembly & Test Site

TPS62816QWRWYRQ1

Group 2 Product Affected: CDAT-PR Probe site and TI Chengdu as additional Assembly & Test Site

TPS6281080QWRYGRQ1	TPS62811A0QWRYGRDN	TPS6281380QWRYGRQ1
TPS62810A0QWRYGRQ1	TPS6281280QWRYGRQ1	TPS62813A0QWRYGRDN
TPS6281180QWRYGRQ1	TPS62812A0QWRYGRDN	

Qualification Report

Automotive New Product Qualification Summary (As per AEC-Q100 and JEDEC Guidelines)

Approve Date 17-Nov-2021

Product Attributes

Attributes	Qual Device: <u>TPS62816QWRWYRQ1</u>	QBS Product Reference: <u>TPS6281xQWRWYRQ1</u>	Qual Device: TPS62816QWRWYRQ1	QBS Product Reference: TPS6281xQWRWYRQ1	QBS Package reference <u>LMR33630CQRNXRQ1</u>
Automotive Grade Level	Grade 1	Grade 1	Grade 1	Grade 1	Grade 1
Operating Temp Range	-40 to +125 C	-40 to +125 C	-40 to +125 C	-40 to +125 C	-40 to +125 C
Product Function	Power Management	Power Management	Power Management	Power Management	Power Management
Die Attributes	-	-	-	-	-
Wafer Fab Supplier	RFAB	RFAB	RFAB	RFAB	DMOS6
Package Attributes	-	-	-	-	-
Assembly Site	UTL1	UTL1	CDAT	CDAT	CDAT
Package Type	VQFN-HR	VQFN-HR	VQFN-HR	VQFN-HR	VQFN-HR
Package Designator	RWY	RWY	RWY	RWY	RNX
Ball/Lead Count	9	9	9	9	12
Package Size mm	3 x 2 mm	3 x 2 mm	3 x 2 mm	3 x 2 mm	3 x 2 mm
Leadframe Plating Composition	Matte SN	Matte SN	NiPdAu	NiPdAu	NiPdAu

- QBS: Qual By Similarity
- Qual Device TPS62816QWRWYRQ1 is qualified at LEVEL2-260C

Qualification Results

Data Displayed as: Number of lots / Total sample size / Total failed

		-	Jucu	Dispic	a, ca as.	Harribe	1 01 1005 /	i ocai saiii	ipie size / i	ocar ranca		
Туре	#	Test Spec	Min Lot Qty	SS/Lot	Test Name / Condition	Duration	Qual Device: TP\$62816QWRWYR Q1	QBS Product <u>TP\$62810QWRWYR</u> <u>Q1</u>	Qual Device: TP\$62816QWRWYRQ1	QBS Product Reference: <u>TP \$62810QWRWYRQ</u> <u>1</u>	QBS Package reference <u>LMR33630CQRNXRQ</u> <u>1</u>	
		Test Gi	oup A –	Accelerate	ed Environment	Stress Tests		(UTL1)	Assembly)	(CDAT Assembly)		
PC	A1	JEDEC J- STD-020 JESD22- A113	3	77	MSL/280C	3 cycles	3/693/0	3/893/0	QBS	1/154/0	3/893/0	
HAST	A2	JEDEC JESD22- A110	3	77	Biased HAST, 130C/85%R H	96 Hours	3/231/0	3/231/0				
			3	77	Biased HAST, 110C/85%R H	264 Hours			QBS	QBS	3/231/0	
AC	А3	JEDEC JESD22- A102	3	77	Autoclave	98 hours	3/231/0	3/231/0				
			3	77	Biased HAST, 110C/85%R H	264 Hours			QBS	QBS	3/231/0	
тс	A4	JEDEC JESD22- A104 and Appendix 3	3	77	-85C/150C	500 cycles	3/231/0	3/231/0	QBS	1/77/0	3/231/0	
PTC	A5	JEDEC JESD22- A105	1	45	Power Temperature Cycle	1000 Cycles	N/A	N/A	N/A	N/A	1/45/0	
HTSL	A6	JEDEC JESD22- A103	1	45	High Temp. Storage Life 175C	500 hours	3/45/0	3/231/0	QBS	1/77/0	3/231/0	
Test Gr	oup B	– Accelerate	ed Lifetir	ne Simulat	ion Tests							
HTOL	B1	JEDEC JESD22- A108	3	77	High Temp operational Life 125C	1000 hours	1/77/0	3/231/0	QBS			
ELFR	B2	AEC Q100-008	3	800	Early Life Failure Rate, 125C	48 Hours	QBS	3/2400/0	QBS			

EDR	В3	AEC Q100-005	3	77	NVM Endurance, Data Retention, and Operational Life 150C	-	N/A	N/A	N/A		
		Test	Group C	– Package	Assembly Inte	arity Tests		(UTL1 s	ssembly)	(CDAT as	ssembly)
					Wire Bond	g,		(51210)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(00)11 0.	osembly)
WBS	C1	AEC Q100-001	1	30	Shear (Cpk>1.87)	-	N/A	N/A	N/A		
WBP	C2	MIL- STD883 Method 2011	1	30	Wire Bond Pull (Cpk>1.87)	-	N/A	N/A	N/A		
SD	СЗ	JEDEC JESD22- B102	1	15	Pb Free Surface Mount Solderability	4 hours bake 155 C	1/30/0	-	QBS	1/30/0	
PD	C4	JEDEC JESD22- B100 and B108	3	10	Automotive Physical Dimensions	Assy MQ	3/30/0	-	QBS	3/30/0	
Test Gr	oup D	– Die Fabrica	ation Re	liability Te	sts						
EM	D1	JESD61	-	-	Electromigra tion	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	
TDDB	D2	JESD35	-	-	Time Dependent Dielectric Breakdown	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	
HCI	D3	JESD80 & 28	-	-	Hot Injection Carrier	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	
NBTI	D4	-	-	-	Negative Bias Temperature Instability	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	
Туре	#	Test Spec	Min Lot Qty	\$\$/Lot	Test Name / Condition	Duration	Qual Device: TP\$62816QWRWYR Q1	QBS Product TP\$62810QWRWYR Q1	Qual Device: TPS62816QWRWYRQ1	QBS Product Reference: <u>TPS62810QWRWYRQ</u> <u>1</u>	QBS Package reference <u>LMR33630CQRNXRQ</u> <u>1</u>
SM	D5	-	-	-	Stress Migration	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	
Test Gr	oup E	– Electrical '	Verificat	ion Tests							
НВМ	E2	AEC Q100-002	1	3	HBM-Q100	2000V,	1/3/0		QBS		
СДМ	E3	AEC Q100-011	1	3	ESD Q100	750V	1/3/0		QBS		
LU	E4	AEC Q100-004	1	6	Latch up	150C	1/6/0		QBS		
ED	E5	AEC Q100-009	3	30	Auto Electrical Distributions	Cpk>1.87 Room, hot, and cold test	3/90/0		QBS		

A1 (PC): Preconditioning:

Performed for THB, Biased HAST, AC, uHAST, TC & PTC samples, as applicable.

Ambient Operating Temperature by Automotive Grade Level:

Grade 0 (or E): -40°C to +150°C Grade 1 (or Q): -40°C to +125°C Grade 2 (or T): -40°C to +105°C Grade 3 (or I): -40°C to +85°C

E1 (TEST): Electrical test temperatures of Qual samples (High temperature according to Grade level):

Room/Hot/Cold: HTOL, ED

 ${\sf Room/Hot: THB\,/\,\,HAST,\,TC/\,\,PTC,\,\,HTSL,\,\,ELFR,\,\,ESD\,\&\,\,LU}$

Room: AC/uHAST

Green/Pb-free Status:

Qualified Pb-Free(SMT) and Green

Qualification Report

Automotive New Product Qualification Summary (As per AEC-Q100 and JEDEC Guidelines)

Approve Date 06-Feb-2023

Product Attributes

Attributes	Qual Device:	Product QBS Reference:	Package QBS Reference:	Package QBS Reference:	Product QBS Reference:
Attributes	TPS6281180QWRYGRQ1	TPS62810QWRWYRQ1	LMR33630CQRNXRQ1	TPS62812QWRWYRQ1	TPS62811A0QWRYGRDN
Automotive Grade Level	Grade 1	Grade 1	Grade 1	Grade 1	Grade 1
Operating Temp Range (C)	-40 to 125	-40 to 125	-40 to 125	-40 to 125	-40 to 125
Product Function	Power Management	Power Management	Power Management	Power Management	Power Management
Die Attributes					
Wafer Fab Supplier	RFAB	RFAB	DMOS6	RFAB	RFAB
Wafer Process	LBC9	LBC9	LBC9	LBC9	LBC9
Die Size (L,W) (um)	1945 x 1085	1945 x 1085	1500 x 1995	1945 x 1085	1945 x 1085
Package Attributes					
Assembly Site	CDAT	UTL1	CDAT	CDAT	UTL1
Package Group	QFN	QFN	QFN	QFN	QFN
Package Designator	RYG	RWY	RNX	RWY	RYG
Package Size (mm)	3 x 2	3 x 2	3 x 2	3 x 2	3 x 2
Body Thickness (mm)	0.9	0.9	0.85	0.9	0.9
Pin Count	9	9	12	9	9
Lead Finish	NIPDAU	MATT SN	NIPDAU	NIPDAU	MATTE SN
Lead Pitch(mm)	0.5	0.5	0.5	0.5	0.5

QBS: Qual By Similarity

Qual Device TPS6281180QWRYGRQ1 is qualified at MSL2 260C

Qualification Results

Data Displayed as: Number of lots / Total sample size / Total failed

Туре	"	Test Spec	Min Lot Qty	SS / Lot	Test Name	Condition	Duration	Qual Device: IPS6281180QWRYGRQ1	Device QBS Reference: IPS62810QWRWYRQ1	Package QBS Reference: LMR33630CQRNXRQ1	Package QBS Reference: IPS62812QWRWYRQ1	Device QBS Reference: IPS62811A0QWRYGRDN
Test Group	A - Acce	lerated Environ	ment St	ress Tes	its							
PC	A1	JEDEC J- STD-020 JESD22- A113	3	77	Preconditioning	MSL2 260C	1 Step	1/77/0	3/693/0	3/693/0	1/154/0	1/154/0
HAST	A2	JEDEC JESD22- A110	3	77	Biased HAST	110C/85%RH	264 Hours	QBS	-	3/231/0	-	-
HAST	A2	JEDEC JESD22- A110	3	77	Biased HAST	130C/85%RH	96 Hours	QBS	3/231/0	-	-	-
AC/UHAST	A3	JEDEC JESD22- A102/JEDEC JESD22- A118	3	77	Autoclave	121C/15psig	96 Hours	QBS	-	-	1/77/0	-
AC/UHAST	A3	JEDEC JESD22- A102/JEDEC JESD22- A118	3	77	Unbiased HAST	110C/85%RH	264 Hours	QBS	-	3/231/0	-	-
AC/UHAST	A3	JEDEC JESD22- A102/JEDEC JESD22- A118	3	77	Unbiased HAST	130C/85%RH	96 Hours	QBS	3/231/0	-	-	1/77/0
тс	A4	JEDEC JESD22- A104 and Appendix 3	3	77	Temperature Cycle	-65C/150C	500 Cycles	1/77/0	3/231/0	3/231/0	1/77/0	1/77/0
PTC	A5	JEDEC JESD22- A105	1	45	PTC	-40/125C	1000 Cycles	QBS	3/135/0	-	-	-
PTC	A5	JEDEC JESD22- A105	1	45	PTC	-40/125C	1000 Cycles	QBS	-	1/50/0	-	-
HTSL	A6	JEDEC JESD22- A103	1	45	High Temperature Storage Life	150C	1000 Hours	QBS	3/231/0	3/231/0	-	-
Test Group I	B - Acce	lerated Lifetime	Simula	tion Test	ts							
HTOL	B1	JEDEC JESD22- A108	1	77	Life Test	125C	1000 Hours	QBS	3/231/0		-	-
ELFR	B2	AEC Q100- 008	1	77	Early Life Failure Rate	125C	48 Hours	QBS	3/2400/0		-	-

EDR	B3	AEC Q100- 005	1	77	NVM Endurance, Data Retention, and Op Life	Per QSS-009- 018	1 Step	QBS	3/231/0	-	-	-
Test Group	C - Pack	age Assembly I	Integrity	Tests								
WBS	C1	AEC Q100- 001	1	30	Wire Bond Shear	Minimum of 5 devices, 30 wires Cpk>1.67	Wires	Not applicable: No wires				
WBP	C2	MIL-STD883 Method 2011	1	30	Wire Bond Pull	Minimum of 5 devices, 30 wires Cpk>1.67	Wires	Not applicable: No wires				
SD	СЗ	JEDEC J- STD-002	1	15	PB-Free Solderability	>95% Lead Coverage	-	1/15/0				
PD	C4	JEDEC JESD22- B100 and B108	1	10	Physical Dimensions	Cpk>1.67	-	1/10/0		3/30/0		
Test Group	D - Die F	abrication Relia	bility Te	sts								
ЕМ	D1	JESD61	-	-	Electromigration	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
TDDB	D2	JESD35	-	-	Time Dependent Dielectric Breakdown	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
HCI	D3	JESD60 & 28	-	-	Hot Carrier Injection	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
NBTI	D4	-	-	-	Negative Bias Temperature Instability	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
SM	D5	-	-	-	Stress Migration	-	-	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements	Completed Per Process Technology Requirements
Test Group	E - Elect	rical Verification	n Tests									
ESD	E2	AEC Q100- 002	1	3	ESD HBM	-	2000 Volts	-	1/3/0			1/3/0
ESD	E3	AEC Q100- 011	1	3	ESD CDM	-	500 Volts	-	1/3/0			1/3/0
LU	E4	AEC Q100- 004	1	6	Latch-Up	Per AEC Q100-004	125C	-	1/6/0			1/6/0
ED	E5	AEC Q100- 009	3	30	Electrical Distributions	Cpk>1.67 Room, hot, and cold	-	-	3/90/0			1/30/0

Preconditioning was performed for Autoclave, Unbiased HAST, THB/Biased HAST, Temperature Cycle, Thermal Shock, and HTSL, as applicable

The following are equivalent HTOL options based on an activation energy of 0.7eV: 125C/1k Hours, 140C/480 Hours, 150C/300 Hours, and 155C/240 Hours

The following are equivalent HTSL options based on an activation energy of $0.7 \, \text{eV}$: $150 \, \text{C/1k}$ Hours, and $170 \, \text{C/420}$ Hours

The following are equivalent Temp Cycle options per JESD47: -55C/125C/700 Cycles and -65C/150C/500 Cycles Ambient Operating Temperature by Automotive Grade Level:

Grade 0 (or E): -40C to +150C Grade 1 (or Q): -40C to +125C Grade 2 (or T): -40C to +105C Grade 3 (or I): -40C to +85C

E1 (TEST): Electrical test temperatures of Qual samples (High temperature according to Grade level):

Room/Hot/Cold: HTOL, ED

 ${\sf Room/Hot: THB\,/\,HAST,\,TC\,/\,PTC,\,HTSL,\,ELFR,\,ESD\,\&\,LU}$

Room: AC/uHAST

Quality and Environmental data is available at TI's external Web site: http://www.ti.com/

ZVEIID reference: SEM-PA-18, SEM-PA-05, SEM-TF-01, SEM-PS-03

For questions regarding this notice, e-mails can be sent to the regional contacts shown below or your local Field Sales Representative.

Location	E-Mail
WW PCN Team	PCN ww admin team@list.ti.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disdaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.