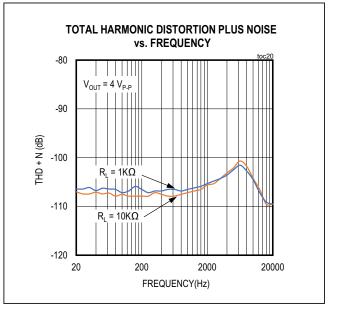
10MHz/42MHz Low Noise, Low Bias Op-Amps

General Description

The MAX40075/MAX40088 are wideband, low-noise, low-input bias current operational amplifiers offering railto-rail outputs and single-supply operation down to 2.7V. They draw 2.2mA of quiescent supply current per amplifier when enabled. Ultra-low distortion (0.0002% THD+N), as well as low input voltage-noise density ($4.2nV/\sqrt{Hz}$) and low input current-noise density ($0.5fA/\sqrt{Hz}$). The low input bias current and low noise together with the wide bandwidth will suit transimpedance amplifiers and imaging applications.

For power conservation, the MAX40075/MAX40088 offer a low-power shutdown mode that reduces supply current to 0.1μ A and places the amplifiers outputs into a high impedance state. These amplifiers have outputs which swing rail-to-rail and their input common-mode voltage range includes ground. The MAX40075 is unity-gain stable with a gain-bandwidth product of 10MHz. The MAX40088 is gain-of-5 stable with a gain-bandwidth product of 42MHz.

Applications


- ADC Buffers
- DAC Output Amplifiers
- Low-Noise Microphone/Preamplifiers
- Digital Scales
- Strain Gauges/Sensor Amplifiers
- Trans Impedance Amplifiers
- Medical Instrumentation

Ordering Information appears at end of data sheet.

Benefits and Features

- Low Input Voltage-Noise Density: 4.2nV/√Hz at 30kHz
- Low Input Current-Noise Density: 0.5fA/√Hz
- Low Input Bias Current: <1pA (Typical)
- Low Distortion: 0.00035% or -109dB THD+N (1kΩ Load)
- Single-Supply Operation from +2.7V to +5.5V
- Input Common-Mode Voltage Range Includes Ground
- Rail-to-Rail Output Swings with a 1kΩ Load
- 10MHz GBW Product, Unity-Gain Stable (MAX40075 Only)
- 42MHz GBW Product, Gain ≥ 5V/V (MAX40088 Only)
- Excellent DC Characteristics: Input V_{OS} ≤ 70µV
- Low-Power Shutdown Mode: Reduces Supply Current to ≤1µA
- Available in Space-Saving 6-SOT23 and 6-WLP Packages

THD+N Performance

10MHz/42MHz Low Noise, Low Bias Op-Amps

Absolute Maximum Ratings

Input Differential Voltage	
MAX40075/MAX40088 (continuous)	3V to +3V
MAX40075/MAX40088 (transient, 10s)	6V to +6V
Power-Supply Voltage (V _{DD} to V _{SS})	0.3V to +6V
Analog Input Voltage (IN+, IN-)V _{SS} -	0.3V to V _{DD} +0.3V
SHDN Input Voltage (SHDN)	V _{SS} -0.3V to +6V
Continuous Input Current (IN+, IN-)	±20mA
Output Short-Circuit Duration to Either Suppl	y Continuous

Operating Temperature Range.....-40°C to 125°C

Continuous Power Dissipation	
SOT23-6 (derate 8.7mW/°C at +70°C)	696mW
6-Bump WLP (derate 10.19mW/°C at +70°C)	815mW
Storage Temperature Range	-65°C to +150°C
Lead Temperature ((soldering, 10s))	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

6-SOT23

PACKAGE CODE	U6+1, U6+1A
Outline Number	<u>21-0058</u>
Land Pattern Number	90-0175
Thermal Resistance, Single-Layer Board:	
Junction-to-Ambient (θ _{JA})	N/A
Junction-to-Case (θ _{JC})	80°C/W
Thermal Resistance, Multi-Layer Board:	
Junction-to-Ambient (θ _{JA})	115°C/W
Junction-to-Case (θ _{JC})	80°C/W

6-WLP

PACKAGE CODE	N60F1+1		
Outline Number	<u>21-100174</u>		
Land Pattern Number	Refer to Application Note 1891		
Thermal Resistance, Single-Layer Board:			
Junction-to-Ambient (θ _{JA})	98.06°C/W		
Junction-to-Case (θ _{JC})	N/A		

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

10MHz/42MHz Low Noise, Low Bias Op-Amps

Electrical Characteristics

(V_{DD}=+5V, V_{SS}=0V, V_{CM}=2.5V, $\overline{SHDN} = V_{DD}$, V_{OUT}=V_{DD}/2, R_L=tied to V_{DD}/2, T_A=-40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C. (Note 1))

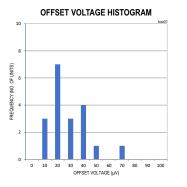
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range		Guaranteed by PSRR test	2.7		5.5	V
Quiescent Supply Current,		V _{DD} = 3.3V		2.2	3.0	
per amplifier		V _{DD} = 5V		2.5	3.3	mA
Power-Up time		V _{DD} = 0 to 5V step, V _{OUT} -> 2.5V ±1%		13		μs
Shutdown Supply Current		Overtemperature, to 125°C		0.4	1.7	μA
		At 25°C		30	150	
Input Offset Voltage		Over the full temperature range			450	μV
Input Offset Drift		Over temperature, to 125°C		0.3	3	µV/°C
Input Bias Current (Note 2)				1	2300	pА
Input offset Current (Note 2)				0.2	500	pА
Differential Input Resistance				1000		GΩ
Input Capacitance		Either input, over entire CMIR		10		pF
		Guaranteed by CMRR test, at 25°C	-0.2		V _{DD} - 1.5	
Input Common Mode Range		Guaranteed by CMRR test, full temperature range	-0.1		V _{DD} - 1.5	V
		DC, -0.2V < CMIR < V _{DD} - 1.5V, at 25°C	90	109		
Common Mode Rejection Ratio		DC, -0.1V < CMIR < V _{DD} - 1.5V, full temperature range	89			dB
Common Mode Rejection Ratio, AC		100 mV _{P-P} 1MHz, with DC in 0V to V _{DD} - 2V range		60		dB
Power Supply Rejection Ratio, DC		DC, 2.7V < V _{DD} < 5.5V	90	107		dB
Power Supply Rejection Ratio, AC		AC, 100mV _{PP} 1MHz, superimposed on VDD		40		dB
		R_L = 10kΩ to V _{DD} /2, V _{OUT} = 200mV to V _{DD} -250mV	93	114		
Open-Loop Gain		R_L = 1kΩ to V _{DD} /2, V _{OUT} = 200mV to V _{DD} -250mV	87	109		dB
		R_L = 500Ω to V _{DD} /2, V _{OUT} = 200mV to V _{DD} -250mV	85	107		
		$R_L = 10k\Omega$ to $V_{DD}/2$, $V_{DD} - V_{OH}$		3	10	
Output Voltage Swing High		$R_L = 1k\Omega$ to $V_{DD}/2$, $V_{DD} - V_{OH}$		30	60	mV
		$R_L = 500\Omega$ to $V_{DD}/2$, $V_{DD} - V_{OH}$		60	120	
Output Voltage Swing Low		$R_L = 10k\Omega$ to $V_{DD}/2$, $V_{DD} - V_{SS}$		3	10	mV
		$R_L = 1k\Omega$ to $V_{DD}/2$, $V_{OL} - V_{SS}$		30	60	
		$R_L = 500\Omega$ to $V_{DD}/2$, $V_{OL} - V_{SS}$		60	120	
Short-Circuit Current		Shorted to either power supply		48		mA
Output Leakage Current When Shut Down		V _{SS} < V _{OUT} < V _{DD}		0.01	1	μA
Shut-Down Input Low level					0.3 x V _{DD}	V

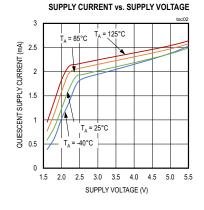
10MHz/42MHz Low Noise, Low Bias Op-Amps

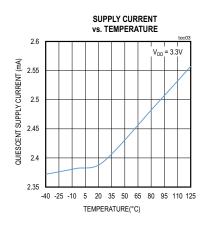
Electrical Characteristics (continued)

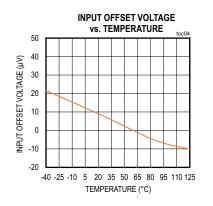
 $(V_{DD}=+5V, V_{SS}=0V, V_{CM}=2.5V, \overline{SHDN}=V_{DD}, V_{OUT}=V_{DD}/2, R_{L}=tied \ to \ V_{DD}/2, T_{A}=-40^{\circ}C \ to \ +125^{\circ}C, \ unless \ otherwise \ noted. Typical values are at T_{A}=+25^{\circ}C. \ (Note \ 1) \)$

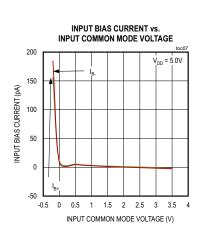
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Shut-Down Input High level			0.7 x V _{DD}			V
Shut-Down Input Bias				0.01	1	μA
-3dB Bandwidth		Unity-gain version, Av = +1		10		N 41 I-
-30B Bandwidth		Gain of 5 stable, Av = +5		42		- MHz
Dhaaa Margin		Unity-gain version, Av = +1		70		0
Phase Margin		Gain of 5 stable, Av = +5		80		
Gain Margin				12		dB
Claur Data		Unity-gain version, Av = +1		3		1////
Slew Rate		Gain of 5 stable, Av = +5		10		- V/μs
		Unity-gain version, Av = +1, to 0.01%, V _{OUT} = 2V step		2		
Settling Time		Gain of 5 Stable, Av = +5, to 0.01%, V _{OUT} = 2V step		2		- µs
Stable Capacitive Load		Guaranteed stability over all conditions		50		pF
Integrated 1/f Input Voltage Noise		0.1Hz to 10Hz		1.7		μV _{PP}
		f = 10Hz		260		nV/√Hz
Input Voltage Noise Density		f = 1kHz		5.5		
		f = 30kHz		4.2		
Input Current Noise Density		f = 1kHz		0.5		fA/√Hz
		Unity-gain version, Av = +1, V_{OUT} = 4 V_{PP} , 10k Ω to GND, 1kHz		-114.0		
		Unity-gain version, Av = +1, V_{OUT} = 4 V_{PP} , 10k Ω to GND, 20kHz		-103.1		
		Unity-gain version, Av = +1, V _{OUT} = 4V _{PP} , 1kΩ to GND, 1kHz		-114.0		dBc
Total Harmonic Distortion + Noise		Unity-gain version, Av = +1, V _{OUT} = 4V _{PP} , 1kΩ to GND, 20kHz		-100.0		
		Gain of 5 version, Av = +5, V_{OUT} = 4 V_{PP} , 10k Ω to GND, 1kHz		-108.0		
		Gain of 5 version, $Av = +5$, $V_{OUT} = 4V_{PP}$, 10k Ω to GND, 20kHz		-110		
		Gain of 5 version, $Av = +5$, $V_{OUT} = 4V_{PP}$, 1k Ω to GND, 1kHz		-106.0		
		Gain of 5 version, Av = +5, V_{OUT} = 4 V_{PP} , 1k Ω to GND, 20kHz		-110		
Electromagnetic Interference Rejection Ratio		V _{RF_PP} = 100mV, F = 900MHz to 2400MHz		55		dB

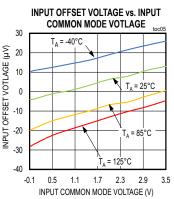

Note 1: Limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.

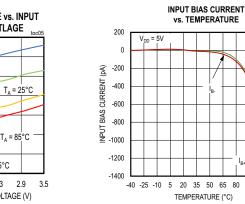

2: Guaranteed by design and bench characterization.

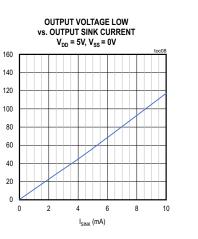

10MHz/42MHz Low Noise, Low Bias Op-Amps

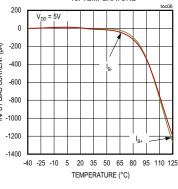

Typical Operating Characteristics

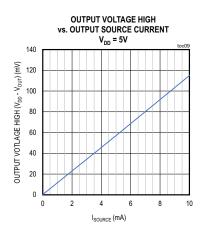

 V_{DD} = +5V, V_{SS} = 0V, V_{CM} = $V_{DD}/2$, R_L = 10k Ω to $V_{DD}/2$, C_L =10pF to GND, T_A = +25°C, unless otherwise noted.



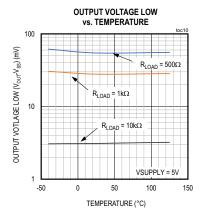


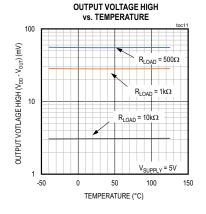


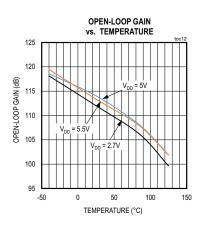




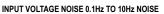
OUTPUT VOTLAGE LOW (V_{OUT} - V_{SS}) (mV)

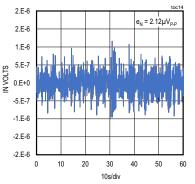


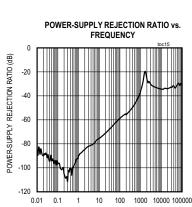


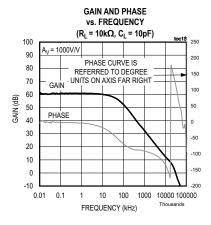

10MHz/42MHz Low Noise, Low Bias Op-Amps

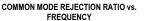
Typical Operating Characteristics (continued)

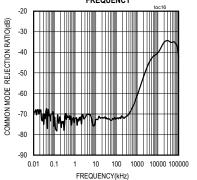

 V_{DD} = +5V, V_{SS} = 0V, V_{CM} = $V_{DD}/2$, R_L = 10k Ω to $V_{DD}/2$, C_L =10pF to GND, T_A = +25°C, unless otherwise noted.

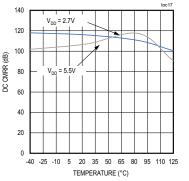




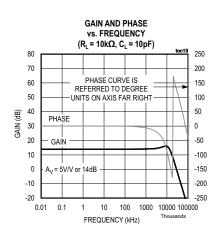


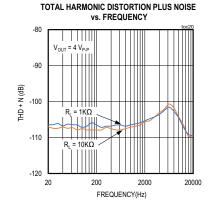


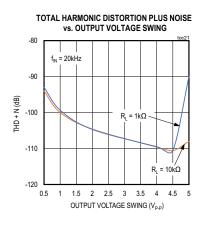


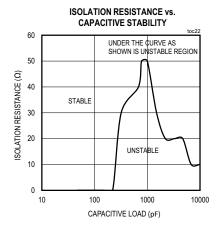

FREQUENCY(kHz)

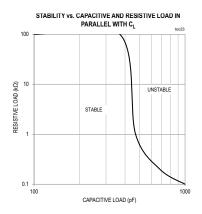
COMMON MODE REJECTION RATIO vs. TEMPERATURE

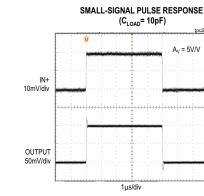


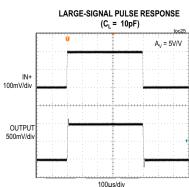


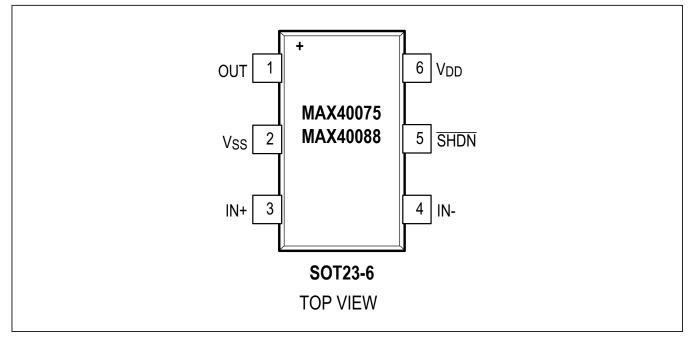

10MHz/42MHz Low Noise, Low Bias Op-Amps


Typical Operating Characteristics (continued)


 V_{DD} = +5V, V_{SS} = 0V, V_{CM} = $V_{DD}/2$, R_L = 10k Ω to $V_{DD}/2$, C_L =10pF to GND, T_A = +25°C, unless otherwise noted.







oc24

10MHz/42MHz Low Noise, Low Bias Op-Amps

Pin Configurations

Pin Description

Р	IN	NAME	FUNCTION	
SOT23	6-WLP	NAME		
1	A3	OUT	Amplifier Output	
2	A2	V _{SS}	Negative Supply. Connect to ground for single-supply operation.	
3	A1	IN+	Non-Inverting Amplifier Input	
4	B1	IN-	Inverting Amplifier Input	
5	B2	SHDN	Shutdown, Active Low. Connect to V_{DD} for normal operation (amplifier enabled)	
6	B3	V _{DD}	Positive Supply. Connect 0.1µF and 4.7µF from V_{DD} to V_{SS} .	

Functional Diagrams

Internal ESD protection

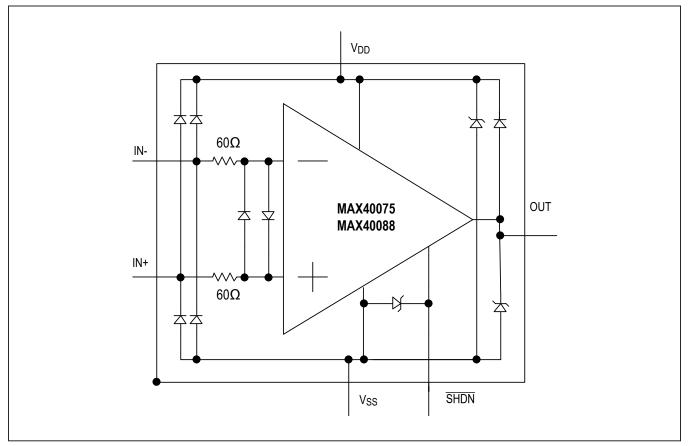


Figure 1. Internal ESD protection

10MHz/42MHz Low Noise, Low Bias Op-Amps

Detailed Description

The MAX40075/MAX40088 single-supply operational amplifiers feature ultra-low noise and distortion. Their low distortion and low noise make them ideal for use as pre-amplifiers in wide dynamic range applications, such as 16-bit analog-to-digital converters. Their high input impedance and low noise are also useful for signal conditioning of high-impedance sources, such as piezo-electric transducers.

These devices have true rail-to-rail output operation, drive output resistive loads as low as $1k\Omega$ while maintaining DC accuracy and can drive capacitive loads up to 200pF without any oscillation. The input common-mode voltage range extends from 0.2V below V_{SS} to (V_{DD} - 1.5V). The push-pull output stage maintains excellent DC characteristics, while delivering up to ±20 mA of source/sink output current.

The MAX40075 is unity-gain stable, while the MAX40088 is a decompensated version that has higher slew rate and is stable for Gain \ge 5V/V. Both devices feature a low-power shutdown mode, which reduces the supply current to 0.1µA and places amplifiers outputs into a high-impedance state.

Low Noise

The amplifiers input-referred voltage noise density is dominated by flicker noise (also known as 1/f noise) at lower frequencies and by thermal noise at higher frequencies. Overall thermal noise contribution is affected by the parallel combination of resistive feedback network ($R_F||R_G$) depicted in Figure 2. These resistors should be reduced in cases where system bandwidth is large and thermal noise is dominant. Noise contribution factor can be reduced with increased gain settings.

For example, the input noise voltage density(e_N) of the circuit with $R_F = 100k\Omega$, $R_G = 10k\Omega$ (in Figure 2) with Gain = 10V/V non-inverting configuration is $e_N = 12nV/\sqrt{Hz}$.

 e_N can be reduced to 6nV/√Hz by choosing R_F = 10kΩ, R_G = 1kΩ (in Figure 2) with Gain = 10V/V, as before, but at the expense of higher current consumption and higher distortion. Having a gain of 100V/V with R_F = 100kΩ, R_G = 1kΩ (in Figure 2), input referred voltage noise density is still a low 6nV/√Hz.

Low Distortion

Many factors can affect the noise and distortion performance of the amplifier based on the design choices made. The following guidelines offer valuable information on the impact of design choices on Total Harmonic Distortion (THD). Choosing correct feedback and gain resistor values for a particular application can be a very important factor in reducing THD. In general, the smaller the closed-loop gain, the smaller the THD generated, especially when driving heavy resistive loads (e.g., smaller resistive load with higher output current). Operating the device near or above the full-power bandwidth significantly degrades distortion.

Referencing the load to either supply also improves the amplifier distortion performance, because only one of the MOSFETs of the push-pull output stage drives the output. Referencing the load to mid-supply increases the amplifier distortion for a given load and feedback setting (see the *Total Harmonic Distortion vs. Frequency* graph in *Typical Operating Characteristics*).

For gains \geq 5V/V, the decompensated MAX40088 deliver the best distortion performance as they have a higher slew rate and provide a higher amount of loop gain for a given closed-loop gain setting. Capacitive loads below 100pF do not significantly affect distortion results. Distortion performance is relatively constant over supply voltages.

Using a Feed-Forward Compensation Capacitor, Cz

The amplifier's input capacitance is 10pF and if the resistance seen by the inverting input is large (in Figure 2) as a result of feedback network, this resistance and capacitance combination can introduce a pole within the amplifier's bandwidth resulting in reduced phase margin. Compensate the reduced phase margin by introducing a feed-forward capacitor (C_Z) between the inverting input and the output (shown in Figure 2). This effectively cancels the pole from the inverting input of the amplifier. Choose the value of C_Z as follows:

$$C_{Z} = 10 \times (R_{F}/R_{G}) [pF]$$

In the unity-gain stable MAX40075, the use of right C_Z is most important for closed loop non-inverting gain $A_V = +2V/V$, and inverting gain $A_V = -1V/V$.

In the decompensated MAX40088, C_Z is most important for closed loop gain A_V = +10V/V.

Using a slightly smaller C_Z than suggested by the formula above achieves a higher bandwidth at the expense of reduced phase and gain margin. As a general guideline, consider using C_Z for cases where $R_G||R_F$ is greater than 20k Ω (for MAX40075) and greater than 5k Ω (for MAX40088).

10MHz/42MHz Low Noise, Low Bias Op-Amps

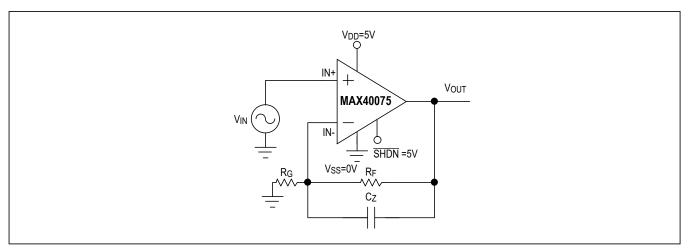


Figure 2. Adding Feed-Forward Compensation

Applications Information

Applications Information

The MAX40075/MAX40088 combine good driving capability with ground-sensing input and rail-to-rail output operation. With their low distortion and low noise, these devices are ideal for use in ADC buffers, DAC output buffers, medical instrumentation systems and other noise-sensitive applications.

Ground-Sensing and Rail-to-Rail Outputs

The common-mode input range of these devices extends below ground over temperature that offers excellent common mode rejection and can be used in low side current sensing applications. These devices are guaranteed not to undergo phase-reversal when the input is overdriven over input common mode voltage range as shown in Figure 3.

<u>Figure 4</u> showcases the true rail-to-rail output operation of the amplifier, configured with $A_V = 5V/V$. The output swings to within 8mV of the supplies with a 10k Ω load, making the devices ideal in low-supply voltage applications.

Power Supplies and Layout

The MAX40075/MAX40088 operate from a single +2.7V to +5.5V power supply or from dual supplies of ±1.35V to ±2.75V. For single-supply operation, bypass the V_{DD} power supply pin with a 0.1µF ceramic capacitor placed

close to the V_{DD} pin. If operating from dual supplies, bypass both V_{DD} and V_{SS} supply pins with 0.1µF ceramic capacitor to ground. If additional decoupling is needed add another 4.7μ F or 10µF where supply voltage is applied on PCB.

Good layout improves performance by decreasing the amount of stray capacitance and noise at the op amp inputs and output. To decrease stray capacitance, minimize PC board trace lengths and resistor leads, and place external components close to the op amp's pins.

Typical Application Circuit

The *Typical Application Circuit* shows the single MAX40075 configured as an output buffer for the MAX5541 16-bit DAC. Because the MAX5541 has an unbuffered voltage output, the input bias current of the op amp used must be less than 6nA to maintain 16-bit accuracy. This family of amplifiers have an input bias current of only 2.3nA (max) over temperature, virtually eliminating this as a source of error. In addition, the MAX40075 has excellent open-loop gain and common-mode rejection, making this an excellent output buffer amplifier.

10MHz/42MHz Low Noise, Low Bias Op-Amps

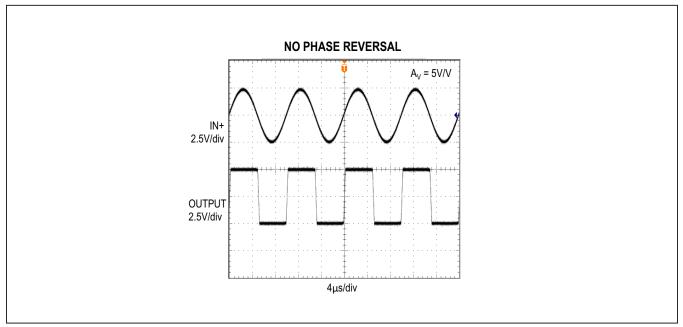


Figure 3. Scope Plot Showing Overdriven Input with No Phase Reversal

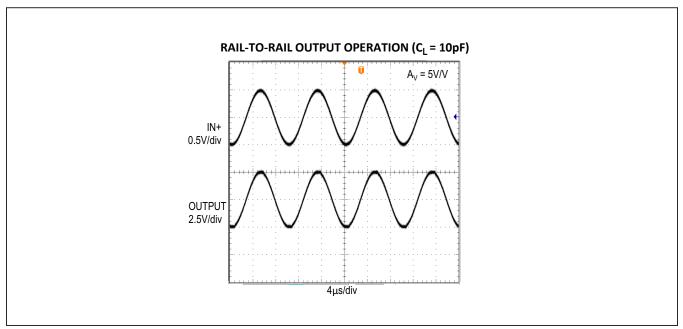
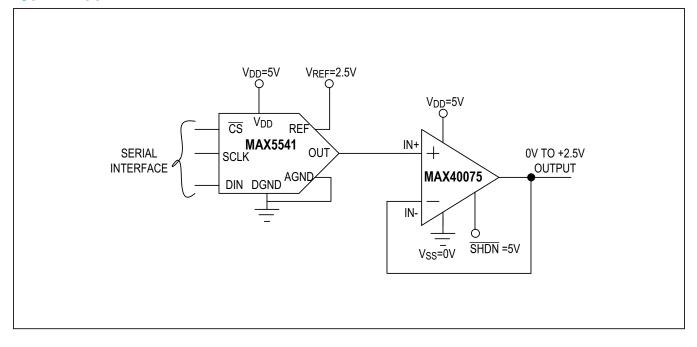



Figure 4. Rail-to-Rail Output Operation with $10K\Omega$ and AV = 5V/VI

10MHz/42MHz Low Noise, Low Bias Op-Amps

Typical Application Circuit

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE	STABLE GAIN (V/V)	BW	TOP MARK
MAX40075AUT/V+T	-40°C to +125°C	6-SOT23	1	10MHz	ACVK
MAX40075ANT+T*	-40°C to +125°C	6-WLP	1	10MHz	—
MAX40075AUT+T	-40°C to +125°C	6-SOT23	1	10MHz	ACVD
MAX40088ANT+T*	-40°C to +125°C	6-WLP	5	42MHz	—
MAX40088AUT+T	-40°C to +125°C	6-SOT23	5	42MHz	ACVE

* Future Product—Contact Maxim for availability.

+ Denotes a lead(Pb)-free/RoHS-compliant package.

T Denotes tape-and-reel.

Chip Information

PROCESS: BICMOS

10MHz/42MHz Low Noise, Low Bias Op-Amps

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/17	Initial release	—
1	7/17	Updated Typical Operating Characteristics section	5, 6
2	12/17	Updated Ordering Information table	13
3	9/18	Updated Package Information and Ordering Information	2, 13

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.