

SNAS254B-OCTOBER 2006-REVISED APRIL 2017

LM98714

LM98714 Three Channel, 16-Bit, 45 MSPS Analog Front End With LVDS/CMOS Output and Integrated CCD/CIS Sensor Timing Generator

Features 1

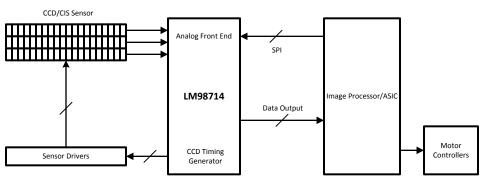
Texas

Instruments

- LVDS/CMOS Outputs
- LVDS/CMOS Pixel Rate Input Clock or ADC Input Clock
- CDS or S/H Processing for CCD or CIS Sensors
- Independent Gain/Offset Correction for Each Channel
- Digital Black Level Correction Loop for Each Channel
- Programmable Input Clamp Voltage
- Flexible CCD/CIS Sensor Timing Generator
- **Key Specifications**
 - Maximum Input Level: 1.2 or 2.4 Volt Modes (Both with + or – Polarity Option)
 - ADC Resolution: 16-Bit
 - ADC Sampling Rate: 45 MSPS
 - INL: ±23 LSB (Typ)
 - Channel Sampling Rate: 15/22.5/30 MSPS
 - PGA Gain Steps: 256 Steps
 - PGA Gain Range: 0.7 to 7.84x
 - Analog DAC Resolution: ±9 Bits
 - Analog DAC Range: ±300 mV or ±600 mV
 - Digital DAC Resolution: ±6 Bits
 - Digital DAC Range: -1024 LSB to + 1008 LSB
 - SNR: -74dB (at 0 dB PGA Gain)
 - Power Dissipation: 505 mW (LVDS) 610 mW (CMOS)
 - Operating Temp: 0 to 70°C
 - Supply Voltage: 3.3 V Nominal (3.0 V to 3.6 V Range)

2 Applications

- **Multi-Function Peripherals** •
- **Facsimile Equipment**
- Flatbed or Handheld Color Scanners •
- **High-Speed Document Scanner**


3 Description

The LM98714 is a fully integrated, high performance 16-Bit, 45 MSPS signal processing solution for digital color copiers, scanners, and other image processing applications. High-speed signal throughput is achieved with an innovative architecture utilizing Correlated Double Sampling (CDS), typically employed with CCD arrays, or Sample and Hold (S/H) inputs (for Contact Image Sensors and CMOS image sensors). The signal paths utilize 8 bit Programmable Gain Amplifiers (PGA), a ±9-Bit offset correction DAC and independently controlled Digital Black Level correction loops for each input. The PGA and offset DAC are programmed independently allowing unique values of gain and offset for each of the three inputs. The signals are then routed to a 45 MHz high performance analog-to-digital converter (ADC). The fully differential processing channel shows exceptional noise immunity, having a very low noise floor of -74dB. The 16-bit ADC has excellent performance LM98714 dynamic making the transparent in the image reproduction chain.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM98714	TSSOP (48)	12.50 mm × 6.1 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

System Block Diagram

Features 1

Applications 1 Description 1

Revision History..... 2 Pin Configuration and Functions...... 3

6.1 Absolute Maximum Ratings 5 ESD Ratings......5

6.7 Typical Characteristics 11

Detailed Description 12 7.1 Overview 12

Recommended Operating Conditions 5

1

2

3 4

5 6

7

6.2

6.3

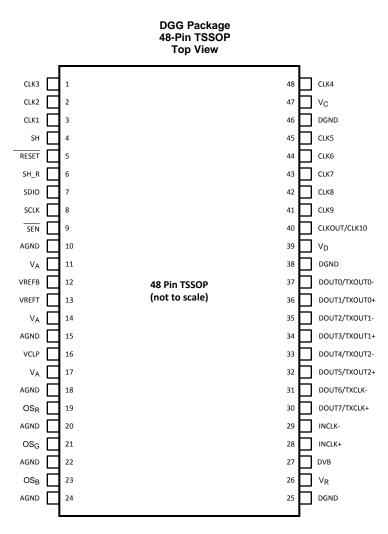
2

Table of Contents

	7.2	Functional Block Diagram	12
	7.3	Feature Description	13
	7.4	Device Functional Modes	53
	7.5	Programming	60
	7.6	Register Maps	62
8	Арр	lication and Implementation	87
	8.1	Typical Application	87
9	Dev	ice and Documentation Support	88
	9.1	Documentation Support	88
	9.2	Receiving Notification of Documentation Updates	88
	9.3	Community Resources	88
	9.4	Trademarks	88
	9.5	Electrostatic Discharge Caution	88
	9.6	Glossary	88
10	Med	hanical, Packaging, and Orderable	
	Info	rmation	88

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


C	hanges from Revision A (January 2014) to Revision B	Page
•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Changed the maximum values for the CMOS clock high and low input current parameters in the <i>Electrical Characteristics</i> table	6
C	hanges from Original (October 2006) to Revision A	Page
•	Added content to complete full data sheet.	1

STRUMENTS www.ti.com

EXAS

5 Pin Configuration and Functions

Pin Functions

	PIN	I/O ⁽¹⁾	TYPE ⁽¹⁾	RES. ⁽¹⁾	DESCRIPTION
NO.	NAME	1/0	TTPE	RE5.07	DESCRIPTION
1	CLK3	0	D	PU	Configurable sensor control output.
2	CLK2	0	D	PD	Configurable sensor control output.
3	CLK1	0	D	PU	Configurable sensor control output.
4	SH	0	D	PD	Sensor - Shift or transfer control signal for CCD and CIS sensors.
5	RESET	I	D	PU	Active-low master reset. NC when function not being used.
6	SH_R	I	D	PD	External request for an SH pulse.
7	SDIO	I/O	D		Serial Interface Data Input
8	SCLK	I	D	PD	Serial Interface shift register clock.
9	SEN	I	D	PU	Active-low chip enable for the Serial Interface.
10	AGND	—	Р	—	Analog ground return.
11	VA	_	Р	—	Analog power supply. Bypass voltage source with $4.7\mu F$ and pin with $0.1\mu F$ to AGND.
12	VREFB	0	А	—	Bottom of ADC reference. Bypass with a 0.1µF capacitor to ground.
13	VREFT	0	Α	_	Top of ADC reference. Bypass with a $0.1 \mu F$ capacitor to ground.
14	V _A	_	Р	_	Analog power supply. Bypass voltage source with 4.7 μF and pin with 0.1 μF to AGND.
15	AGND	—	Р	—	Analog ground return.

(1) I = Input, O = Output, IO = Bi-directional, P = Power, D = Digital, A = Analog, PU = Pullup with an internal resistor, PD = Pulldown with an internal resistor.

LM98714 SNAS254B-OCTOBER 2006-REVISED APRIL 2017

www.ti.com

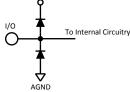
Texas Instruments

Pin Functions (continued)

NO.	PIN NAME	I/O ⁽¹⁾	TYPE ⁽¹⁾	RES. ⁽¹⁾	DESCRIPTION
16	VCLP	ю	A	_	Input Clamp Voltage. Normally bypassed with a 0.1μ F, and a 4.7μ F capacitor to AGND. An external reference voltage may be applied to this pin.
16	VCLP	ю	А	_	Input Clamp Voltage. Normally bypassed with a $0.1\mu F$, and a $10\mu F$ capacitor to AGND. An external reference voltage may be applied to this pin.
17	V _A	—	Р	_	Analog power supply. Bypass voltage source with $4.7\mu F$ and pin with $0.1\mu F$ to AGND.
18	AGND	_	Р	—	Analog ground return.
19	OS _R	I	А	—	Analog input signal. Typically sensor Red output AC-coupled through a capacitor.
20	AGND		Р	—	Analog ground return.
21	OS _G	I	А	—	Analog input signal. Typically sensor Green output AC-coupled through a capacitor.
22	AGND		Р	—	Analog ground return.
23	OS _B	I	А	—	Analog input signal. Typically sensor Blue output AC-coupled through a capacitor.
24	AGND	_	Р	—	Analog ground return.
25	DGND	—	Р	—	Digital ground return.
26	V _R	-	Р	_	Power supply input for internal voltage reference generator. Bypass this supply pin with a $0.1 \mu\text{F}$ capacitor.
27	DVB	0	D	—	Digital Core Voltage bypass. Not an input. Bypass with 0.1µF capacitor to DGND.
28	INCLK+	I	D	_	Clock Input. Non-Inverting input for LVDS clocks or CMOS clock input. CMOS clock is selected when pin 29 is held at DGND, otherwise clock is configured for LVDS operation.
29	INCLK-	I	D	—	Clock Input. Inverting input for LVDS clocks, connect to DGND for CMOS clock.
30	DOUT7/ TXCLK+	0	D	_	Bit 7 of the digital video output bus in CMOS Mode, LVDS Frame Clock+ in LVDS Mode.
31	DOUT6/ TXCLK-	0	D	_	Bit 6 of the digital video output bus in CMOS Mode, LVDS Frame Clock- in LVDS Mode.
32	DOUT5/ TXOUT2+	0	D		Bit 5 of the digital video output bus in CMOS Mode, LVDS Data Out2+ in LVDS Mode.
33	DOUT4/ TXOUT2-	0	D	_	Bit 4 of the digital video output bus in CMOS Mode, LVDS Data Out2- in LVDS Mode.
34	DOUT3/ TXOUT1+	0	D	_	Bit 3 of the digital video output bus in CMOS Mode, LVDS Data Out1+ in LVDS Mode.
35	DOUT2/ TXOUT1-	0	D	_	Bit 2 of the digital video output bus in CMOS Mode, LVDS Data Out1- in LVDS Mode.
36	DOUT1/ TXOUT0+	0	D	_	Bit 1 of the digital video output bus in CMOS Mode, LVDS Data Out0+ in LVDS Mode.
37	DOUT0/ TXOUT0-	0	D	_	Bit 0 of the digital video output bus in CMOS Mode, LVDS Data Out0- in LVDS Mode.
38	DGND	_	Р	_	Digital ground return.
39	V _D	_	Р	_	Power supply for the digital circuits. Bypass this supply pin with 0.1µF capacitor. A single 4.7µF capacitor should be used between the supply and the VD, VR and VC pins.
40	CLKOUT/ CLK10	0	D	PD	Output clock for registering output data when using CMOS outputs, or configurable sensor control output.
41	CLK9	0	D	PD	Configurable sensor control output.
42	CLK8	0	D	PD	Configurable sensor control output.
43	CLK7	0	D	PD	Configurable sensor control output.
44	CLK6	0	D	PU	Configurable sensor control output.
45	CLK5	0	D	PD	Configurable sensor control output.
46	DGND	—	Р	_	Digital ground return.
47	Vc	—	Р	—	Power supply for the sensor control outputs. Bypass this supply pin with $0.1\mu F$ capacitor.
48	CLK4	0	D	PD	Configurable sensor control output.

6 Specifications

6.1 Absolute Maximum Ratings


See $^{\left(1\right)}$ and $^{\left(2\right)}$

	MIN	MAX	UNIT
Supply voltage (VA,VR,VD,VC)		4.2	V
Voltage on any input pin (not to exceed 4.2 V) ⁽³⁾	-0.3	VA + 0.3	V
Voltage on any output pin (except DVB and not to exceed 4.2 V)	-0.3	VA + 0.3	V
DVB output pin voltage		2	V
Input current at any pin other than supply pins ⁽⁴⁾		±25	mA
Package input current (except supply pins) ⁽⁴⁾		±50	mA
Package dissipation at $T_A = 25^{\circ}C^{(5)}$		1.89	W
Maximum junction temperature (T _A)		150	°C
Storage temperature, T _{stg}	-65	150	C°

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are measured with respect to AGND = DGND = 0 V, unless otherwise specified.

(3) The analog inputs are protected as shown below. Input voltage magnitudes beyond the supply rails will not damage the device, provided the current is limited per note 3. However, input errors will be generated If the input goes above VA and below AGND.

- (4) When the input voltage (V_{IN}) at any pin exceeds the power supplies (V_{IN} < GND or V_{IN} > V_A or V_D), the current at that pin should be limited to 25 mA. The 50 mA maximum package input current rating limits the number of pins that can simultaneously safely exceed the power supplies with an input current of 25 mA to two.
- (5) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA} and the ambient temperature, T_A. The maximum allowable power dissipation at any temperature is P_D = (T_{JMAX} T_A)/θ_{JA}. The values for maximum power dissipation listed above will be reached only when the device is operated in a severe fault condition (for example, when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions should always be avoided.

6.2 ESD Ratings

			VALUE	UNIT
V	Flaatrootatia diaabarga	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2500	V
V(ESD)	Electrostatic discharge	Machine model (MM)	250	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

See (1)

	MIN	NOM MAX	UNIT
All supply voltages	3	3.6	V
Operating temperature	0	70	°C

(1) All voltages are measured with respect to AGND = DGND = 0 V, unless otherwise specified.

SNAS254B-OCTOBER 2006-REVISED APRIL 2017

LM98714

6.4 Thermal Information

		LM98714	
	THERMAL METRIC ⁽¹⁾	DGG (TSSOP)	UNIT
		48 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	66	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	—	°C/W
R_{\thetaJB}	Junction-to-board thermal resistance	—	°C/W
ΨJT	Junction-to-top characterization parameter	—	°C/W
ΨЈВ	Junction-to-board characterization parameter	—	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

The following specifications apply for VA = VD = VR = VC = 3.3 V, C_L = 10 pF, and f_{INCLK} = 15 MHz, T_A = 25°C, unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
CMOS I	Digital Input DC Specifications (RESE	rb, SH_R, SCLK, SENb)				
V _{IH}	Logical 1 input voltage		2			V
V _{IL}	Logical 0 input voltage				0.8	V
		$\overline{\text{RESET}}, V_{\text{IH}} = VD$		235		nA
I _{IH}	Logical 1 input current	SH_R, SCLK, $V_{IH} = VD$		70		μA
		SEN, V _{IH} = VD		130		nA
		RESET, VIL = DGND		70		μA
IIL	Logical 0 input current	SH_R, SCLK, VIL = DGND		235		nA
		SEN, VIL = DGND		70		μA
CMOS I	Digital Output DC Specifications (SH, 0	CLK1 to CLK10, CMOS Data Outputs)				
V _{OH}	Logical 1 output voltage	$I_{OUT} = -0.5 \text{ mA}$	2.95			V
V _{OL}	Logical 0 output voltage	I _{OUT} = 1.6 mA			0.25	V
		V _{OUT} = DGND		16		0
l _{os}	Output short circuit current	V _{OUT} = VD		-20		mA
	CMOS output TRI-STATE current	V _{OUT} = DGND		20		
I _{OZ}		V _{OUT} = VD		-25		nA
CMOS I	Digital Input/Output DC Specifications	(SDIO)				
I _{IH}	Logical 1 input current	V _{IH} = VD		90		nA
IIL	Logical 0 input current	V _{IL} = DGND		90		nA
LVDS/C	MOS Clock Receiver DC Specification	s (INCLK+ and INCLK- Pins)				
V _{IHL}	Differential LVDS clock high threshold voltage	R _L = 100 W, V _{CM} (LVDS Input Common Mode Voltage) = 1.25 V			100	mV
V _{ILL}	Differential LVDS clock low threshold voltage	R _L = 100 W, V _{CM} (LVDS Input Common Mode Voltage) = 1.25 V	-100			mV
V _{IHC}	CMOS clock high threshold voltage	INCLK- = DGND	2			V
V _{ILC}	CMOS clock low threshold voltage	INCLK- = DGND			0.8	V
I _{IHL}	CMOS clock input high current				330	μA
I _{ILC}	CMOS clock input low current				-160	μA
LVDS O	Output DC Specifications	· · · · ·				
V _{OD}	Differential output voltage	R _L = 100 Ω	180	328	450	mV

(1) Typical figures are at $T_A = 25^{\circ}$ C, and represent most likely parametric norms at the time of product characterization. The typical specifications are not ensured.

Electrical Characteristics (continued)

The following specifications apply for VA = VD = VR = VC = 3.3 V, C_L = 10 pF, and f_{INCLK} = 15 MHz, T_A = 25°C, unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OS}	LVDS output offset voltage	R _L = 100 Ω	1.17	1.23	1.3	V
l _{os}	Output short circuit current	V_{OUT} = 0 V, R _L = 100 Ω		7.9		mA
Power Su	Ipply Specifications					
IA	VA analog supply current	VA Normal State	60	97	125	mA
		VA Low Power State (Powerdown)	12	23	32	
		VR Normal State (LVDS Outputs)	30	64	75	mA
IR	VR digital supply current	CMOS Output Data Format	15	47	55	mA
		LVDS Output Data Format with Data Outputs Disabled		47		mA
		LVDS Output Data Format		0.05		mA
ID	VD digital output driver supply current	CMOS Output Data Format (ATE Loading of CMOS Outputs > 50 pF)	12		40	mA
IC	VC CCD timing generator output driver supply current	Typical sensor outputs: SH, CLK1= Φ 1A, CLK2= Φ 2A, CLK3= Φ B, CLK4= Φ C, CLK5=RS, CLK6=CP (ATE Loading of CMOS Outputs > 50 pF)	0.5		12	mA
		LVDS Output Data Format	350	505	650	mW
PWR	Average power dissipation	CMOS Output Data Format (ATE Loading of CMOS Outputs > 50 pF)	380	610	700	mW
Input Sar	npling Circuit Specifications					
V _{IN}	Input voltage level	CDS Gain=1x, PGA Gain=1x		2.3		Vp-р
VIN	input voltage level	CDS Gain=2x, PGA Gain= 1x		1.22		vh-h
		Source Followers Off	50		70	μA
		CDS Gain = 1x OS _x = VA (OS _x = AGND)	(-70)		(-40)	
	Comple and hold made input	Source Followers Off	75		105	
I _{IN_SH}	Sample and hold mode input leakage current	CDS Gain = $2x$ OS _X = VA (OS _X = AGND)	(–105)		(–75)	μA
		Source Followers On	-200	-10	200	nA
		CDS Gain = $2x$ OS _x = VA (OS _x = AGND)	-200	-16	200	
	Sample/hold mode	CDS Gain = 1x		2.5		
C _{SH}	equivalent input capacitance (see Figure 5)	CDS Gain = 2x		4		pF
	(See Figure 5)		-300	7	300	
I _{IN_CDS}	CDS mode input leakage current	Source Followers Off $OS_X = VA (OS_X = AGND)$	-300	(–25)	300	nA
R _{CLPIN}	CLPIN switch resistance (OS _x to VCLP Node in Figure 2)			16	50	Ω
VCLP Re	ference Circuit Specifications	т <u> </u>				
	VCLP DAC resolution			4		Bits
	VCLP DAC step size			0.16		V
	VCLP DAC voltage minimum output	VCLP Config. Register = 0001 0000b	0.14	0.26	0.43	V
V _{VCLP}	VCLP DAC voltage maximum output	VCLP Config. Register = 0001 1111b	2.38	2.68	2.93	V
	Resistor ladder enabled	VCLP Config. Register = 0010 xxxxb	1.54	V _A / 2	1.73	V
I _{SC}	VCLP DAC short circuit output current	VCLP Config. Register = 0001 xxxxb		30		mA

Electrical Characteristics (continued)

The following specifications apply for VA = VD = VR = VC = 3.3 V, C_L = 10 pF, and f_{INCLK} = 15 MHz, T_A = 25°C, unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
Black Le	vel Offset DAC Specifications						
	Resolution			10		Bits	
	Monotonicity		Ensured	by characteriz	zation		
		CDS Gain = 1x		-614			
	Offset Adjustment Range Referred	Minimum DAC Code = 0x000 Maximum DAC Code = 0x3FF		614		mV	
	to AFE Input	CDS Gain = 2x		-307			
		Minimum DAC Code = 0x000 Maximum DAC Code = 0x3FF		307		mV	
	Offset adjustment range referred to	Minimum DAC Code = 0x000	-16000		-18200		
	AFE output	Maximum DAC Code = 0x3FF	16000		18200	LSB	
		CDS Gain = 1x		1.2		mV	
	DAC LSB step size	Referred to AFE Output		(32)		(LSB)	
DNL	Differential nonlinearity		-0.95		3.25	LSB	
INL	Integral nonlinearity		-3.1		2.65	LSB	
PGA Spe	cifications	+ +			Į		
	Gain Resolution			8		Bits	
	Monotonicity		Ensured	by characteriz	zation		
		CDS Gain = 1x	7.18	7.9	8.77	V/V	
	Maximum gain	CDS Gain = 1x	17.1	17.9	18.9	dB	
		CDS Gain = 1x	0.56	0.7	0.82	V/V	
	Minimum gain	CDS Gain = 1x	-5	-3	-1.72	dB	
		Gain (V/V) = (196/(280-PGA Code))					
	PGA function	Gain (dB) = 20LOG10(196/(280- PGA Code))					
		Minimum PGA Gain		3%			
	Channel matching	Maximum PGA Gain		12.7%			
ADC Spe	cifications						
V _{REFT}	Top of reference			2.07		V	
V _{REFB}	Bottom of reference			0.89		V	
V _{REFT} - V _{REFB}	Differential reference voltage		1.07	1.18	1.29	V	
1121 0	Overrange output code			65535			
	Underrange output code			0			
Digital Of	ffset DAC Specifications	1 1					
-	Resolution			7		Bits	
	Digital offset DAC LSB step size	Referred to AFE Output		16		LSB	
	<u> </u>	Min DAC Code =7b0000000		-1024			
	Offset adjustment range	Mid DAC Code =7b1000000		0		LSB	
	referred to AFE output	Max DAC Code = 751111111		1008		200	
Full Char	nnel Performance Specifications						
DNL	Differential nonlinearity		-0.99	0.8 / -0.6	2.55	LSB	
INL	Integral nonlinearity		-73	±23	78	LSB	
			10		10	-00	

Electrical Characteristics (continued)

The following specifications apply for VA = VD = VR = VC = 3.3 V, C_L = 10 pF, and f_{INCLK} = 15 MHz, T_A = 25°C, unless otherwise specified.

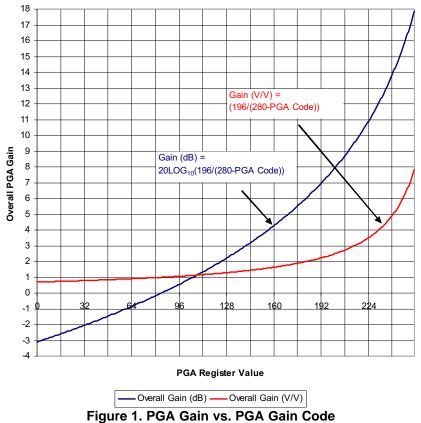
PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT		
	Minimum DCA Cain		-79		dB		
	Minimum PGA Gain		7.2		LSB RMS		
			-74		dB		
Noise floor	PGA Gain = 1x		13	30	LSB RMS		
	Mauimum DOA Cain		-56		dB		
	Maximum PGA Gain		104		LSB RMS		
	Mode 3		47		1.00		
Channel-to-channel crosstalk	Mode 2		16		LSB		

6.6 AC Timing Specifications

The following specifications apply for VA = VD = VR = VC = 3.3 V, $C_L = 10 \text{ pF}$, and $f_{INCLK} = 15 \text{ MHz}$, $T_A = 25^{\circ}C$, unless otherwise specified.

			MIN	TYP ⁽¹⁾	MAX	UNIT	
Input Clo	ock Timing Specifications						
finclk	Input Clock Frequency	Mode 3, INCLK = PIXCLK (Pixel Rate Clock)			15		
		Mode 2, INCLK = PIXCLK (Pixel Rate Clock)			22.5	MHz	
		Mode 1, INCLK = PIXCLK (Pixel Rate Clock)					
		Mode 3, INCLK = ADCCLK (ADC Rate Clock)	5		45		
		Mode 2, INCLK = ADCCLK (ADC Rate Clock)	5		45	MHz	
		Mode 1, INCLK = ADCCLK (ADC Rate Clock)	5		30		
T _{dc}	Input Clock Duty Cycle		40/60%	50/50%	60/40%		
Full Cha	nnel Latency Specifications						
	SH out to first sampled pixel	PIXPHASE0		3			
	Figure 11 (Mode 3)	PIXPHASE1	3 3/7 4 4 3/7			T _{ADC}	
t _{SHFP}	Figure 12 (Mode 2)	PIXPHASE2					
	Figure 13 (Mode 1)	PIXPHASE3					
	3 channel mode pipeline delay Figure 45 (LVDS) Figure 50 (CMOS)	PIXPHASE0		19			
		PIXPHASE1		18 4/7		-	
t _{LAT3}		PIXPHASE2		18		T _{ADC}	
		PIXPHASE3		17 4/7			
	2 channel mode pipeline delay Figure 46 (LVDS) Figure 51(CMOS)	PIXPHASE0		18			
		PIXPHASE1		17 4/7		-	
t _{LAT2}		PIXPHASE2		17		T _{ADC}	
		PIXPHASE3		16 4/7			
t _{LAT1}	1 channel mode pipeline delay Figure 47 (LVDS) Figure 52(CMOS)	PIXPHASE0		16			
		PIXPHASE1		15 4/7		-	
		PIXPHASE2		15		T _{ADC}	
		PIXPHASE3		14 4/7			

(1) Typical figures are at $T_A = 25^{\circ}$ C, and represent most likely parametric norms at the time of product characterization. The typical specifications are not ensured.

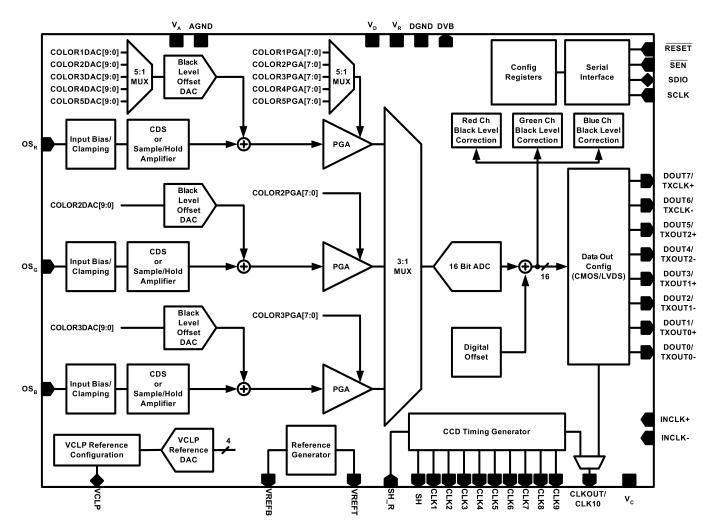

AC Timing Specifications (continued)

The following specifications apply for VA = VD = VR = VC = 3.3 V, C_L = 10 pF, and f_{INCLK} = 15 MHz, T_A = 25°C, unless otherwise specified.

			MIN	TYP ⁽¹⁾	MAX	UNIT
	SH out to first valid data (t _{SHFP} + t _{LATx})	Mode 3		22	22	
t _{SHFD}		Mode 2		21		T_{ADC}
		Mode 1		19		
SH_R Tir	ning Specifications (Figure 41)					
t _{SHR_S}	SH_R setup time		1.28			ns
t _{SHR_H}	SH_R hold time		2.25			ns
LVDS Ou	utput Timing Specifications (Figure 4	4)			i.	
TX _{valid}	TX output data valid window	f _{INCLK} = 45 MHz INCLK = ADCCLK (ADC Rate Clock)	2			ns
TX _{pp0}	TXCLK to pulse position 0			0.013		ns
TX _{pp1}	TXCLK to pulse position 1	LVDS Output		3.093		ns
TX _{pp2}	TXCLK to pulse position 2	Specifications not tested in		6.238		ns
TX _{pp3}	TXCLK to pulse position 3	production. Min/Max ensured by design,		9.613		ns
TX _{pp4}	TXCLK to pulse position 4	characterization and statistical		12.663		ns
TX _{pp5}	TXCLK to pulse position 5	analysis.		15.762		ns
TX _{pp6}	TXCLK to pulse position 6			18.982		ns
	utput Timing Specifications	· ·				
t _{CRDO}	CLKOUT rising edge to CMOS output data	f _{INCLK} = 45 MHz, INCLK = ADCCLK, (ADC Rate Clock)	-2.83		2.7	ns
t _{CFDO}	CLKOUT Falling edge to CMOS output data	f _{INCLK} = 45 MHz, INCLK = ADCCLK, (ADC Rate Clock)	-2.83		2.7	ns
Serial Int	erface Timing Specifications	· · ·				
4		$f_{SCLK} \leq f_{INCLK}$ INCLK = PIXCLK (Pixel Rate Clock) Mode $3/2/1$		15/	22.5/30	MHz
f _{SCLK} Input clock frequency	input clock nequency	$f_{SCLK} \le f_{INCLK}$ INCLK = ADCCLK (ADC Rate Clock) Mode 3/2/1		4	5/45/30	MHz
	SCLK duty cycle			50/50		ns
t _{IH}	Input hold time		1			ns
t _{IS}	Input setup time		4			ns
t _{SENSC}	SCLK start time after SEN low		1.25			ns
t _{SCSEN}	SEN high after last SCLK rising edge		2.82			ns
t _{SENW}	SEN pulse width	INCLK must be active during serial interface commands.	4			T _{INCLK}
t _{OD}	Output delay time			11	14.6	ns
t _{HZ}	Data output to High Z				0.5	T _{SCLK}

6.7 Typical Characteristics

TEXAS INSTRUMENTS


www.ti.com

7 Detailed Description

7.1 Overview

The LM98714 is a 16-bit, three-input, complete Analog Front End (AFE) for digital color copier and Multi-Function Peripheral (MFP) applications. The system block diagram of the LM98714, shown in Functional Block Diagram highlights the main features of the device. Each input has its own Input Bias and Clamping Network which are routed through a selectable Sample/Hold (S/H) or Correlated Double Sampler (CDS) amplifier. A ±9-Bit Offset DAC applies independent offset correction for each channel. A -3 to 17.9dB Programmable Gain Amplifier (PGA) applies independent gain correction for each channel. The LM98714 also provides independent Digital Black Level Correction Feedback Loops for each channel. The Black Level Correction Loop can be configured to run in Manual Mode (where the user inputs their own values of DAC offset) or in Automatic Mode where the LM98714 calculates each channel's Offset DAC value during optical black pixels and then adjusts the Offset register accordingly. The signals are routed to a single high performance 16-bit, 45 MHz analog-to-digital converter.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Input Clock Introduction

The clock input to the LM98714 can be a differential LVDS clock on the INCLK+ and INCLK- pins or a CMOS level clock applied to the INCLK+ pin with the INCLK- pin connected to DGND. The external clock signal format is auto sensed internally. In addition to the two available level formats, the input clock can be applied at the Pixel frequency (PIXCLK) or at the ADC frequency (ADCCLK). The LM98714 can perform internal clock multiplication when a Pixel frequency clock is applied, or no multiplication when an ADC frequency clock is applied. The internal configuration registers need to be written to perform the proper setup of the input clock. Table 1 shows the available input clock configurations for each operating mode.

AFE Mode	Input Clock Type	Internal Multiplier	INCLK Max Freq.	Configuration Register Settings	
INCLK = Pixel Freq. (PIXCLK)		Зx	15 MHz	PIXCLK Configuration: Main Config Reg 1, Bit[2] = 1'b1	
Mode 3	INCLK = ADC Freq. (ADCCLK)	1x	45 MHz	ADCCLK Configuration: Main Config Reg 1, Bit[2] = 1'b0	
Mada 2	INCLK = Pixel Freq. (PIXCLK)	2x	22.5 MHz	PIXCLK Configuration: Main Config Reg 1, Bit[2] = 1'b1	
Mode 2	INCLK = ADC Freq. (ADCCLK)	1x	45 MHz	ADCCLK Configuration: Main Config Reg 1, Bit[2] = 1'b0	
Mode 1	INCLK = Pixel Freq. = ADC Freq (ADCCLK = PIXCLK in Mode 1)	1x	30MHz	Main Config Reg 1, Bit[2] = 1'bx	

7.3.2 Modes of Operation

The LM98714 can be configured to operate in several different operating modes. The following sections are a brief introduction to these modes of operation. A more rigorous explanation of the operating modes is contained in the Modes of Operation section. including input sampling diagrams for each mode as well as a description of the operating conditions.

7.3.2.1 Mode 3 - Three Channel Input/Synchronous Pixel Sampling

 OS_B , OS_G , and OS_R inputs are sampled synchronously at a pixel rate. The sampled signals are processed with each channel's offset and gain adjusted independently via the control registers. The order in which pixels are processed from the input to the ADC is fully programmable and is synchronized by the SH pulse. In this mode, the maximum channel speed is 15MSPS per channel with the ADC running at 45MSPS yielding a three color throughput of 45MSPS.

7.3.2.2 Mode 2 - Two Channel Input/Synchronous Pixel Sampling

Mode 2 is useful for CCD sensors with a Black and White mode with Even and Odd outputs. In its default configuration, Mode 2 samples the Even output via the OS_B channel input, and the Odd output via the OS_G channel input. Sampling of the Even and Odd pixels is performed synchronously at a maximum sample rate of 22.5MSPS per input with the ADC running at 45MSPS.

7.3.2.3 Mode 1a - One Channel Input/One, Two, Three, Four, or Five Color Sequential Line Sampling

In Mode 1a, all pixels are processed through a single input $(OS_R, OS_G, or OS_B)$ chosen through the control register setup. This mode is useful in applications where only one input channel is used. The selected input is programmable through the control register. If more than one color is being sent to the input, the user can configure the OS_R channel to utilize up to five offset and gain coefficients for up to five different lines of color pixels. The SH pulse at the beginning of each line sequences the DAC and PGA coefficients as configured in the control registers. In this mode, the maximum channel speed is 30MSPS per channel with the ADC running at 30MSPS.

7.3.2.4 Mode 1b - One Channel Input Per Line/Sequential Line (Input) Sampling/Three Channel Processing

In Mode 1b the OS_R , OS_G , and OS_B inputs are sampled one input per line with the input selection being sequenced to the next color by an SH pulse. This mode is useful with sensors that output whole lines of pixels of a single color. The order in which the inputs are sampled is fully programmable. Sequencing from one channel to the next is triggered by the SH pulse. The first SH pulse after this mode is set (or reset) sets up the first programmed input for gain and offset and initiates sampling through that input alone. The next SH pulse switches the active input to the second channel indicated by the configuration registers. This sequencing with SH pulses continues to the third input and then continuously loops through the inputs. In this mode, the maximum channel speed is 30MSPS per channel with the ADC running at 30MSPS.

7.3.3 Input Bias and Clamping

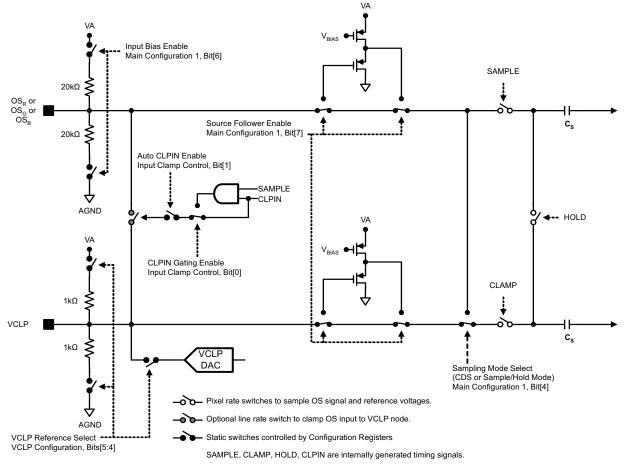


Figure 2. Input Bias and Clamping Diagram

The inputs to the LM98714 are typically AC coupled through a film capacitor and can be sampled in either Sample and Hold Mode (S/H Mode) or Correlated Double Sampling Mode (CDS Mode). In either mode, the DC bias point for the LM98714 side of the AC coupling capacitor is set using the circuit of Figure 2 which can be configured to operate in a variety of different modes.

A typical CCD waveform is shown in Figure 3. Also shown in Figure 3 is an internal signal "SAMPLE" which can be used to "gate" the CLPIN signal so that it only occurs during the "signal" portion of the CCD pixel waveform.

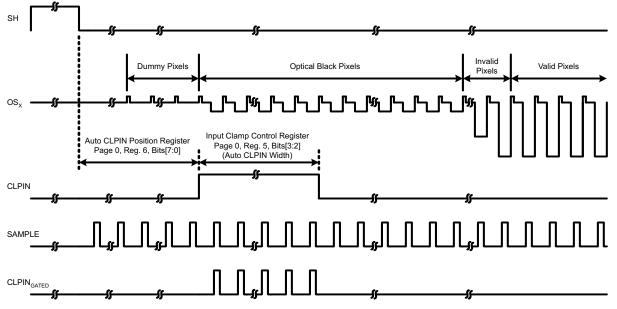


Figure 3. Typical CCD Waveform and LM98714 Input Clamp Signal (CLPIN)

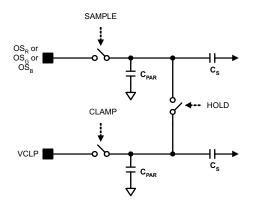


Figure 4. Sample and Hold Mode Simplified Input Diagram

Proper DC biasing of the CCD waveform in Sample and Hold mode is critical for realizing optimal operating conditions. In Sample/Hold mode, the Signal Level of the CCD waveform is compared to the DC voltage on the VCLP pin. In order to fully utilize the range of the input circuitry, it is desirable to cause the Black Level signal voltage to be as close to the VCLP voltage as possible, resulting in a near zero scale output for Black Level pixels.

In Sample/Hold Mode, the DC bias point of the input pin is typically set by actuating the input clamp switch (see Figure 2) during optical black pixels which connects the input pins to the VCLP pin DC voltage. The signal controlling this switch is an auto-generated pulse, CLPIN. CLPIN is generated with a programmable pixel delay with respect to SH and a programmable pixel width. These parameters are available through the serial interface control registers.

Actuating the input clamp will force the average value of the CCD waveform to be centered around the VCLP DC voltage. During Optical Black Pixels, the CCD output has roughly three components. The first component of the pixel is a "Reset Noise" peak followed by the Reset (or Pedestal) Level voltage, then finally the Black Level voltage signal. Taking the average of these signal components will result in a final "clamped" DC bias point that is close to the Black Level signal voltage.

NSTRUMENTS

EXAS

To provide a more precise DC bias point (i.e. a voltage closer to the Black Level voltage), the CLPIN pulse can be "gated" by the internally generated SAMPLE clock. This resulting CLPIN_{GATED} signal is the logical "AND" of the SAMPLE and CLPIN signals as shown in Figure 3. By using the CLPIN_{GATED} signal, the higher Reset Noise peak will not be included in the clamping period and only the average of the Reset Level and Black Level components of the CCD waveform will be centered around VCLP.

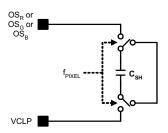


Figure 5. Equivalent Input Switched Capacitance S/H Mode

In Sample and Hold Mode, the impedance of the analog input pins is dominated by the switched capacitance of the CDS/Sample and Hold amplifier. The amplifier switched capacitance, shown as C_S in Figure 4, and internal parasitic capacitances can be estimated by a single capacitor switched between the analog input and the VCLP reference pin for Sample and Hold mode. During each pixel cycle, the modeled capacitor, C_{SH} , is charged to the OS_X-VCLP voltage then discharged. The average input current at the OS_X pin can be calculated knowing the input signal amplitude and the frequency of the pixel. If the application requires AC coupling of the CCD output to the LM98714 analog inputs, the Sample and Hold Mode input bias current may degrade the DC bias point of the coupling capacitor. To overcome this, Input Source Follower Buffers are available to isolate the larger Sample and Hold Mode input bias current is much lower for CDS mode, eliminating the need for the source follower buffers.

7.3.3.1 CDS Mode

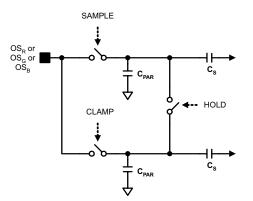


Figure 6. CDS Mode Simplified Input Diagram

Correlated Double Sampling mode does not require as precise a DC bias point as does Sample and Hold mode. This is due mainly to the nature of CDS itself, that is, the Video Signal voltage is referenced to the Reset Level voltage instead of the static DC VCLP voltage. The common mode voltage of these two points on the CCD waveform have little bearing on the resulting differential result. However, the DC bias point does need to be established to ensure the CCD waveform's common mode voltage is within rated operating ranges.

The CDS mode biasing can be performed in the same way as described in the Sample/Hold Mode Biasing section, or, an alternative method is available which precludes the need for a CLPIN pulse. Internal resistor dividers can be switched in across the OS_R , OS_G , and/or OS_B inputs to provide the DC bias voltage.

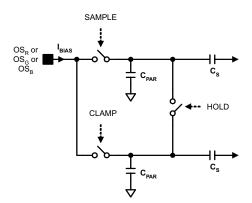


Figure 7. CDS Mode Input Bias Current

Unlike in Sample and Hold Mode, the input bias current in CDS Mode is relatively small. Due to the architecture of CDS switching, the average charge loss or gain on the input node is ideally zero over the duration of a pixel. This results in a much lower input bias current, whose main source is parasitic impedances and leakage currents. As a result of the lower input bias current in CDS Mode, maintaining the DC Bias point the input node over the length of a line will require a much smaller AC input coupling capacitor.

7.3.3.2 Input Source Follower Buffers

The OS_R , OS_G , OS_B inputs each have an optional Source Follower Buffer which can be selected with Main Configuration Register 1, Bit[7]. These source followers provide a much higher impedance seen at the inputs. In some configurations, such as Sample and Hold Mode with AC coupled inputs, the DC bias point of the input nodes must remain as constant as possible over the entire length of the line to ensure a uniform comparison to reference level (VCLP in this case). The Source Followers effectively isolate the AC input coupling capacitor from the switched capacitor network internal to the LM98714's Sample and Hold/CDS Amplifier. This results in a greatly reduced charge loss or gain on the AC Input coupling capacitor over the length of a line, thereby preserving its DC bias point.

The Source Followers should only be used in the 1.2 V input range (i.e. Main Configuration Register 2, Bit[4] = 1, CDS Gain = 2x). Using the Source Followers in the 2.4 V (i.e. Main Configuration Register 2, Bit[4] = 0, CDS Gain = 1x). input range will result in a loss of performance (mainly linearity performance at the high and low ends of the input range).

7.3.3.3 VCLP DAC

The VCLP pin provides the reference level for incoming signals in Sample and Hold Mode. The pin's voltage can be set by one of three sources by writing to the VCLP Configuration Register on register page 0. By default, the VCLP pin voltage is established by an internal resistor divider which sets the voltage to VA/2. The resistor ladder can be disconnected and the pin driven externally by the application.

The most flexible method of setting the VCLP voltage is using the internal VCLP DAC buffer. The DAC is connected by setting the VCLP Configuration register Bit[5:4] to 2b'01. The DAC has a four bit "offset binary" format which is summarized in Table 2. The DAC output has an approximate swing of ± 1.2 V.

VCLP Configuration [3:0]	Typical VCLP Output		
0	-Full Scale		
0111	Mid Scale - LSB		
1000	Mid Scale		
1001	Mid Scale + 1 LSB		
1111	+Full Scale		

Table 2.	VCLP	DAC	Format
----------	------	-----	--------

7.3.4 Coarse Pixel Phase Alignment

Precise placement of the CCD video signal sampling point is a critical aspect in any typical imaging application. Many factors such as logic gate propagation delays and signal skew increase the difficulty in properly aligning the CCD pixel output signals with the AFE input sampling points. The LM98714 provides two powerful features to aid the system level designer in properly sampling the CCD video signal under a large range of conditions. The first feature, discussed in this section, is the Coarse Pixel Phase Alignment block. As the name implies, this block provides a very coarse range of timing adjustment to align the phase of the CCD Pixel output with the phase of the LM98714 sample circuit. The second feature, discussed on the *Internal Sample Timing* section, is the block which is designed for fine tuning of the sampling points within the selected Coarse Pixel Alignment Phase. A small portion of a typical imaging application is shown in Figure 8.

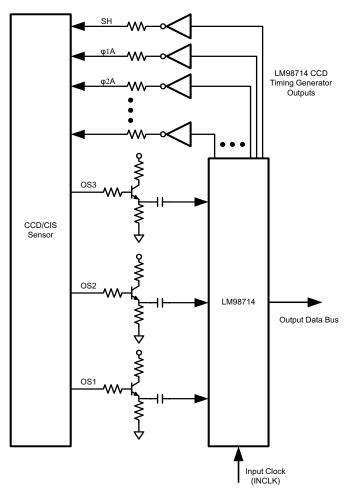
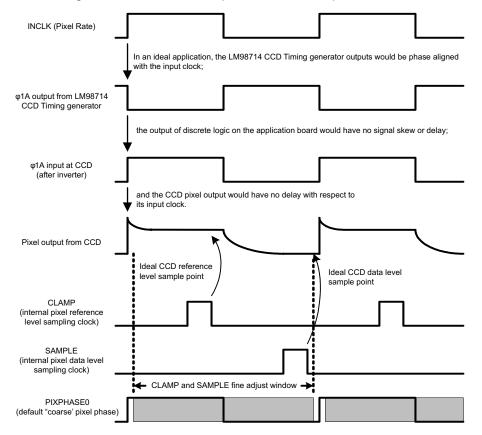



Figure 8. Typical AFE/CCD Interface

As shown in the diagram, the LM98714 provides the timing signals to drive the CCD using external logic gates to drive the high capacitance CCD clock pins. The pixels are shifted out of the CCD, through the emitter follower buffers and received by the LM98714 inputs for processing.

In an ideal application, depicted in Figure 9, the Pixel output signal would be in phase with the timing signals that drove the CCD. The LM98714 input sampling clocks (CLAMP and SAMPLE) are adjustable within a pixel period. By default, the pixel period (or pixel "phase") is defined to be in line with the input clock. As shown in the ideal case in Figure 9, CLAMP and SAMPLE can be properly adjusted to their ideal positions within the pixel phase, shown below at the stable region near the end of the pedestal and data phases.

By default, the LM98714's internal sampling clocks (CLAMP and SAMPLE) are adjustable within PIXPHASE0, an internal pixel rate clock which is in phase with the input clock.

Figure 9. Clock Alignment in an Ideal Application

NSTRUMENTS

FXAS

In a real system however, propagation delays exist in all stages of the signal chain. These propagation delays will lead to a shift in the CCD Pixel outputs with respect to the LM98714 input clock. The phase shift of the CCD Pixel output, demonstrated in Figure 10, can lead to significant sample timing issues if not properly corrected.

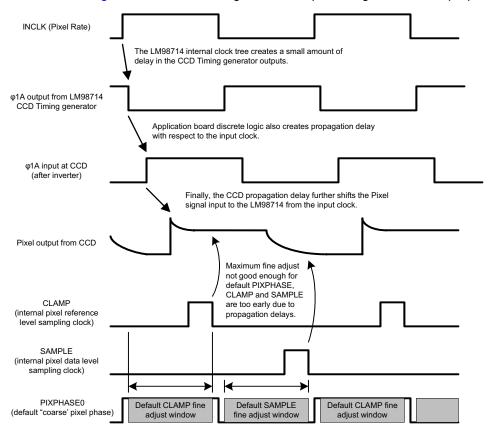
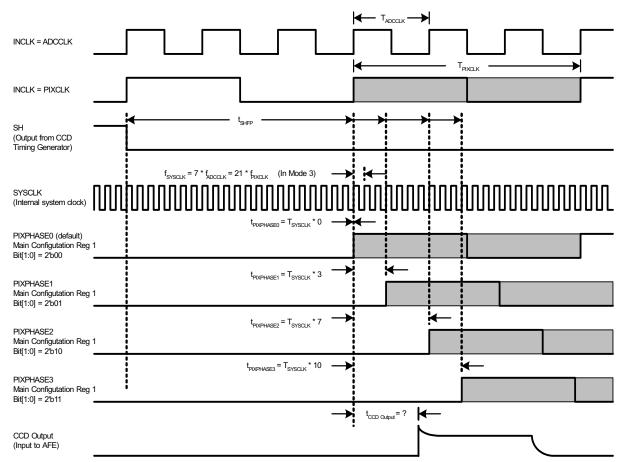
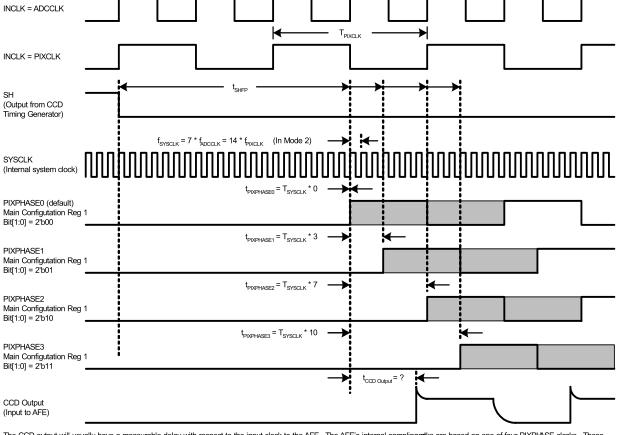



Figure 10. CCD Output Phase Shift in a Real Application

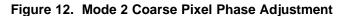
In the default mode, the LM98714 sampling is performed during a clock period whose phase is aligned with the input clock (ignoring any clock tree skew for the moment). The actual sampling clocks are adjustable within the clock period, as shown in *Figure 10* (shown for CDS mode in the diagram) and further described in the Internal Sample Timing section. As shown in the diagram, the delay of the CCD Pixel output is shifted far enough that the fine CLAMP and SAMPLE clocks cannot be placed in a stable portion of the waveform. To remedy this situation, the LM98714's Coarse Pixel Phase Alignment feature allows the designer to shift the entire phase of the analog front end with respect to the input clock. This allows the designer to choose one of four sampling phases which best matches the delay in the external circuitry. Once the "Coarse Pixel Phase" has been chosen, the designer can then fine tune the sampling clocks using the fine adjustment (see *Internal Sample Timing*).


The four available Coarse Pixel Phases (PIXPHASE0 - PIXPHASE3) are depicted in Figure 11 (Mode 3), Figure 12 (Mode 2) and Figure 13 (Mode 1). Also shown in the diagrams are the external input clock (INCLK) and a typical CCD output delayed from the input clock.

The CCD output will usually have a measurable delay with respect to the input clock to the AFE. The AFE's internal samplingocks are based on one of four PIXPHASE clocks. These PIXPHASE settings provide coarse adjustment of the internal AFE clock domain to best match the phase of the incoming CCD signafine adjustment of the sampling clocks is discussed in another section. In this example above, PIXPHASE appears to provide the closest match for the incoming CCD signal.

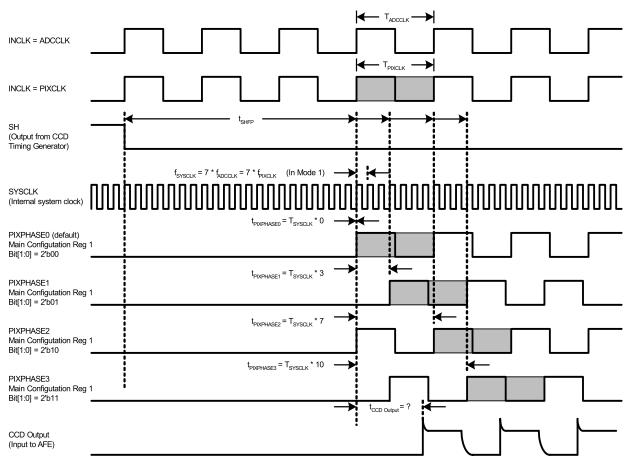
Figure 11. Mode 3 Coarse Pixel Adjustment

Copyright © 2006–2017, Texas Instruments Incorporated



- T_{ADCCLK} -

×


≯

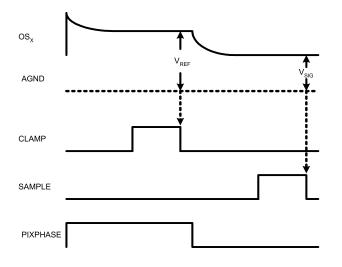
The CCD output will usually have a measurable delay with respect to the input clock to the AFE. The AFE's internal samplingodes are based on one of four PIXPHASE clocks. These PIXPHASE settings provide coarse adjustment of the internal AFE clock domain to best match the phase of the incoming CCD signalFine adjustment of the sampling clocks is discussed in another section. In this example above, PIXPHASE appears to provide the closest match for the incoming CCD signal.

The CCD output will usually have a measurable delay with respect to the input clock to the AFE. The AFE's internal sampling clocks are based on one of four PIXPHASE clocks. These PIXPHASE settings provide coarse adjustment of the internal AFE clock domain to best match the phase of the incoming CCD signal Fine adjustment of the sampling clocks is discussed in another section. In this example above, PIXPHASE2 appears to provide the closest match for the incoming CCD signal.

7.3.5 Internal Sample Timing

A typical CCD input signal is depicted in Figure 14 and Figure 15. Also shown are the internally generated SAMPLE and CLAMP pulses. These signals provide the sampling points of the input signal (OS_X). The timing of SAMPLE and CLAMP is derived from an internal system clock (SYSCLK).

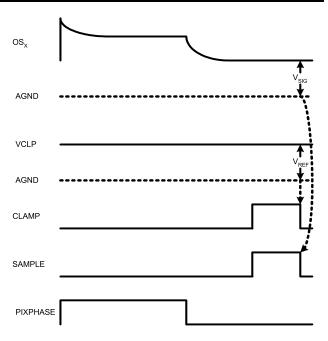
The pixel's reference level input (depicted as V_{REF}) is captured by the falling edge of the CLAMP pulse. In Sample/Hold Mode the V_{REF} input is a sample of the VCLP DC voltage. In CDS Mode the CLAMP pulse samples the pedestal Level of the CCD output waveform.


The pixel's signal level input (depicted as V_{SIG}) is captured by the SAMPLE pulse. In either Sample/Hold or CDS Mode, the V_{SIG} input is the signal level of the CCD output waveform.

The LM98714 provides fine adjustment of the CLAMP and SAMPLE pulse placement within the pixel period. This allows the user to program the optimum location of the CLAMP and SAMPLE falling edges. In CDS mode, both CLAMP and SAMPLE are independently adjustable for each channel in use. In Sample/Hold mode, CLAMP is coincident with SAMPLE by default, but is also independently adjustable. The available fine tuning locations for CLAMP and SAMPLE are shown in Figure 16 through Figure 21 for each sampling mode (CDS or S/H) and channel mode (3, 2, or 1 Channel).

LM98714

SNAS254B-OCTOBER 2006-REVISED APRIL 2017



CLAMP and SAMPLE are the internal sampling clocks for the input CDS amplifier. CLAMP and SAMPLE are adjustable within the selected PIXPHASE setting.

In CDS mode, CLAMP falling edge captures the pixel reference level (V_{REF}). In CDS mode, SAMPLE falling edge captures the pixel signal level (V_{SIG})

PIXPHASE is 1 of 4 internal reference clocks used to estimate the phase of the incoming pixel. Once the coarse estimation of the pixel location is chosen via PIXPHASE, the CLAMP and SAMPLE clocks can be fine tuned within PIXPHASE to their optimum location.

Figure 14. Pixel Sampling in CDS Mode

CLAMP and SAMPLE are the internal sampling clocks for the input CDS amplifier. CLAMP and SAMPLE are adjustable within the selected PIXPHASE setting.

In S/H mode, CLAMP falling edge captures the VCLP pin voltage as the pixel In S/H mode, SAMPLE falling edge captures the pixel signal level (V_{SIG}).

PIXPHASE is 1 of 4 internal reference clocks used to estimate the phase of the incoming pixel. Once the coarse estimation of the pixel location is chosen via PIXPHASE, the CLAMP and SAMPLE clocks can be fine tuned within PIXPHASE to their optimum location.

Figure 15. Pixel Sampling in S/H Mode

LM98714

SNAS254B-OCTOBER 2006-REVISED APRIL 2017

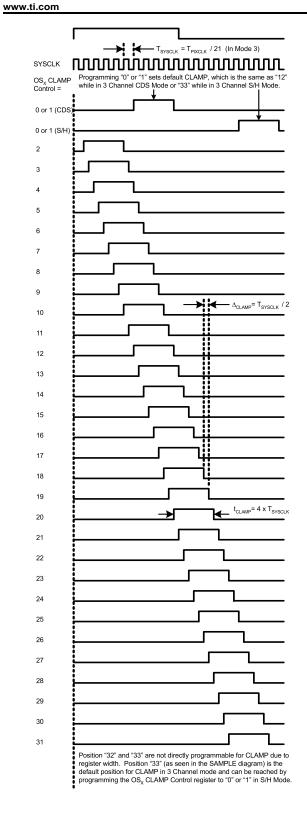


Figure 16. 3 Channel (Mode 3) CLAMP Timing

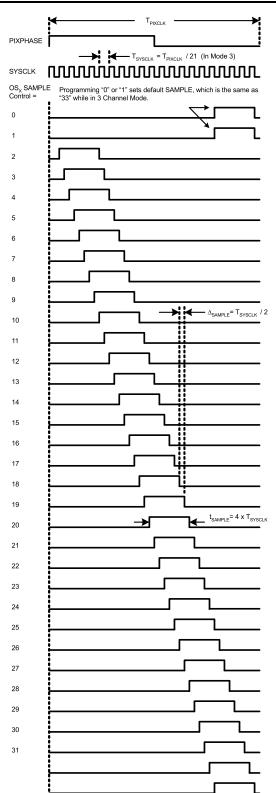


Figure 17. 3 Channel (Mode 3) SAMPLE Timing

LM98714

PIXPHASE

SYSCLK

OS_X CLAMP Control =

0 or 1 (CDS

0 or 1 (S/H)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

П

TEXAS INSTRUMENTS

T_{PIXCLK}

mmmmm

Programming "0" or "1" sets default CLAMP, which is the same as "5"

while in 2 Channel CDS Mode or "19" while in 2 Channel S/H Mode.

T_{SYSCLK} = T_{PIXCLK} / 14 (In Mode 2)

 $\Delta_{\text{CLAMP}} = T_{\text{SYSCLK}} / 2$

H

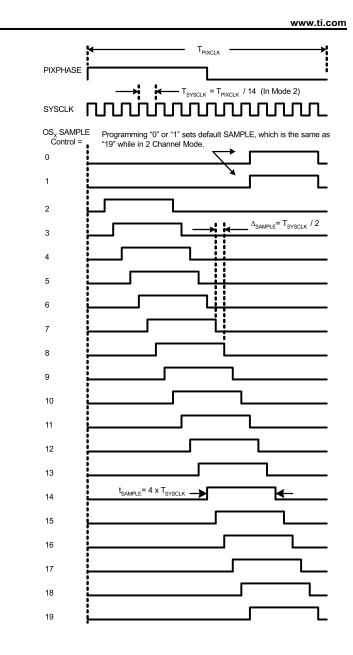


Figure 18. 2 Channel (Mode 2) CLAMP Timing

t_{CLAMP}= 4 x T_{SYSCLK}

Figure 19. 2 Channel (Mode 2) SAMPLE Timing

LM98714

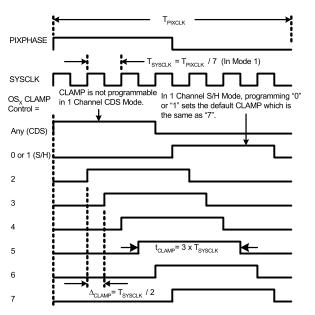


Figure 20. 1 Channel (Mode 1) CLAMP Timing

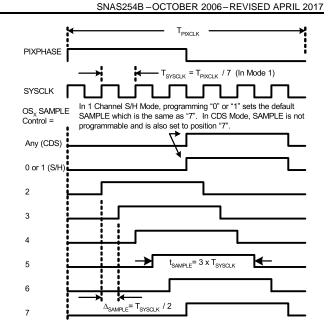


Figure 21. 1 Channel (Mode 1) SAMPLE Timing

7.3.6 Automatic Black Level Correction Loop

CCD signal processors require a reference level for the proper handling of input signals; this reference level is commonly referred to as the black level. The LM98714 provides an Automatic Black Level Correction Loop as shown in Figure 22. The timing for this function is shown in Figure 23. The loop can be disabled and the Black Level Offset DAC registers programmed manually if desired.

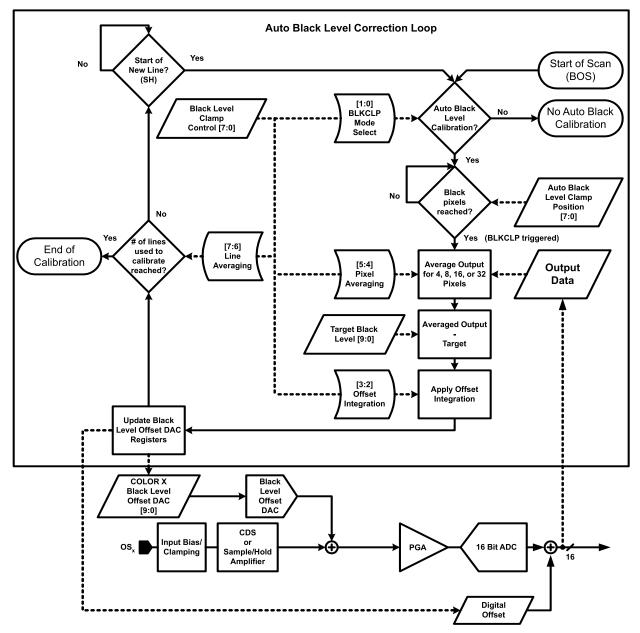
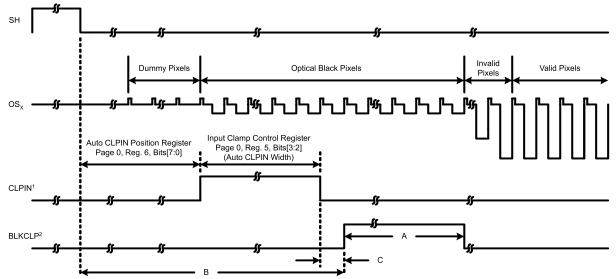


Figure 22. Black Level Correction Loop


The loop is intended to be used prior to scanning the page or during the first several lines at the beginning of a scan. The loop calibrates the channel offset such that the ADC outputs the desired code for Optical Black Pixels. In automatic mode, the pixels used to calibrate the offset should be Optical Black pixels represented by the internal "BLKCLP" pulse in Figure 23.

7.3.6.1 Black Level Offset DAC

The offset level registers store the DAC value required to meet the respective channel's black level output. While using the Auto Black Level Correction Loop, the DAC registers are re-written as required every line the loop is enabled.

7.3.6.2 Black Level Clamp (BLKCLP)

The BLKCLP pulse can be synchronized by either the falling edge of the SH pulse or the CLPIN pulse (both shown in Figure 23). The automatic BLKCLP pulse will begin "n" number of pixel periods after the falling edge of the reference pulse where "n" is the Auto Black Level Clamp Position register. The reference point is programmed by the BLKCLP Mode Select Bits[1:0] within the Black Level Clamp Control register. The BLKCLP pulse should not be programmed coincident to the CLPIN pulse (if the CLPIN pulse is being used).

1. CLPIN is an optional input clamping signal. If CLPIN is used, the Black level Calibration Loop should be triggered after CLPIN returns low during Optical Black Pixels. 2. BLKCLP represents the time during a line where the Black level Calibration Loop is active. BLKCLP can be programmed to begin relative to the falling edge of SH or the falling edge of CLPIN (if CLPIN is being used).

A = Number of Optical Black Pixels the Black Level Calibration Loop averages per line. It is configured by the Black Level Clamp Control Register (Page 0, Reg. 8, Bits[5:4]). B = Black Level Clamp Position with delay from SH. Auto Black Level Clamp Position (Page 0, Reg. 9) and BLKCLP Mode Select (Page 0, Reg. 8, Bits[1:0]) = 01b

C = Black Level Clamp Position with delay from CLPIN. Auto Black Level Clamp Position (Page 0, Reg. 9) and BLKCLP Mode Select (Page 0, Reg. 8, Bits[1:0]) = 10b

Figure 23. Black Level Correction Timing

LM98714 SNAS254B-OCTOBER 2006-REVISED APRIL 2017

www.ti.com

7.3.6.3 Pixel Averaging

In order to obtain a snapshot of the current value for black (for comparison with the desired level of black) the ADC output is sampled upon activation of BLKCLP. Since a single optical black pixel is unlikely to be an accurate representation of the black level, a number of adjacent pixels are averaged. The number of pixels sampled is programmable by the Pixel Averaging Bit[5:4] within the Black Level Clamp Control register. The ability to select the number of pixels to be averaged (4, 8, 16, or 32 per line) provides greater flexibility allowing the LM98714 to be used with different CCDs having differing number of black pixels.

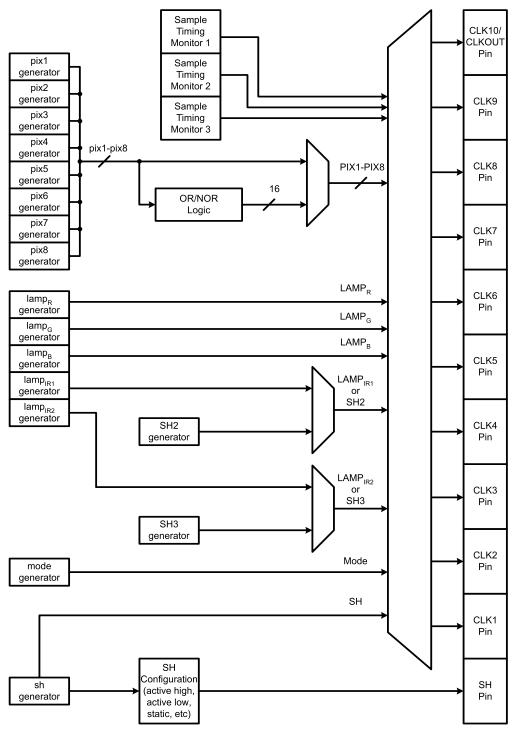
7.3.6.4 Target Black Level

The Target Black Level registers define a 10-bit word that specifies an ADC output (on the 12 bit level) corresponding to the desired optical black output code (ignoring the four LSBs of the 16 Bit ADC output). In other words, one Target Black Level LSB corresponds to sixteen ADC LSBs. Assertion of the BLKCLP signal activates the digital black clamp loop and the black level is steered toward the value stored in the output black level register. The digital black clamp loop is only limited in it's range by the offset DAC's range.

Once the correct number of pixels have been averaged, the value is subtracted from the Target Black Level and an error value is produced.

7.3.6.5 Offset Integration

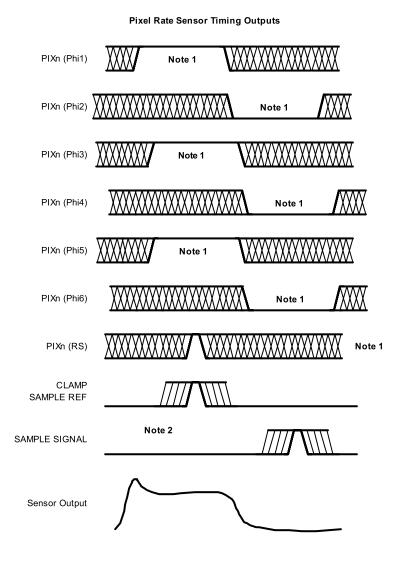
Each time the BLKCLP signal is activated, the average ADC output of several black pixels is compared to the Target Black Level producing an error value. This error value is not directly added (or subtracted) to the Black Level Offset register, rather, the value applied is a programmable fraction of this error. This has the effect of slowing down the offset convergence resulting in a calculation for offset that is less susceptible to noise. The scaling factor is stored in the Offset integration Bits[3:2] of the Black Level Clamp Control register. The scaling values are divided-by-8, 16, 32, or 64. Divide-by-8 provides the quickest convergence of the loop (for use when the number of lines available for calibration is limited) and Divide-by-64 the longest (for use when using an large number of lines to converge).


7.3.6.6 Line Averaging

The Auto Black level Correction Loop can be run for 15 lines, 31 lines, 63 lines, or infinite (every line). The Line Averaging Bits[7:6] found in the lack Level Clamp Control register set the number of lines that the loop will run after the Start of Scan. The recommended use of the Auto Black Level Correction Loop is in a calibration period prior to moving the sensor down the page or during the first several lines of the page. By experimenting with the Line Averaging and Offset Integration bits with no sensor illumination (black pixels), the proper settings for the Auto Black Level Correction Loop are determined when the ADC output converges to the Target Black Level value. If the loop converges with the 15, 31, or 63 line setting, the loop can remain enabled. The loop does not update the Black Level Offset DAC once the number of lines since "Start of Scan" has passed. If the loop requires more than 63 lines to converge (i.e. requires Line Averaging = infinite), it is recommended to disable the loop after convergence has been reached. In the "infinite" setting, the loop will continuously update the Black Level Offset registers as long as the loop is enabled throughout the entire scan.

7.3.7 Internal Timing Generation

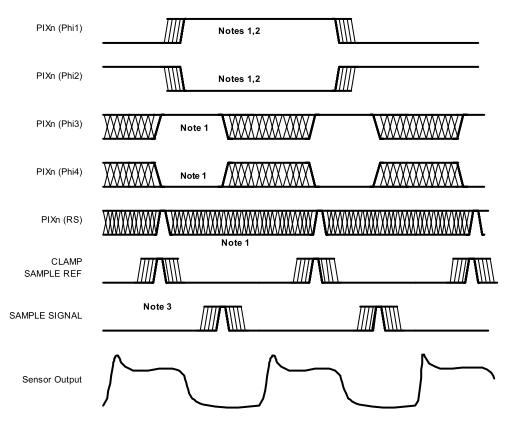
A flexible internal timing generator is included to provide clocking signals to CCD and CIS sensors. A block diagram of the CCD Timing Generator is shown in Figure 24.


TEXAS INSTRUMENTS

www.ti.com

Examples of the various operating modes and settings are shown following. The detailed pixel timing is somewhat dependent on the operating modes of the AFE circuitry regarding the number of adjustment points for the on and off points of the different timing outputs.

NOTE


In addition to the timing adjustments shown, the polarity of all sensor clock signals can be adjusted by register control.

Note 1: PIXn rising and falling edges can be independently adjusted to any available point within the pixel period. Duration, duty cycle and position can all be adjusted as required. To ensure 50% duty cycle is possible, the internal clock system provides an even number of edges in all modes. Note 2: CLAMP and SAMPLE signals have several available positions (see detailed AFE timing mode diagrams), but duration is fixed by design. Note 3: The number of available edges for timing adjustments is dependent on the AFE operating mode.

Note 1: PIXn rising and falling edges can be independently adjusted to any available point within the 2 pixel period. Duration, duty cycle and position can all be adjusted as required. To ensure 50% duty cycle is possible, the internal clock system provides an even number of edges in all modes. Note 2: Each PIXn can be adjusted to have a frequency equal to or 1/2 that of the pixel frequency. In that case, rising and falling edges can be adjusted to any available edge within the 2 pixel interval. Note 3: CLAMP and SAMPLE signals have several available positions (see detailed AFE timing mode

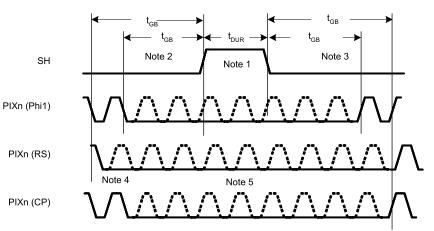

diagrams), but duration is fixed by design. Note 4: The number of available edges for timing adjustments is dependent on the AFE operating mode.

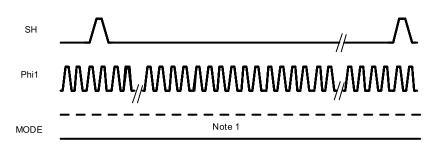
Figure 26. Sensor Timing Control - Pixel Details - 2 Pixels per Phi

TEXAS INSTRUMENTS

www.ti.com

Note 1: SH duration can be adjusted.

Note 2: Guardband from end of PIX timing signal to start of SH can be selected individually for each PIX timing signal. Range of adjustment is 0 to 255 pixel periods.

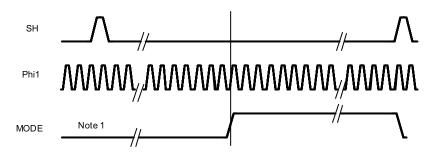

Note 3: Guardband from end of SH to start of PIX timing signal can be selected individually for each PIX signal. Range of adjustment is 0 to 255 pixel periods.

Note 4: The detailed timing of each PIX signal is adjustable to any available PLL clock edge within the pixel period. Refer to PIX timing details.

Note 5: Each PIX signal can be selected as Inactive or Active during the SH pulse interval. *RS and CP must be inactive during SH when using Toshiba CCD sensors.

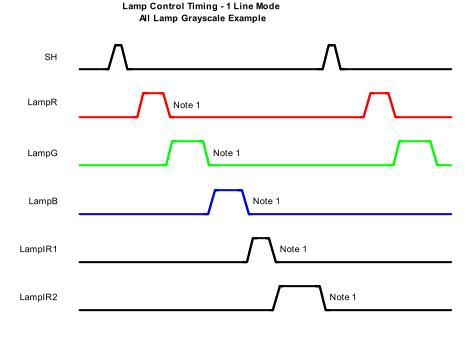
Figure 27. Sensor Timing SH Pulse Details

Sensor MODE Timing - Static High/Low



Note 1: MODE can be programmed to be static high or low.

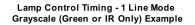
Figure 28. Sensor Timing Mode Pin Output Details - Static High/Low



Sensor MODE Pin Timing - Active

Note 1: MODE can be programmed to transition after a certain number of pixels have been clocked. This can be configured by register setting anywhere from pixel 1 to line end pixels. Polarity can be configured for initially low or initially high.

Figure 29. Sensor Timing Mode Pin Output Details - Active Programmed Transition



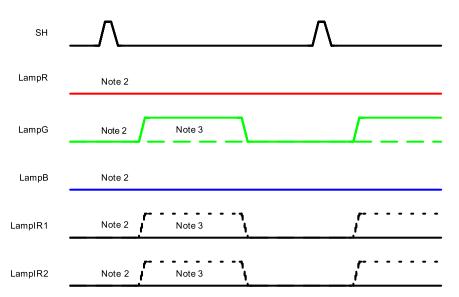
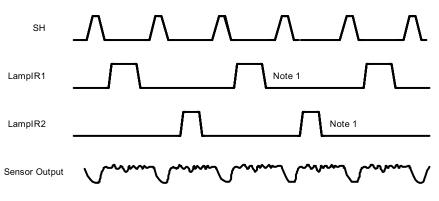

Note 1: LampR, LampB, LampIR1 and LampIR2 each turn on and off every line. The On and Off points are individually programmed for each Lamp output. *Lamps can be on simultaneously if desired and permitted by the CIS and system design.

Figure 30. Lamp Control Timing - 1 Line Mode (Monochrome)

TEXAS INSTRUMENTS

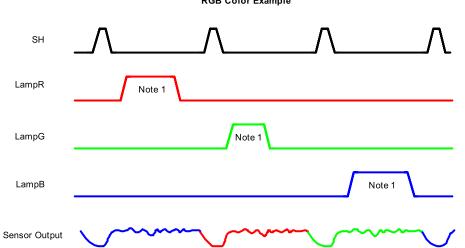
www.ti.com


Note 1: LampR, LampG and LampB, LampIR1, and LampIR2 each turn on and off every line. The On and Off points are individually programmed for each Lamp output. *Lamps can be on simultaneously if desired and permitted by the CIS and system design

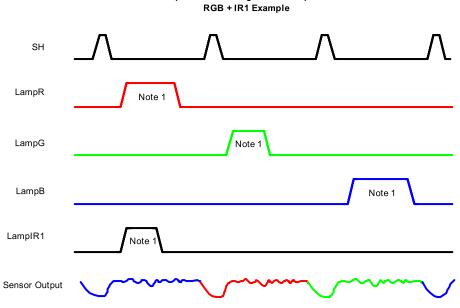
simultaneously if desired and permitted by the CIS and system design. Note 2: For Green only lamp mode, the settings for LampR, LampB, LampIR1 and LampIR2 can be set so that those lamps are always off.

Note 3: For IR scanning modes, the settings for LampR, LampG and LampB can be set so that those lamps are always off.

Figure 31. Lamp Control Timing - 1 Line Mode

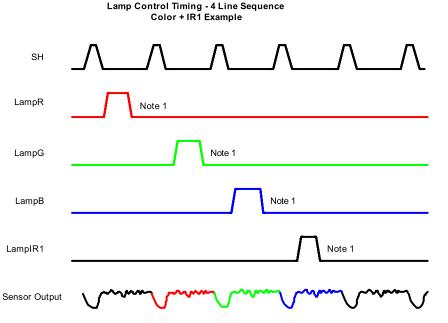

Lamp Control Timing - 2 Line Sequence IR1 + IR2 Example

Note 1: In 2 line sequence mode, the Lamp outputs turn on sequentially, with the selected outputs on each line. Lamp On and Off points can be set individually via register control. Polarity is also selectable by register control.



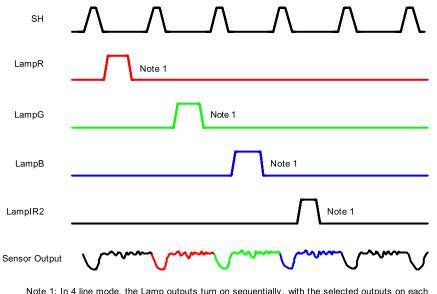
Lamp Control Timing - 3 Line Sequence RGB Color Example

Note 1: In the three line color sequence, the Lamp outputs turn on sequentially, with selected colors output on each line. Each of the three lines in the sequence can have the Lamps individually selected. Lamp On and Off points can be set individually via register control. Polarity is also selectable by register control.


Lamp Control Timing - 3 Line Sequence

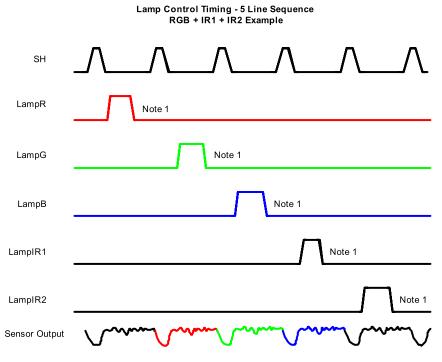
Note 1: In the three line color sequence, the Lamp outputs turn on sequentially, with selected colors output on each line. Each of the three lines in the sequence can have the Lamps individually selected, included multiple lamps on in the same line as shown. Lamp On and Off points can be set individually via register control. Polarity is also selectable by register control.

Figure 34. Lamp Control Timing - 3 Line Sequence - IR Enhancement Example



Note 1: In 4 line mode, the Lamp outputs turn on sequentially, with the selected outputs on each line. Lamp On and Off points can be set individually via register control. Polarity is also selectable by register control.

Figure 35. Lamp Control Timing - 4 Line Sequence Color + IR1 Example


Lamp Control Timing - 4 Line Sequence Color + IR2 Example

Note 1: In 4 line mode, the Lamp outputs turn on sequentially, with the selected outputs on each line. Lamp On and Off points can be set individually via register control. Polarity is also selectable by register control.

Note 1: In 5 line lamp mode, the Lamp outputs turn on sequentially, with the selected Lamps on each line. Lamp On and Off points can be set individually via register control. Polarity is also selectable by register control.

7.3.7.1 Pix Signal Generator OR/NOR Modes

As shown in Figure 24, the PIX signal generators outputs can be used in their normal form and sent to the LM98714 output pins, or, they can be sent through an additional layer of OR and NOR logic to provide a number of clocking variations. The OR and NOR combinations of multiple PIX signals can be useful for such modes as pixel lumping, or other modes where more complicated phi clocks are required.

The OR and NOR functions are chosen through the PIX OR/NOR Control 1 and PIX OR/NOR Control 2 registers on Page 4 of the serial interface register map. When all of the OR/NOR control bits are 0 (default) the PIX signals are sent directly from the pix signal generators to the output pins configured by the Output Mapping Control registers (register Page 3). When an OR/NOR control bit is set to 1, the OR or NOR product of multiple pix signal generators is routed to the output pin described in the register details.

7.3.7.2 SH2 and SH3 Generation

In some sensors, there is a requirement for up to three "SH" type signals. The LM98714 CCD Timing Generator can be configured to produce optional SH signals as shown in Figure 38, these SH signals (SH2 and SH3) toggle every other line and are coincident with the original SH pulse.

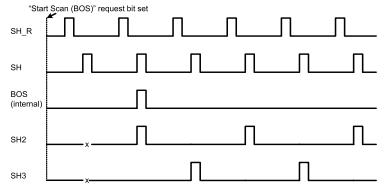


Figure 38. SH2 and SH3 Generation

The "Start Scan (BOS)" request bit is used to begin the proper sequence of CCD Timing outputs at the beginning of a scan. The first line of pixels are being processed by the CCD during the first integration period (after the first SH). The BOS signal (internal to the LM98714) occurs at the second SH to signal when the first line of pixels are actually shifting out of the CCD and in to the AFE. The SH2 pulse is synchronized with the BOS signal and continues to toggle on an every other line basis. The SH3 signal occurs on opposite lines from SH2.

The SH2 and SH3 signals are available in place of the Lamp IR1 and Lamp IR2 outputs respectively. The routing of SH2 and SH3 is depicted in Figure 24. The use of SH2 and SH3 is selected by the SH2/SH3 Control register (0x0F) on Page 4 of the register map.

<u></u>	4
SH 🗖	
CLK1 🗖	3
CLK2 🗖	2
CLK3 🗖	1
CLK4 🗖	48
CLK5 🗖	45
CLK6 🗖	44
CLK7 🗖	43
CLK8	42
CLK9	41
CLKOUT/CLK10	40
L	

Figure 39. Sensor Control Outputs

Table 3 shows a number of example mappings of the sensor timing signals to the sensor control CLKn outputs. Several typical timings are shown here, but any timing generator signal can be mapped to any of the CLKn outputs, providing maximum flexibility.

Sensor Control Output	Example A	Example B	Example C	Example D	Example E	Example F
SH	SH	SH	SH	SH	SH	SH
CLK1	PIX1(PHI1)	PIX1(PHI1)	PIX1(PHI1)	PIX1(PHI1)	PIX1(PHI1)	PIX1(PHI1)
CLK2	PIX2(PHI2)	PIX2(PHI2)	PIX2(PHI2)	PIX2(PHI2)	PIX2(PHI2)	PIX2(PHI2)
CLK3	PIX3(RS)	PIX3(RS)	PIX3(RS)	PIX3(RS)	PIX3(PHI3)	PIX3(RS)
CLK4	PIX4(CP)	PIX4(CP)	LAMP _R	PIX4(CP)	PIX4(PHI4)	PIX4(CP)
CLK5	LAMP _R	LAMP _R	LAMP _G	LAMP _R	PIX5(PHI5)	CB[0]
CLK6	LAMP _G	LAMP _G	LAMPB	LAMP _G	PIX6(PHI6)	CB[1]
CLK7	LAMPB	LAMPB	LAMPIR1	LAMPB	PIX7(RS)	CB[2]
CLK8	MODE	LAMPIR1	LAMPIR2	LAMPIR1	PIX8(CP)	CB[3]
CLK9	PIX5(PHI3)	LAMPIR2	MODE	LAMPIR2	MODE	CB[4]
CLKOUT/CLK10		(MODE)		PIX5(PHI3)		CLKOUT

Table 3. Sensor Timing Mappings Examples

These examples can be used for any customer need, but typical applications would be as follows:

In Examples A, B and C, only 10 sensor control outputs are used. This is to allow the CLKOUT/CLK10 pin to be used as a timing reference for the image output data when the outputs are in CMOS mode.

Example A: Used with most CCD or CIS sensors, including new sensors with 3 PHI clock inputs. Will support up to 3 color LED lamps. Supports CCD sensors with switchable resolution through the MODE control output.

Example B: Used in applications where up to 2 additional IR lamps are used in addition to the R, G, B lamps. No resolution MODE output is available.

Example C: Used where no CP pulse is needed, but 5 lamp outputs are needed as well as a MODE sensor resolution control pin.

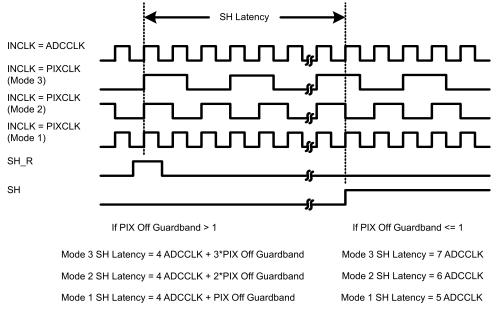
In Examples D and E, the CLK10 output is also used. These modes are not available when the image data outputs are operating in CMOS mode.

Example D: Provides both PHI3 output and 5 LED lamp outputs. Does not provide MODE output for resolution control.

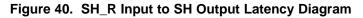
Example E: Provides 5 LED lamp outputs, and the MODE output for sensor resolution control.

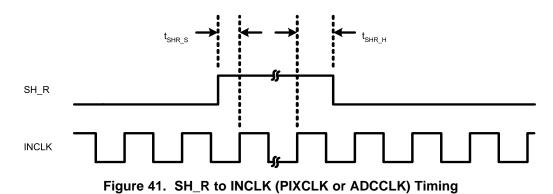
7.3.8 CCD Timing Generator Master/Slave Modes

The internal CCD Timing generator is capable of operating in Master Mode or in Slave Mode. The Master/Slave operation is configured with the SH Mode Register (Register 0x00 on Page 2). In either Master or Slave Mode, control bit data can be sent to the output of the LM98714 to indicate when each new scan is starting as well as pixel information such as color, type (active, black, dummy, etc.), and the beginning of each line.

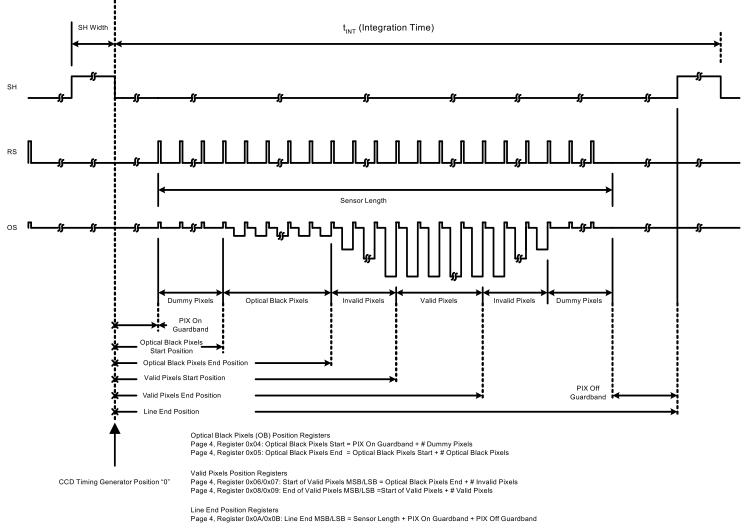

7.3.8.1 Master Timing Generator Mode

In Master Timing Mode, the LM98714 controls the entire CCD Timing Generator based on a Start Scan Bit (Main Configuration Register 2, Bit[0] is the "Start Scan" or "BOS/Beginning of Scan" bit). The Start Scan bit is set by the user to request a new scan. This bit is a self clearing register bit written to the serial interface. When received, the LM98714 controls where and when each new line of the scan begins and ends based on the CCD Timing Generator register settings. The scan is enabled as long as the Active/Standby bit is low. The period of the line (integration time) is controlled by the SH Width setting (SH Pulse Width Register) and the Line End setting (Line End MSB and Line End LSB registers).


7.3.8.2 Slave Timing Generator Mode


In Slave Timing Mode, the LM98714 CCD Timing Generator is controlled by the external SH_R pin. Each new line of a scan is initiated by an SH_R pulse. The period of the line (integration time) is mainly controlled by the period of the incoming SH_R signal.

Note*: Latency is calculated with the largest programmed PIX Off Guardband value.



Copyright © 2006-2017, Texas Instruments Incorporated

LM98714 SNAS254B – OCTOBER 2006 – REVISED APRIL 2017

www.ti.com

7.3.9 LVDS Output Mode

7.3.9.1 LVDS Output Format

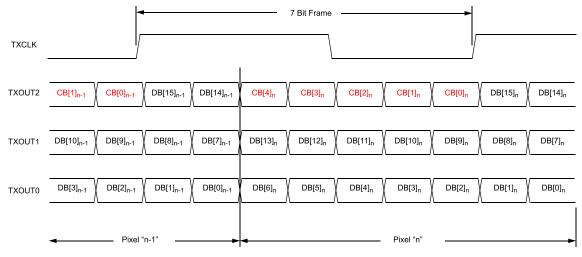
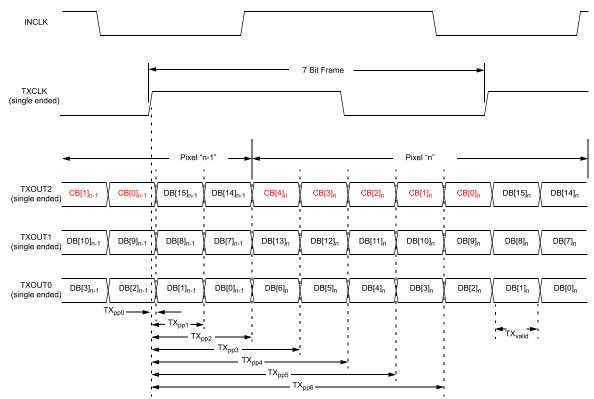



Figure 43. LVDS Output Bit Alignment and Data Format

7.3.9.3 LVDS Control Bit Coding

The 5 control bits included in the LVDS data stream are coded as follows:

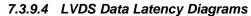
The "active" and "black" pixel tags are programmable tags that the LM98714 provides in order to identify how many pixels have been processed since the falling edge of SH.

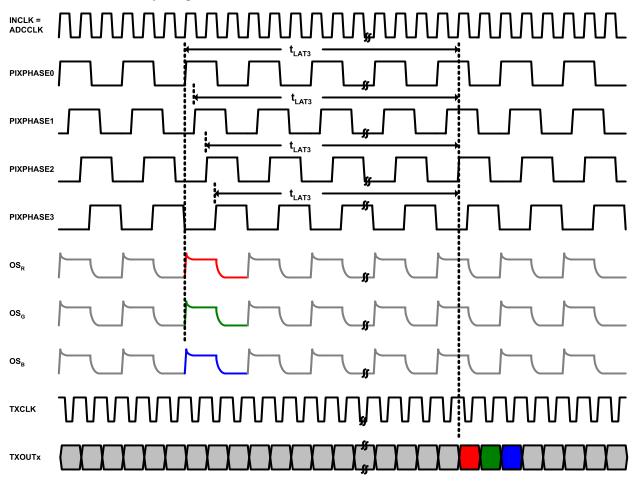
Which pixels are given "active" and "black" CB tags is controlled by Page 4, registers 0x08 through 0x0D (Optical Black Pixels Start, Optical Black Pixels End, Start of Valid Pixels, and End of Valid Pixels).

The LM98714 counts the number of pixel periods after the falling edge of SH: If the number of pixel periods after the falling edge of SH is between "optical black pixels start" and "optical black pixels end" the CB bits will indicate that the pixel is a black pixel. If the number of pixel periods after the falling edge of SH is between "start of valid pixels" and "end of valid pixels" the CB bits will indicate that the pixel is an active pixel.

Table 4.

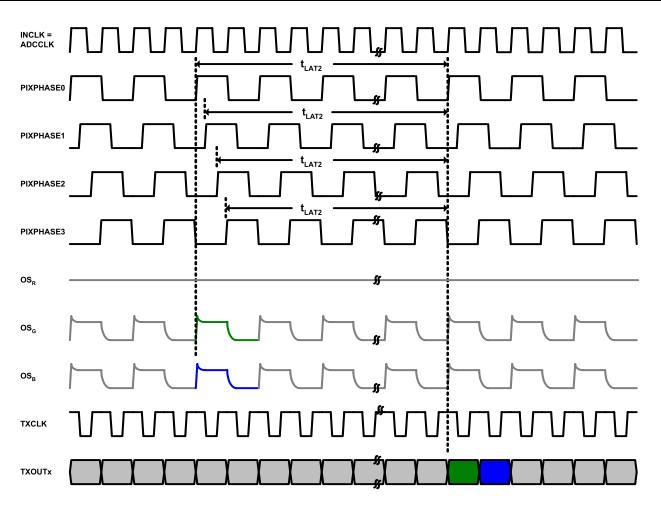
CB[4]	Description			
0	Not the beginning of line			
1	Beginning of Line			
	(This bit is high for as many pixels as SH pulse is active)			


Table 5.					
CB[3:0]	Description				
0	Dummy Pixels				
1	Red Active Pixels				
10	Green Active Pixels				
11	Blue Active Pixels				
100	IR1 Active Pixels				
101	IR2 Active Pixels				
110	Red Black Pixels				
111	Green Black Pixels				
1000	Blue Black Pixels				
1001	IR1 Black Pixels				
1010	IR2 Black Pixels				
1111	Beginning of Scan				


Table 5.

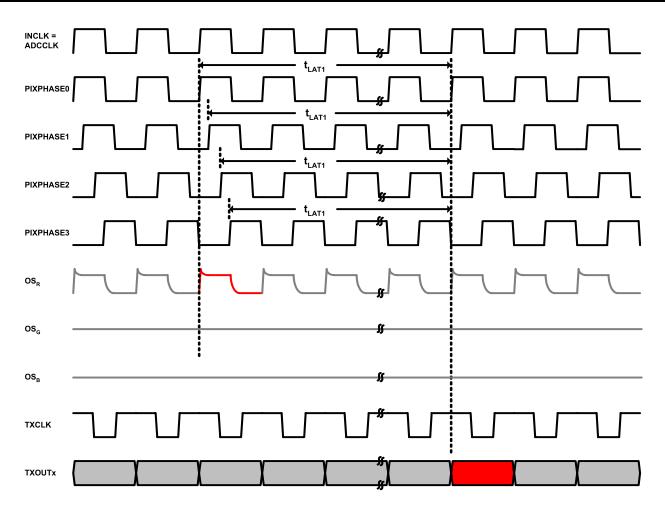
LM98714

SNAS254B-OCTOBER 2006-REVISED APRIL 2017



Data latency shown is for Mode 3 in relation to PIXPHASE0 with the processing order set to $OS_{p_{c}} \rightarrow OS_{G} \rightarrow OS_{B}$. If the incoming pixels are not aligned with PIXPHASE0, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.

Figure 45. Mode 3 LVDS Data Latency



Data latency shown is for Mode 2 in relation to PIXPHASE0 with the processing order set to $OS_G \Box OS_g$. If the incoming pixels are not aligned with PIXPHASE0, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.

Data latency shown is for Mode 1 in relation to PIXPHASE0 with the processing channel configured to OS_{R^*} . If the incoming pixels are not aligned with PIXPHASE0, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.

Figure 47. Mode 1 LVDS Data Latency

7.3.9.5 LVDS Test Modes

The LVDS test modes present several different data patterns to the input of the LVDS serializer block. All 21 bits are used and there is no control bit coding present. The SH signal resets the LVDS test pattern and the pattern will resume only after SH is deasserted. If no SH signal is sent, the pattern continues indefinitely.

7.3.9.5.1 Test Mode 1 - Worst Case Transitions

This test mode provides an LVDS output with the maximum possible transitions. This mode is useful for system EMI evaluations, and for ATE timing tests.

The effective data values are an alternating pattern between 21'b10101010101010101010101 (0x155555) and 21'b01010101010101010101010 (0x0AAAAA). This test pattern resets to 0x155555 after the SH signal.

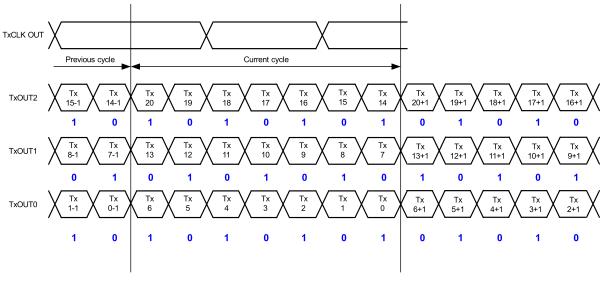


Figure 48. LVDS Test Pattern

7.3.9.5.2 Test Mode 2 - Ramp

This mode provides LVDS data that progresses from 0x00000 to the full scale output 0x1FFFFF incrementing by 1 per LVDS Clock. When the LVDS ramp test pattern is selected, the ramp begins immediately and counts from zero to the full scale value, and then repeats.

7.3.9.5.3 Test Mode 3 - Fixed Output Data

This mode allows a fixed data value to be output. The value is set via. Upcounter Register 1, 2 and 3. The 21 bit value taken from these registers is repetitively sent out over the LVDS link. This is useful for system debugging of the LVDS link and receiver circuitry.

LM98714

SNAS254B-OCTOBER 2006-REVISED APRIL 2017

LM98714 SNAS254B – OCTOBER 2006 – REVISED APRIL 2017

www.ti.com

7.3.10 CMOS Output Mode

7.3.10.1 CMOS Output Data Format

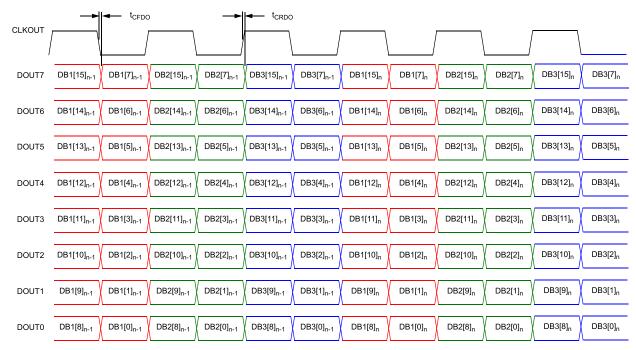
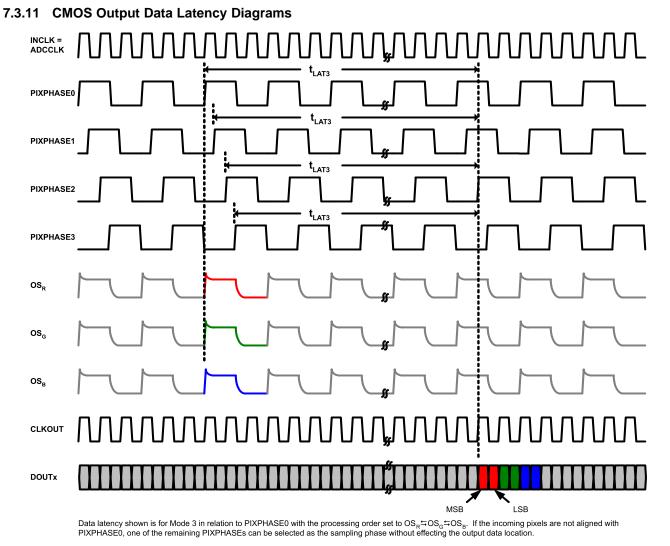



Figure 49. CMOS Data Output Format (Mode 3 Shown)

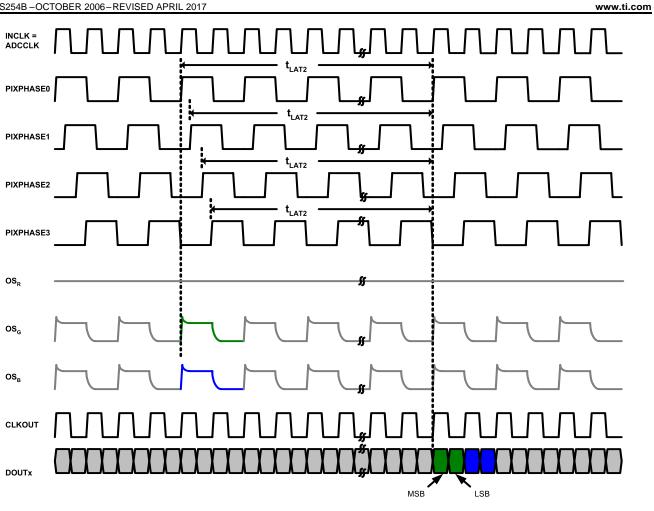


Figure 50. Mode 3 CMOS Output Latency

LM98714

Data latency shown is for Mode 2 in relation to PIXPHASE0 with the processing order set to OS_G=OS_B. If the incoming pixels are not aligned with PIXPHASE0, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.

Figure 51.	Mode 2	CMOS	Output Latency
------------	--------	------	----------------

LM98714 SNAS254B – OCTOBER 2006 – REVISED APRIL 2017

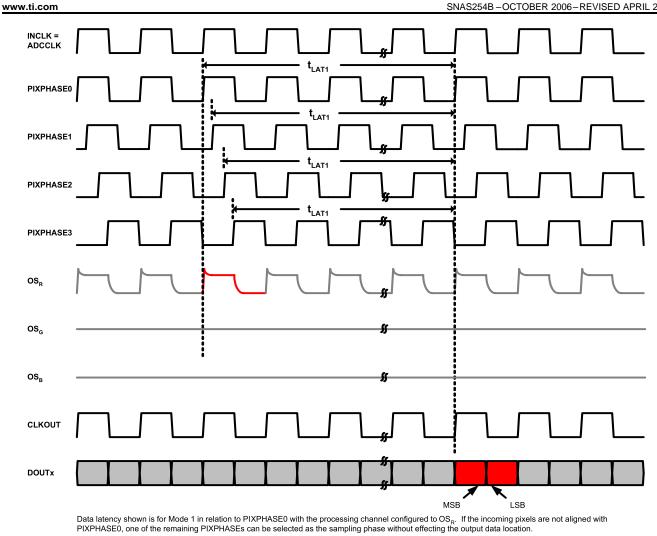


Figure 52. Mode 1 CMOS Output Latency

7.4 Device Functional Modes

Table 6 lists the register settings for the modes of operation.

LM98714 SNAS254B – OCTOBER 2006 – REVISED APRIL 2017

www.ti.com

Table 6. Modes Of Operation Register Settings Table

Operating Mode Sam		Signal	Output Sequencing	Main Config.	Main Config. Register 0							
	Sampling Input	Path	Mode 3 and 2 = Pixel Seq Mode 1 = Color Line Seq	Reg. 3	Mode		Color		Order	Color Seq. Length		ength
				Bit [3]	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Mode3-RGB Forward	OS _R OS _G OS _B	RGB	$Pixel_{R} \rightarrow Pixel_{G} \rightarrow Pixel_{B} \rightarrow$	x	1	1	1	1	0	0	0	1
Mode3-RGB Reverse	OS _R OS _G OS _B	RGB	$Pixel_{B} \rightarrow Pixel_{G} \rightarrow Pixel_{R} \rightarrow$	х	1	1	1	1	1	0	0	1
Mode2-RG Forw.	OS _R OS _G	RG	$Pixel_{R} \rightarrow Pixel_{G} \rightarrow$	х	1	0	0	0	0	0	0	1
Mode2-RG Rev.	OS _R OS _G	RG	Pixel _G →Pixel _R →	х	1	0	0	0	1	0	0	1
Mode2-GB Forw.	OS _G OS _B	GB	Pixel _G →Pixel _B →	х	1	0	0	1	0	0	0	1
Mode2-GB Rev.	OS _G OS _B	GB	$Pixel_{B} \rightarrow Pixel_{G} \rightarrow$	х	1	0	0	1	1	0	0	1
Mode2-RB Forw.	OS _R OS _B	RB	$Pixel_{R} \rightarrow Pixel_{B} \rightarrow$	х	1	0	1	0	0	0	0	1
Mode2-RB Rev.	OS _R OS _B	RB	$Pixel_{B} \rightarrow Pixel_{R} \rightarrow$	х	1	0	1	0	1	0	0	1
Mode1-R Mono	OS _R	R	Color Line Seq: $1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow$	х	0	1	0	0	0	0	0	1
Mode1a-R 2 Color For.	OS _R	R	Color Line Seq: $1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 1 \rightarrow$	0	0	1	0	0	0	0	1	0
Mode1a-R 2 Color Rev	OS _R	R	Color Line Seq: $2 \rightarrow 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow$	0	0	1	0	0	1	0	1	0
Mode1a-R 3 Color For.	OS _R	R	Color Line Seq: $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow$	0	0	1	0	0	0	0	1	1
Mode1a-R 3 Color Rev	OS _R	R	Color Line Seq: $3 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow$	0	0	1	0	0	1	0	1	1
Mode1a-R 4 Color For.	OS _R	R	Color Line Seq: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow$	0	0	1	0	0	0	1	0	0
Mode1a-R 4 Color Rev	OS _R	R	Color Line Seq: $4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow$	0	0	1	0	0	1	1	0	0
Mode1a-R 5 Color For.	OS _R	R	Color Line Seq: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow$	0	0	1	0	0	0	1	0	1
Mode1a-R 5 Color Rev	OS _R	R	Color Line Seq: $5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow$	0	0	1	0	0	1	1	0	1
Mode1a-G Mono	OS _G	G	Color Line Seq: $1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow$	1	0	1	0	1	0	0	0	1
Mode1a-B Mono	OS _B	В	Color Line Seq: $1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow$	1	0	1	1	0	0	0	0	1
Mode1b-RGB Forward	$OS_R \rightarrow OS_G \rightarrow OS_B$	RGB	$Line_R \rightarrow Line_G \rightarrow Line_B \rightarrow$	1	0	0	1	1	0	х	х	х
Mode1b-RGB Reverse	$OS_B \rightarrow OS_G \rightarrow OS_R$	RGB	$Line_R \rightarrow Line_G \rightarrow Line_B \rightarrow$	1	0	0	1	1	1	х	х	х

7.4.1 Mode 3 - Three Channel Input/Synchronous Pixel Sampling

In Mode 3, the OS_R , OS_G , and OS_B input channels are sampled synchronously. The sampled input signals are then processed in parallel through their respective channels with each channel offset and gain adjusted by their respective control registers. The signals are then routed through a 3-1 MUX to the ADC. The order in which pixels are processed through the MUX to the ADC is programmable ($OS_R-OS_G-OS_B$, or $OS_B-OS_G-OS_R$) and is synchronized by the SH pulse.

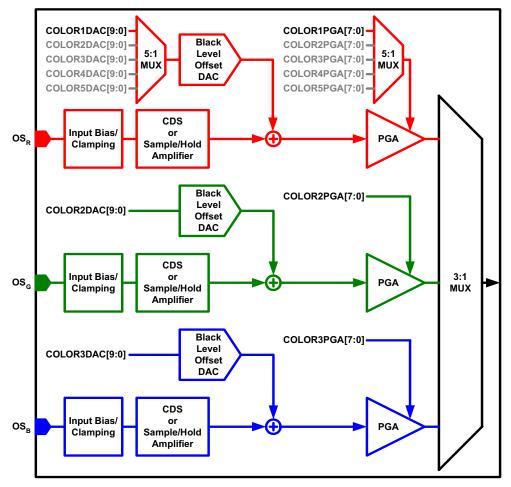
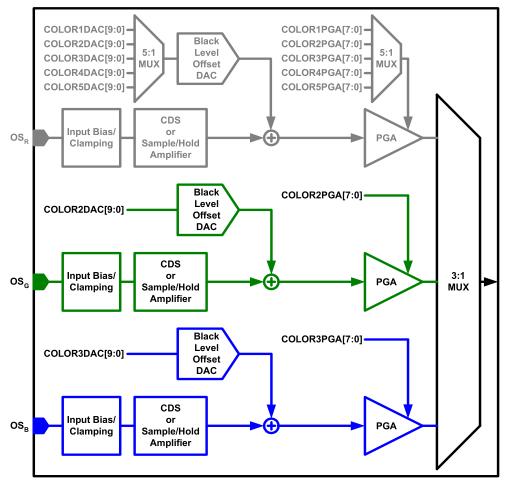


Figure 53. Synchronous Three Channel Pixel Mode Signal Routing


Table	7.	Mode	3	Operating	Details
			•	• por a mig	Dotano

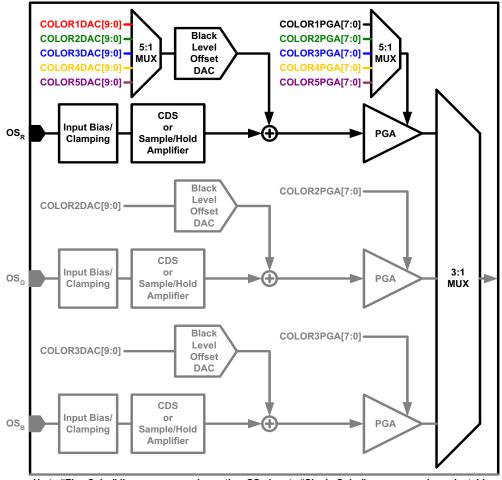
			Detail			
Channels Active	OS _B & OS _G & OS _R		3 channel synchronous pixel sampling.			
Channel Sample Rate	15		MSPS per Channel (max)			
ADC Sample Rate		45	MSPS (max)			
	Internal 3x Clock Selected	3:01	f _{INCLK} = 15 MHz (max)			
f _{ADC} : f _{INCLK}	Internal 1x Clock Selected	1:01	f _{INCLK} = 45 MHz (max)			
	SH Signal> R-G-B-R-G-B-R-G-B→	•				
Output Sequencing	or					
	SH Signal> B-G-R-B-G-R-B-G-R→	SH Signal> B-G-R-B-G-R-→				

7.4.2 Mode 2 - Two Channel Input/Synchronous Pixel Sampling

Mode 2 is useful for CCD sensors with a Black and White line with Even and Odd pixels. In its default configuration, Mode 2 samples Even sensor pixels via the Blue Channel Input, and Odd sensor pixels via the Green Channel Input. The selection of Even/Odd inputs can be changed through the serial interface registers. Sampling of the Even and Odd inputs is performed synchronously.

Active inputs shown as OS_{g} and OS_{g} . Active inputs can also be configured to OS_{R}/OS_{g} or OS_{R}/OS_{g} .

Figure 54. Mode 2 Signal Routing


Table 8. Mode 2 Op	perating Details
--------------------	------------------

			Detail			
Channels Active	$\begin{array}{c} \text{OS}_{\text{G}} \text{ and } \text{OS}_{\text{B}} \text{ (Default)} \\ \text{or} \\ \text{OS}_{\text{R}} \text{ and } \text{OS}_{\text{G}} \\ \text{or} \\ \text{OS}_{\text{B}} \text{ and } \text{OS}_{\text{R}} \end{array}$		Two inputs synchronously processed as Even and Odd Pixels. Channel inputs are configurable.			
Channel Sample Rate	22.5		MSPS per Channel (max)			
ADC Sample Rate		45	MSPS (max)			
4 . 4	Internal 2x Clock Selected	2:01	f _{INCLK} = 22.5 MHz (max)			
f _{ADC} : f _{INCLK}	Internal 1x Clock Selected	1:01	f _{INCLK} = 45 MHz (max)			
Output Sequencing	SH Signal> Even-Odd-Even-Odd-Even-Odd-Even→ or SH Signal> Odd-Even-Odd-Even-Odd→					

7.4.3 Mode 1a - One Channel Input/One, Two, Three, Four, Or Five Color Sequential Line Sampling

In Mode 1a, all pixels are processed through a single input $(OS_R, OS_G, or OS_B)$ chosen through the control register setup. This mode is useful in applications where only one input channel is used. The selected input is programmable through the control register. If more than one color is being sent to the input, the user can configure the OS_R channel to utilize up to five offset and gain coefficients for up to five different lines of color pixels. The SH pulse at the beginning of each line sequences the DAC and PGA coefficients as configured in the control registers. In this mode, the maximum channel speed is 30MSPS per channel with the ADC running at 30MSPS.

Up to "Five Color" line sequences shown thru OS_R input. "Single Color" sequences also selectable thru the OS_G and OS_B inputs.

Table	9	Mode	1a	Operating Details	
Table	э.	Mode	īa	Operating Details	

			Detail
Channels Active	OS _R		One color active per line.
Channel Sample Rate	30		MSPS per Channel (max)
ADC Sample Rate		30	MSPS (max)
f _{ADC} : f _{INCLK}	Internal 1x Clock Selected	1:01	f _{INCLK} = 30MHz (max)

		Detail							
	SH Signal \rightarrow Color 1 \rightarrow Color 1 \rightarrow Color 1 \rightarrow Color 1 \rightarrow Co	or 1 \rightarrow Color 1 \rightarrow							
	\rightarrow SH Signal \rightarrow Color 2 \rightarrow								
	\rightarrow SH Signal \rightarrow Color 3	Color 3→Color 3→							
	\rightarrow SH Signal \rightarrow Color 4 \rightarrow								
	\rightarrow SH Signal \rightarrow Color 5	Color 5 \rightarrow Color 5 \rightarrow							
Output Sequencing	or								
	SH Signal \rightarrow Color 5 \rightarrow Color 5 \rightarrow Color 5 \rightarrow Co	or 5 \rightarrow Color 5 \rightarrow							
	\rightarrow SH Signal \rightarrow Color 4	Color 4→Color 4→							
	\rightarrow SH Signal \rightarrow Color 3	Color 3→Color 3→							
	\rightarrow SH Signal \rightarrow Color 2	Color 2 \rightarrow Color 2 \rightarrow							
	\rightarrow SH Signal \rightarrow Color 1	Color 1 \rightarrow Color 1 \rightarrow							

Texas NSTRUMENTS

www.ti.com

7.4.4 Mode 1b - One Channel Color Input Per Line/Sequential Line (Input) Sampling/Three Channel Processing

In Mode 1b, the OS_R , OS_G , and OS_B inputs are sampled sequentially and processed through their respective channels. This mode allows an entire line of Red, Green, or Blue Pixels to be sampled before sequencing to the next input. This mode is useful with sensors that output whole lines of pixels of a single color. The order in which the channels are sampled is fully programmable. Actual switching from channel to channel is triggered by an SH pulse. The first SH pulse after this mode is set (or reset) sets up the first programmed channel for gain and offset and initiates sampling through that channel alone. The next SH pulse switches the active channel to the second channel indicated by the configuration registers. This sequencing with SH pulses continues to the third channel and then continuously loops through the channels.

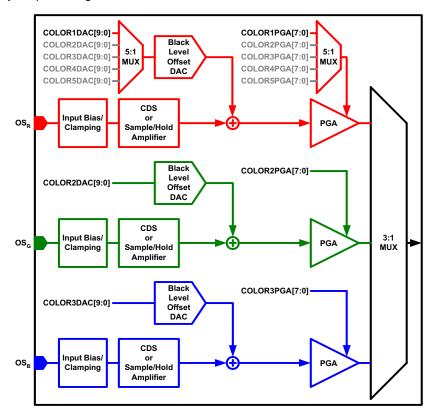
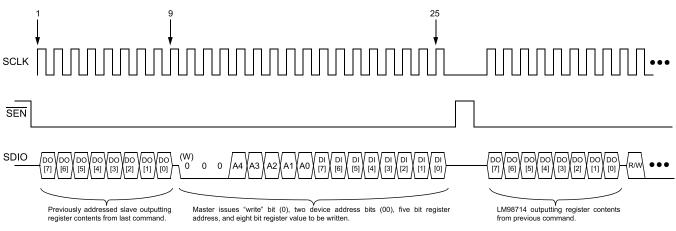


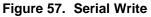
Figure 56. Mode 1b Signal Routing

Table 10	. Mode	1b	Operating	Details
----------	--------	----	-----------	---------

			Detail						
Channels Active	OS_B or OS_G or OS_R	OS _G or OS _R One channel active per line. Active channel is sequent SH pulse at start of new line.							
Channel Sample Rate	30		MSPS per Channel (max)						
ADC Sample Rate		30	MSPS (max)						
f _{ADC} : f _{INCLK}	Internal 1x Clock Selected	1:01	f _{INCLK} = 30MHz (max)						
	SH Signal \rightarrow R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-								
	\rightarrow SH Signal \rightarrow G-G-G-G-G-G-G-G-G-G-G-G- \rightarrow								
	\rightarrow SH Signal \rightarrow B-B-B-B-B-B-B-B-B-B-B-B-B-B-								
Output Sequencing	or								
	SH Signal \rightarrow B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-	-B-B-B-B-	B→						
	\rightarrow SH Signal \rightarrow G-G-G-G-G-G-G-G-G-G-G-G- \rightarrow								
	\rightarrow SH Signal \rightarrow R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-								

LM98714 SNAS254B-OCTOBER 2006-REVISED APRIL 2017

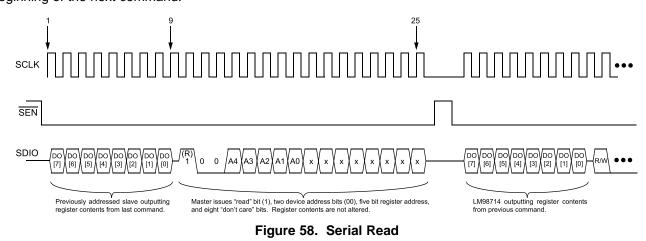

7.5 Programming

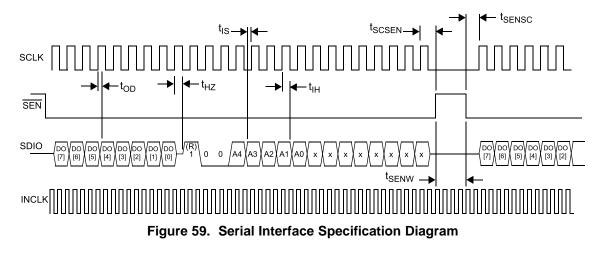

7.5.1 Serial Interface

A serial interface is used to write and read the configuration registers. The interface is a three wire interface using SCLK, SEN, and SDIO connections. The main input clock (INCLK) to the LM98714 must be active during all Serial Interface commands.

7.5.1.1 Writing To The Serial Registers

To write to the serial registers, the timing diagram shown in Figure 57 must be met. First, SEN is toggled low. The LM98714 assumes control of the SDIO pin during the first eight clocks of the command. During this period, data is clocked out of the device at the rising edge of SCLK. The eight bit value clocked out is the contents of the previously addressed register, regardless if the previous command was a read or a write. At the rising edge of ninth clock, the LM98714 releases control of the SDIO pin. At the falling edge of the ninth clock period, the master should assume control of the SDIO pin and begin issuing the new command. SDIO is clocked into the LM98714 at the rising edge of SCLK. The remaining bits are composed of the "write" command bit (a zero), two device address bits (zeros for the LM98714), five bit register address to be written, and the eight bit register value to be written. When SEN toggles high, the register is written to, and the LM98714 now functions with this new data.




Programming (continued)

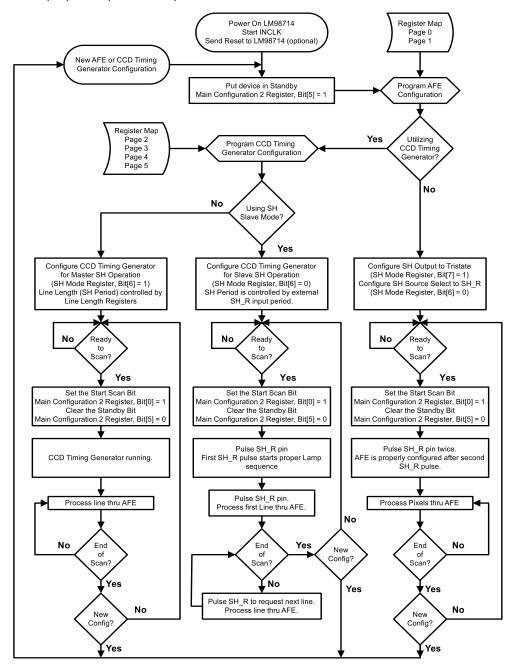
7.5.1.2 Reading The Serial Registers

To read to the serial registers, the timing diagram shown in Figure 58 must be met. First, SEN is toggled low. The LM98714 assumes control of the SDIO pin during the first eight clocks of the command. During this period, data is clocked out of the device at the rising edge of SCLK. The eight bit value clocked out is the contents of the previously addressed register, regardless if the previous command was a read or a write. At the rising edge of ninth clock, the LM98714 releases control of the SDIO pin. At the falling edge of the ninth clock period, the master should assume control of the SDIO pin and begin issuing the new command. SDIO is clocked into the LM98714 at the rising edge of SCLK. The remaining bits are composed of the "read" command bit (a one), two device address bits (zeros for the LM98714), five bit register address to be read, and the eight bit "don't care" bits. When SEN toggles high, the register is not written to, but its contents are staged to be outputted at the beginning of the next command.

7.5.1.3 Serial Interface Timing Details

Texas Instruments

www.ti.com


7.6 Register Maps

7.6.1 Configuration Registers

The LM98714 operation is very flexible to support a wide variety of sensors and system designs. This flexibility is controlled through configuration registers which are first summarized, then described in full in the following tables. Because the serial interface only allows 5 address bits, a register paging system is used to support the larger number of required registers.

A page register is present at the highest address (1Fh or 11111b). The power on default setting of the page register is 00. Writing other values to this register allows the other pages to be accessed. The page register is mirrored, and is accessible at the highest address on each page.

Figure 60 shows the proper sequence of operation for the LM98714.

Table 11. Page 0 Register Table - Main Analog Front End Configuration

Address			Register/Bit Description								
(Binary)	Register Title (Mnemonic)	Default (Binary)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	No	te: The active register page	is selected by writing	the desired value to	the page select regi	ister 1Fh. This registe	r is mirrored on all re	egister pages.			
Page 0				Page	Register 1F = 0000	0000					
00000	Main Configuration 0	1111 0001	Operating Mode Select								
00001	Main Configuration 1	0101 0000	Source Follower Enable	Input Bias Enable	Input Polarity	Sampling Mode Select	Output Format	PIXCLK/ ADCCLK Config.	Pixel Phase C	lock Select	
00010	Main Configuration 2	0000 0000	Not	Used	Active/ Standby	Gain Mode Select	Output Enable	Power-down	Soft Reset	Start Scan	
00011	Main Configuration 3	0000 0111					Processing Channel Override		Reserved		
00100	Main Configuration 4	0000 0000		Not	Used		Upcount Enable		LVDS Test Mode		
00101	Input Clamp Control	0000 0000		Not	Used		Auto CL	PIN Width	Auto CLPIN Enable	CLPIN Gating	
00110	Auto CLPIN Position	0010 0111	MSB							LSB	
00111	VCLP Configuration	0010 0000	Not	Used	VCLP Refe	rence Select		VCLP [DAC Bits		
01000	Black Level Clamp Control	0000 0000	Line A	/eraging	Pixel A	veraging	Offset I	Integration	BLKCLP Mo	BLKCLP Mode Select	
01001	Auto Black Level Clamp Position	0000 0000	Not Used	MSB						LSB	
01010	Target Black Level MSB	0010 0000	MSB							LSB+2	
01011	Target Black Level LSB	0000 0000			No	ot Used			LSB+1	LSB	
01100	OS _R CLAMP Control	0000 0000		Not Used					I		
01101	OS _G CLAMP Control	0000 0000		Not Used				CLAMP _G Position			
01110	OS _B CLAMP Control	0000 0000		Not Used				CLAMP _B Position			
01111	OS _R SAMPLE Control	0000 0000	Not Used			1	SAMPLE _R Positio	tion			
10000	OS _G SAMPLE Control	0000 0000	Not Used				SAMPLE _G Position	on			
10001	OS _B SAMPLE Control	0000 0000	Not Used				SAMPLE _B Positio	on			
10010	Upcounter Register 1	0000 0000				Count	Value LSBs				
10011	Upcounter Register 2	0000 0000				Count Valu	ue Middle 8 Bits				
10100	Upcounter Register 3	0000 0000		Not Used				Count Value MSBs			
10101											
10110											
10111											
11000											
11001											
11010											
11011											
11100											
11101											
11110		0000 0100									
11111	Page Register	0000 0000		Res	erved (program all z	eros)		LSB+2	LSB+1	LSB	

LM98714 SNAS254B – OCTOBER 2006 – REVISED APRIL 2017

www.ti.com

Address			Register/Bit Description									
(Binary)	Register Title (Mnemonic)	Default (Binary)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	Note	The active register pa	ge is selected by writing	the desired value to	the page select regis	ster 1Fh. This registe	er is mirrored on all r	egister pages.				
Page 1				Page	Register 1F = 0000	0001						
00000	Color 1 PGA	0101 0100	MSB							LSB		
00001	Color 2 PGA	0101 0100	MSB							LSB		
00010	Color 3 PGA	0101 0100	MSB							LSB		
00011	Color 4 PGA	0101 0100	MSB							LSB		
00100	Color 5 PGA	0101 0100	MSB							LSB		
00101	Color 1 Black Level Offset DAC MSB	1000 0000	MSB							LSB+2		
00110	Color 1 Black Level Offset DAC LSB	0000 0000			Not L	Jsed			LSB+1	LSB		
00111	Color 2 Black Level Offset DAC MSB	1000 0000	MSB							LSB+2		
01000	Color 2 Black Level Offset DAC LSB	0000 0000			Not U	Jsed		L.	LSB+1	LSB		
01001	Color 3 Black Level Offset DAC MSB	1000 0000	MSB							LSB+2		
01010	Color 3 Black Level Offset DAC LSB	0000 0000		Not Used						LSB		
01011	Color 4 Black Level Offset DAC MSB	1000 0000	MSB							LSB+2		
01100	Color 4 Black Level Offset DAC LSB	0000 0000	Not Used						LSB+1	LSB		
01101	Color 5 Black Level Offset DAC MSB	1000 0000	MSB							LSB+2		
01110	Color 5 Black Level Offset DAC LSB	0000 0000			Not U	Jsed		1	LSB+1	LSB		
01111	Color 1 Digital Offset	0100 0000	Not Used	MSB						LSB		
10000	Color 2 Digital Offset	0100 0000	Not Used	MSB						LSB		
10001	Color 3 Digital Offset	0100 0000	Not Used	MSB						LSB		
10010	Color 4 Digital Offset	0100 0000	Not Used	MSB						LSB		
10011	Color 5 Digital Offset	0100 0000	Not Used	MSB						LSB		
10100												
10101												
10110												
10111												
11000												
11001												
11010												
11011												
11100												
11101												
11110		0000 0100										
11111	Page Register	0000 0000		Reser	ved (program all zero	os)	- •	LSB+2	LSB+1	LSB		

Address	Devision Title (Meanworks)	Defeat (Diserv)				Register/Bit	Description			
(Binary)	RegisterTitle (Mnemonic)	Default (Binary)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	·	Note: The active	e register page is selecte	d by writing the desired	I value to the page sel	ect register 1Fh. This re	gister is mirrored on a	I register pages.		·
Page 2					Page Register 1F =	0000 0010				
00000	SH Mode	0000 0000	SH Output Enable	SH Source Select	SH	Mode		SH D	elay	
00001	SH Pulse Width	0010 0111				SH Puls	e Width			
00010	PIX1/2 Control	1100 1000	PIX1 Activity	PIX1 Polarity	PIX1 Frequency	PIX1 Activity During SH	PIX2 Activity	PIX2 Polarity	PIX2 Frequency	PIX2 Activity During SH
00011	PIX3/4 Control	1000 1000	PIX3 Activity	PIX3 Polarity	PIX3 Frequency	PIX3 Activity During SH	PIX4 Activity	PIX4 Polarity	PIX4 Frequency	PIX4 Activity During SH
00100	PIX5/6 Control	0000 0000	PIX5 Activity	PIX5 Polarity	PIX5 Frequency	PIX5 Activity During SH	PIX6 Activity	PIX6 Polarity	PIX6 Frequency	PIX6 Activity During SH
00101	PIX7/8 Control	0000 0000	PIX7 Activity	PIX7 Polarity	PIX7 Frequency	PIX7 Activity During SH	PIX8 Activity	PIX8 Polarity	PIX8 Frequency	PIX8 Activity During SH
00110	Line Clamp Enable	0000 0000	PIX8 Line Clamp Enable	PIX7 Line Clamp Enable	PIX6 Line Clamp Enable	PIX5 Line Clamp Enable	PIX4 Line Clamp Enable	PIX3 Line Clamp Enable	PIX2 Line Clamp Enable	PIX1 Line Clamp Enable
00111	PIX1 Start	0000 0000	Reserved	MSB						LSB
01000	PIX1 End	0001 0101	Reserved	MSB						LSB
01001									<u></u>	
01010	PIX2 Start	0000 0000	Reserved	MSB						LSB
01011	PIX2 End	0001 0101	Reserved	MSB						LSB
01100				•	•			•	1	-
01101	PIX3 Start	0000 1011	Reserved	MSB						LSB
01110	PIX3 End	0000 1101	Reserved	MSB						LSB
01111										
10000	PIX4 Start	0001 0000	Reserved	MSB						LSB
10001	PIX4 End	0001 0011	Reserved	MSB						LSB
10010										
10011	PIX5 Start	0000 0000	Reserved	MSB						LSB
10100	PIX5 End	0000 0000	Reserved	MSB						LSB
10101										
10110	PIX6 Start	0000 0000	Reserved	MSB						LSB
10111	PIX6 End	0000 0000	Reserved	MSB						LSB
11000										
11001	PIX7 Start	0000 0000	Reserved	MSB						LSB
11010	PIX7 End	0000 0000	Reserved	MSB						LSB
11011										
11100	PIX8 Start	0000 0000	Reserved	MSB						LSB
11101	PIX8 End	0000 0000	Reserved	MSB						LSB
11110	CMOS Data Mode Status Bit Enable	0000 0000	Rese	rved	CLK10/ CLKOUT	CLK9/ CB[4]	CLK8/ CB[3]	CLK7/ CB[2]	CLK6/ CB[1]	CLK5/ CB[0]
11111	Page Register	0000 0000		Res	erved (program all zer	os)		LSB+2	LSB+1	LSB
	i ago regiotor	0000 0000		1(63)	ssa (program dil 260	,		20012	LODIT	200

Table 14. Page 3 Register Table - CCD/CIS Timing Generator Control 2

Address			Register/Bit Description								
(Binary)	Register Title (Mnemonic)	Default (Binary)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
·	Note: 7	The active register page is select	ed by writing the de	sired value to the pa	ige select register 1F	h. This register is mir	rored on all register	pages.			
Page 3				Page Registe	er 1F = 0000 0011						
00000	Output Mapping CLK1/CLK2	0000 0000		Output Mappi	ng for CLK1 Pin			Output Mapp	ing for CLK2 Pin		
00001	Output Mapping CLK3/CLK4	0000 0000		Output Mappi	ng for CLK3 Pin			Output Mapp	ing for CLK4 Pin		
00010	Output Mapping CLK5/CLK6	0000 0000		Output Mappi	ng for CLK5 Pin			Output Mapp	ing for CLK6 Pin		
00011	Output Mapping CLK7/CLK8	0000 0000		Output Mappi	ng for CLK7 Pin			Output Mapp	ing for CLK9 Pin		
00100	Output Mapping CLK9/(CLKOUT/ CLK10)	0000 0000		Output Mappi	ng for CLK9 Pin			Output Mapping fo	r CLKOUT/CLK10 Pin	I	
00101	Illumination Mode	0000 0000	LAMP _R Normal State	LAMP _G Normal State	LAMP _B Normal State	LampIR1 Normal State	LampIR2 Normal State	Re	served	SH/LAMP Overlap Enable	
00110	Line 1 Lamp Selection	0000 0000				Red Lamp Enable	Green Lamp Enable	Blue Lamp Enable	IR1 Lamp Enable	IR2 Lamp Enable	
00111	Line 2 Lamp Selection	0000 0000				Red Lamp Enable	Green Lamp Enable	Blue Lamp Enable	IR1 Lamp Enable	IR2 Lamp Enable	
01000	Line 3 Lamp Selection	0000 0000				Red Lamp Enable	Green Lamp Enable	Blue Lamp Enable	IR1 Lamp Enable	IR2 Lamp Enable	
01001	Line 4 Lamp Selection	0000 0000				Red Lamp Enable	Green Lamp Enable	Blue Lamp Enable	IR1 Lamp Enable	IR2 Lamp Enable	
01010	Line 5 Lamp Selection	0000 0000				Red Lamp Enable	Green Lamp Enable	Blue Lamp Enable	IR1 Lamp Enable	IR2 Lamp Enable	
01011	LAMP _R On - MSB	0000 0000		Reserved		SH_OR Enable	MSB				
01100	LAMP _R On - LSB	0001 0001								LSB	
01101	LAMP _R Off - MSB	0000 0011		Res	served	_1	MSB				
01110	LAMP _R Off - LSB	0000 0110								LSB	
01111	LAMP _G On - MSB	0000 0000		Reserved		SH_OR Enable	MSB				
010000	LAMP _G On - LSB	0001 0010								LSB	
10001	LAMP _G Off - MSB	0000 0011		Res	served		MSB				
10010	LAMP _G Off - LSB	0000 0000								LSB	
10011	LAMP _B On - MSB	0000 0000		Reserved	-1	SH_OR Enable	MSB				
10100	LAMP _B On - LSB	0001 0011								LSB	
10101	LAMP _B Off - MSB	0000 0011		Res	served		MSB				
10110	LAMP _B Off - LSB	0011 0000								LSB	
10111	LAMP _{IR1} On - MSB	0000 0000		Reserved	1	SH_OR Enable	MSB				
11000	LAMP _{IR1} On - LSB	0001 0100								LSB	
11001	LAMP _{IR1} Off - MSB	0000 0011		Res	served	4	MSB				
11010	LAMP _{IR1} Off - LSB	0011 0000								LSB	
11011	LAMP _{IR2} On - MSB	0000 0000		Reserved		SH_OR Enable	MSB				
11100	LAMP _{IR2} On - LSB	0001 0101								LSB	

Table 14. Page 3 Register Table - CCD/CIS Timing Generator Control 2 (continued)

Address (Binary)	Desister Title (Mnomenie)	Default (Binary)	Register/Bit Description								
	Register Title (Mnemonic)		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
11101	LAMP _{IR2} Off - MSB	0000 0011	Reserved				MSB				
11110	LAMP _{IR2} Off - LSB	0011 0000								LSB	
11111	Page Register	0000 0000	Reserved (program all zeros)					LSB+2	LSB+1	LSB	

Address	Register Title (Mnemonic)	Default (Binary)	Register/Bit Description								
(Binary)			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Note: The a	active register page is selected by	writing the desired v	alue to the page	e select register 1Fh.	This register is mir	rored on all register pa	iges.			
Page 4		Page Register 1F = 0000 0100									
00000	Mode On - MSB	0000 0010		F	Reserved		MSB				
00001	Mode On - LSB	0000 0000								LSB	
00010	Mode Off - MSB	0000 0011		F	Reserved	·	MSB				
00011	Mode Off - LSB	0000 0001								LSB	
00100	Optical Black Pixels Start	0000 0000	MSB							LSB	
00101	Optical Black Pixels End	0000 0000	MSB							LSB	
00110	Start of Valid Pixels - MSB	0000 0000	Reserved		MSB						
00111	Start of Valid Pixels - LSB	0000 0001								LSB	
01000	End of Valid Pixels - MSB	0011 1111	Res	erved	MSB						
01001	End of Valid Pixels - LSB	1111 1110								LSB	
01010	Line End - MSB	0011 1111	Res	erved	MSB						
01011	Line End - LSB	1111 1111								LSB	
01100	Sample Timing Monitor 1	1111 1111									
01101	Sample Timing Monitor 2	1111 1111									
01110	Sample Timing Monitor 3	1111 1111									
01111	SH2/SH3 Control	0000 0000					SH3 Select	SH2 Select			
10000	PIX OR/NOR Control 1	0000 0000									
10001	PIX OR/NOR Control 2	0000 0000									
11111	Page Register	0000 0000	Reserved (program all zeros) LSB+2 LSB+1						LSB+1	LSB	

Table 16. Page 5 Register	Table - CCD/CIS Timing	Generator Control 4
---------------------------	------------------------	---------------------

Address	Register Title (Mnemonic)	Default (Binem)	Register/Bit Description								
(Binary)		Default (Binary)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Note: The	active register page is selected by	writing the desired value to the page select register 1Fh. This register is mirrored on all register pages.								
Page 5				Page Register 1	IF = 0000 0101						
00000	PIX1/SH On Guardbands	0000 1111		PIX1 On Guardband							
00001	PIX1/SH Off Guardbands	0000 0111				PIX1 C	ff Guardband				
00010	PIX2/SH On Guardbands	0000 1111				PIX2 C	n Guardband				
00011	PIX2/SH Off Guardbands	0000 0111				PIX2 C	ff Guardband				
00100	PIX3/SH On Guardbands	0000 1111				PIX3 C	n Guardband				
00101	PIX3/SH Off Guardbands	0000 0111		PIX3 Off Guardband							
00110	PIX4/SH On Guardbands	0000 1111		PIX4 On Guardband							
00111	PIX4/SH Off Guardbands	0000 0111		PIX4 Off Guardband							
01000	PIX5/SH On Guardbands	0000 1111		PIX5 On Guardband							
01001	PIX5/SH Off Guardbands	0000 0111		PIX5 Off Guardband							
01010	PIX6/SH On Guardbands	0000 1111		PIX6 On Guardband							
01011	PIX6/SH Off Guardbands	0000 0111		PIX6 Off Guardband							
01100	PIX7/SH On Guardbands	0000 1111		PIX7 On Guardband							
01101	PIX7/SH Off Guardbands	0000 0111				PIX7 C	ff Guardband				
01110	PIX8/SH On Guardbands	0000 1111				PIX8 C	n Guardband				
01111	PIX8/SH Off Guardbands	0000 0111		PIX8 Off Guardband							
11111	Page Register	0000 0000		Res	served (program a	l zeros)		LSB+2	LSB+1	LSB	

Texas Instruments

www.ti.com

7.6.2 Register Definition

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
				Page 0) Registers
				[7:0]	Main Configuration Register 0
					Mode Select Bits.
					11 Mode 3 (Default) (3 Channel Mode)
				[7:6]	10 Mode 2 (2 Channel Mode)
					01 Mode 1a (1 Channel Mode, 1 Channel sampled for all lines)
					00 Mode 1b (3 Channel Line rate mode, 1 Channel sampled per line)
					Color Select Bits. Used to determine the inputs sampled during a scan.
		Main Configuration 0	1111 0001	[5:4]	11 All three channels sampled (Default)
					10 Mode 2 = OS _R & OS _B Mode 1 = OS _B
					01 Mode 2 = $OS_G \& OS_B$ Mode 1 = OS_G
					00 Mode 2 = $OS_R \& OS_G Mode 1 = OS_R$
0	0 0000			[3]	Color Order. Configures the sequence of the pixel processing.
					0 Forward (default)
					1 Reverse
					Color Sequence Length. Used in Mode 1a only to determine the number of lines of colors sequenced during a scan.
					111 Not valid
					110 Not Valid
					101 Five color (line) sequence
				[2:0]	100 Four color (line) sequence
					011 Three color (line) sequence
					010 Two color (line) sequence
					001 One color (line) sequence (Default)
					000 Not Valid

Table 17. Register Descriptions

Address (Binary)

www.ti.com

Page

Table 17. Register Descriptions (continued)								
Register Title	Default (Binary)	Bit No.	Description					

Title	(Binary)		
		[7:0]	Main Configuration Register 1
			Source Follower Enable.
		[7]	0 Disable (Default)
			1 Enable
			Input Bias Enable. Enables the Input Bias Resistor lad
		[6]	0 Dischlo

				[7]	Source Follower Enable.
					0 Disable (Default)
					1 Enable
					Input Bias Enable. Enables the Input Bias Resistor ladder.
				[6]	0 Disable
					1 Enable (Default)
					Input Polarity. Configures the polarity mode of the input signal.
				[5]	0 Negative going input relative to reference (Default)
					1 Positive going input relative to reference
				[4]	Sampling Mode Select.
					0 Sample and Hold Mode
					1 Correlated Double Sampling Mode (Default)
					Output Format.
				[3]	0 LVDS (Default)
0	0 0001	Main Configuration 1	0101 0000		1 CMOS
0	0 0001	Main Coniguration 1	0101 0000		PIXCLK/ADCCLK Configuration. Selects appropriate multiplier for given input clock
					frequency.
					Mode 3: ADC Frequency = 3x Pixel Frequency
					Mode 2: ADC Frequency = 2x Pixel Frequency
					Mode 1: ADC Frequency = 1x Pixel Frequency
				[2]	0 ADCCLK User supplies ADC rate clock, LM98714 performs no multiplication
					1 PIXCLK User supplies Pixel rate clock, LM98714 performs clock multiplication
					Mode 3: PIXCLK internally multiplied by 3 to get ADC clock
					Mode 2: PIXCLK internally multiplied by 2 to get ADC clock
					Mode 1: PIXCLK = ADCCLK. This bit is not used for Mode 1
				[1:0]	Pixel Phase Clock Select. Coarse adjustment for Pixel phase relative to INCLK. Useful in
				[1:0]	systems where Pixel inputs arrive with significant delay relative to INCLK.
					00 PIXPHASE0. Pixel phase aligned with INCLK
					01 PIXPHASE1. Pixel phase delayed by (T _{ADC Clock} * 3/7)
					10 PIXPHASE2. Pixel phase delayed by (T _{ADC Clock})
					11 PIXPHASE3. Pixel phase delayed by (T _{ADC Clock} * (1 + 3/7))
				[7:0]	Main Configuration 2
				[7:6]	Not Used
				[5]	Active/Standby
				[0]	Gain Mode Select. Selects either a 1x or 2x gain mode in the CDS/Sample/Hold Block.
		Main Configuration 2		[4]	0 1x Gain in the CDS/Sample/Hold Block (Default)
					1 2x Gain in the CDS/Sample/Hold Block
				[0]	Output Enable. Enables the Data Output pins.
0	0 0010		0000 0000	[3]	0 Disabled (Default)
					1 Enable
					Powerdown
				[2]	0 Device fully powered (Default)
					1 Powerdown. Power down of major analog blocks
				[1]	Software Reset. Performs a system reset when set to a 1. Self clearing.
					Start Scan (BOS)
				[0]	0 Ready (Default)
					1 Start Scan. Control bit is self clearing
				[7:0]	Main Configuration 3
				[7:4]	Not Used
		Main Configuration 3	0000 0111		Processing Channel Override. Used in Mode 1 to determine the analog processing path for
0	0 0011			[3]	the selected inputs.
					0 Multiplex all selected inputs into the Red Channel analog path (Default)
					1 Process each selected input through its respective analog path
				[2:0]	Reserved Set to 111
				1	

LM98714 SNAS254B-OCTOBER 2006-REVISED APRIL 2017

www.ti.com

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
				[7:0]	Main Configuration 4
				[7:4]	Not Used
				[3]	Upcount Enable
					LVDS Test Mode. Activates LVDS test pattern output (when in LVDS output mode only).
					000 Normal operation, no test pattern output (Default)
0	0 0100	Main Configuration 4	0000 0000		001 Test pattern 1: Alternating pattern between 0x155555 and 0x0AAAAA
0	0 0100	Main Conngulation 4	0000 0000		010 Test pattern 2: If Upcount Enable Bit set, count from 21h000000 to 21h 1FFFFF
				[2:0]	011 Test pattern 3. Output Static Count value found represented by the three Upcounter Registers found on page 0
					Reg 0x14 Bits[4:0] = Count Values 5 MSBs
					Reg 0x13 Bits[7:0] = Count Values 8 Middle Bits
					Reg 0x12 Bits[7:0] = Count Values 8 LSBs
		Input Clamp Control		[7:0]	Input Clamp Control (CLPIN) Configuration Register
	0 0101			[7:4]	Reserved
				[3:2]	Auto CLPIN Width. Width in Pixels of the Auto generated CLPIN pulse.
					00 4 Pixels (Default)
					01 8 Pixels
					10 16 Pixels
					11 32 Pixels
0			0000 0000	[1]	Auto CLPIN Enable.
					0 Auto CLPIN Disabled
					CLPIN Pulse generation Disabled (Default)
					1 Auto CLPIN
					CLPIN generated internally with a programmable delay from SH
				[0]	CLPIN Gating Enable.
					0 Auto CLPIN _{GATED} not gated by SAMPLE (default)
					1 Auto CLPIN _{GATED} gated by SAMPLE (= logical and of CLPIN and SAMPLE)
				[7:0]	Auto CLPIN Pulse Position Register
0	0 0110	Auto CLPIN Position	0010 0111	[7:0]	Auto CLPIN Pulse Position. Number of pixels in which Auto CLPIN pulse is delayed, relative to the falling edge of SH.
				[7:0]	VCLP Configuration Register
				[7:6]	Reserved
					VCLP Reference Select.
0	0 0111	VCLP Configuration	0010 0000		00 External Bias (No Internal Connection to Ladder Resistors or DAC)
U	00111		0010 0000	[5:4]	01 Internal VCLP DAC connection only
					10 Internal Resistor Ladder connection only (Default)
					11 Reserved
				[3:0]	4 Bit nibble for VCLP Reference DAC value.

Table 17. Register Descriptions (continued)

0 0 1000 Biack Level Clamp Control 0000000 [7:6] 01 finite register. A line bigming is defined by the 3H pulse. 0 0 1000 Biack Level Clamp Control 0000000 [16:4] 01 B Packs 10 0 1000 Biack Level Clamp Control 0000000 [16:4] 01 B Packs 0 0 1000 Biack Level Clamp Control 0000000 [16:4] 01 B Packs 10 0 1000 Biack Level Clamp Control 0000000 [16:4] 01 B Packs 10 0 1000 Biack Level Clamp Control 0000000 [16:4] 01 B Packs 10 Divels by 12 11 Divels by 23 11 Divels by 23 11 Divels by 23 11 Divels by 12 11 Divels by 14 Level Clamp Dualed (default) 11 Max Biack Clamp Dualed default) 11 Divels by 12 11 Divels by 14 Level Divels	Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
0 0 1000 Bisek Level Clamp Control 00000000 116 Junes 0 0 1000 Bisek Level Clamp Control 00000000 116 Junes 103 10 10 Insis 116 Junes 116 Junes 104 01 000 Bisek Level Clamp Control 00000000 116 Junes 104 014 Provide 116 Junes 116 Junes 105 116 Junes 116 Junes 116 Junes 105 Provide 116 Junes 116 Junes 104 116 Provide 116 Provide 116 Provide 105 Provide 116 Provide 116 Provide 105 Provide 116 Provide 116 Provide 105 00000000 Exclum Mode Shack Limp Dualed Gelaut/ 116 Provide 100 010101 Target Black Level Anne Provide Provide 116 Provide					[7:0]	Black Level Correction Circuitry Configuration Register
0 0 1000 Back Level Clamp Control 0000000 [7:6] 11 51 Lines 0 0 1000 Back Level Clamp Control 0000000 [5:4] 10 51 Lines 0 0 1000 Back Level Clamp Control 0000000 [5:4] 10 51 Protein 0 10 52 Protein 004 Protein 004 Protein 004 Protein 0 10 52 Protein 004 Protein 004 Protein 004 Protein 0 10 52 Protein 004 Protein 004 Protein 004 Protein 0 004 Protein 11 32 Protein 004 Protein 004 Protein 0 004 Protein 10 Protein 10 Protein 004 Protein 004 Protein 10 004 Protein 10 Protein 10 Protein 004 Protein 004 Protein 004 Protein 0 0 1001 Auto Black Level Clamp Control 0000 0000 [7:0] Reserved 11 Protein 0 0 1010 Target Black Level LS8 0000 0000 [7:0] Reserved Concelland Protein Protein Protein Protein						Line Averaging. Number of Lines that the correction loop will run. Line Counter is reset during any write to this register. A line beginning is defined by the SH pulse.
0 0 1000 Black Level Clamp Centrol 000 0000 10 3 Lines 0 0 1000 Black Level Clamp Centrol 000 0000 10 4 Phote 0 0 1000 Black Level Clamp Centrol 000 0000 10 4 Phote 0 0 1000 Black Level Clamp Centrol 0000 0000 10 4 Phote 0 0 1000 0 10 Web by 32 10 10 Web by 32 10 10 Web by 32 10 10 Web by 32 11 10 Web by 32 11 10 Web by 32 11 10 Web by 32 110 10 Web by 32 11 10 Web by 32 11 10 Web by 32 11 10 Web by 32 110 10 Web by 32 11 10 Web by 32 11 10 Web by 32 11 10 Web by 32 110 10 Web by 32 11 10 Web by 32 11 10 Web by 32 11 10 Web by 32 110 10 Web by 32 11 10 Web by 32 11 10 Web by 32 11 10 Web by 32 100 0 1001 Target Black Level Clamp Decemport Notating edge of SH pube 11 Auto Black Clamp public decemport Notating edge of CLIN public 0 0 1010 Target Black Level KBB 0000 0000 [72] The starget ouptic code fo						00 Infinite (Default)
0 0 1000 Black Level Champ Control 0000 0000 11 63 Lines Plack Averaging, Number of Black Level Plaets averaged by the correction loop. 0 0 1000 Black Level Champ Control 0000 0000 11 32 Pirels 11 13 2 Pirels 11 13 2 Pirels 11 13 2 Pirels 11 13 2 Pirels 0 0 1000 Plack Level Champ Control 0000 0000 11 32 Pirels 0 0 1001 Auto Black Level Champ Control 0000 0000 11 32 Pirels 10 0 View by 32 11 Divide by 32 11 Divide by 42 11 10 View by 32 11 Divide Viey 32 11 Divide Viey 32 11 10 View by 32 11 Divide Viey 32 11 Divide Viey 32 11 10 View View 10 Champ Orecurpt Obtabled (default) 01 Auto Black Champ public delived from failing edge of SH public 0 0 1001 Target Black Level MBB 0000 0000 [7] Reaevoid 0 0 1010 Target Black Level LBB 0000 0000 [7] Reaevoid 0 0 1010 Target Black Level LBB 0000 0000 [7] Reaevoid 0 0 1010 Targ					[7:6]	01 15 Lines
0 0 1000 Black Level Clamp Control 0000 0000 1018 Provide 0.04 Previde 0.01 Previde 0.01 Previde 0.000 Previde 0.000 Previde 0.000 Previde 0.01 Previde 0.01 Previde 0.01 Previde 0.01 Previde 0.000 Previde 0.01 Previde 0.000 Previde 0.01 Previde 0.000 Previde 0.01 Previde 0.01 Previde 0.01 Previde 0.01 Previde 0.000 Previde 0.01 Previde 0.000 Previde 0.01 Previde 0.01 Previde 0.000 Previde 0.01 Previde 0.01 Previde 0.01 Previde 0.000 Previde 0.01 Previde 0.000 Previde 0.01 Previde 0.01 Previde 0.000 Previde 0.01 Previde 0.000 Previde 0.01 Pr						10 31 Lines
0 0 1000 Black Level Clamp Control 0000 0000 [[64] 018 Pixels 0 0 1000 Black Level Clamp Control 0000 0000 [132 Pixels 0.00548 by 18 10 0 Divide by 18 1132 Pixels 0.00548 by 18 10016 Invade by 14 10 0 Divide by 18 1004 Pixels by 16 0.00548 by 18 100448 by 14 11 Divide by 14 1004 Pixels by 16 0.00488 by 14 100488 bixels 10011 0 0 1001 Auto Black Level Clamp Divide by 18 1000048 bix 14 1000048 bixels 100048 bixels 1000000000000000000000000000000000000						11 63 Lines
0 0 1000 Black Level Clamp Control 0000 0000 [54] 10 16 Puels 0 0 1000 Black Level Clamp Control 0000 0000 [63] (13 Puels) 0 0 1000 Black Level Clamp Control 0000 0000 [83] (13 Puels) 0 0 1001 Offeet Integration. (000 0000) (13 Puels) 10 Divide by 3 (13 Puels) (13 Puels) (13 Puels) 10 Divide by 4 (13 Puels) (13 Puels) (13 Puels) 0 Divide by 4 (13 Puels) (14 Puels) (14 Puels) 10 Divide by 4 (13 Puels) (14 Puels) (14 Puels) 10 Divide by 4 (13 Puels) (14 Puels) (14 Puels) 10 Divide by 4 (14 Puels) (14 Puels) (14 Puels) 10 Divide by 4 (14 Puels) (14 Puels) (14 Puels) 10 Divide Puels (17 Puels) (17 Puels) (17 Puels) 11 Pacesond (17 Puels) (18 Puels) (18						Pixel Averaging. Number of Black Level Pixels averaged by the correction loop.
0 0 1000 Black Level Clamp Control 0000 0000 11 32 Pixels 0 0 1000 Black Level Clamp Control 0000 0000 11 32 Pixels 0 0 Wide by 9 0 0 Divide by 9 0 10 Divide by 9 0 0 Divide by 9 0 0 10 Divide by 9 0 0 Divide by 9 0 0 10 Divide by 9 0 10 Divide by 9 0 0 10 Divide by 9 0 10 Divide by 9 0 0 10 Divide by 9 0 0 0 Divide by 16 1 0 10 Divide Div						00 4 Pixels
0 0 1000 Black Level Clamp Control 0000 0000 11 32 Pixels 0 0 1004 Different Integration. 0000 different Integration. 0 0 Divide by 9 0 Divide by 9 0 Divide by 9 11 Divide by 92 0 Divide by 92 0 Divide by 92 11 Divide by 94 0 Divide by 92 0 Divide by 92 11 Divide by 94 0 Divide by 92 0 Divide by 92 00 Auto Black Clamp Divide Divi					[5:4]	01 8 Pixels
0 0 1001 Auto Black Level Clamp Postan 0000 0000 [3:2] 0104 by 9 11 Divide by 9 11 1004 by 9 11 0 Divide by 9 11 1004 by 9 11 10 Divide by 9 11 1004 by 9 11 11 Divide by 9 11 11 11 11 11 Divide by 9 11						10 16 Pixels
0 0004de by 8 00104de by 8 0004de by 16 0104de by 16 0104de by 16 0104de by 16 0104de by 16 0104de by 16 0104de by 16 1104de by 84 BLKCL Mode Select. If Auto Black Clamp pulse is enabled. Offset DAC registers are record. 00104de by 84 BLKCL Mode Select. If Auto Black Clamp pulse fellower from falling edge of SL pulse. 0104de by 84 In Auto Black Level Clamp Pulse fellower from falling edge of CLPIN pulse. 01101 Auto Black Level Clamp Pulse fellower from falling edge of CLPIN pulse. 01101 Target Black Level SB 0010 0000 01011 Target Black Level SB 0010 0000 17:0 The sary of upper obtain Auto Black black pulse is delayed, relating edge of SL pulse. 0 01011 Target Black Level SB 0000 0000 17:0 The sary of Upper obtain Avaine Black Level Correction loop. 0 01100 OS ₈ CLAMP Control 0000 0000 17:5 Not Used CLAMP, Position. A value of 0 will force the position of this pulse to be at the mode dependant default. 0 01111 OS ₈ CLAMP Control 00000 0000 17:6	0	0 1000	Black Level Clamp Control	0000 0000		11 32 Pixels
0 0 1001 Auto Black Level Clamp Position 0000 0000 101 10 Bixde by 32 11 Divide by 32 10 10 Wide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 11 Divide by 32 12 Target Black Level MSB 0000 00000 17 Divide Divide Divide Divide						
10 Divide by 32 11 Divide by 34 11 Divide by 34 01 Auto Black Clamp pulse delayed from falling edge of SH pulse 10 1 Auto Black Clamp pulse delayed from falling edge of CLPIN pulse 11 Reserved 11 Reserved 11 Reserved 11 Reserved 0 0 1001 Target Black Level Clamp Position 0000 0000 [7:0] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:2] Reserved (1:0) Target Black Level LSB 0000 0000 [7:2] Reserved 0 0 1100 OS _R CLAMP Control 0000 0000 [7:3] Not Used 0 0 1110 OS _R CLAMP Control 0000 0000 [7:4] Not Used 0 0 1110 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1111 OS _R CLAMP Control 0000 00000 [7:5						
0 0 1011 Auto Black Level Clamp Position 0000 0000 [7] Reserved 0 0 1010 Target Black Level KBB 0010 0000 [7] Reserved 0 0 1010 Target Black Level KBB 0010 0000 [7] Reserved 0 0 1010 Target Black Level KBB 0010 0000 [7] Reserved 0 0 1011 Target Black Level KBB 0010 0000 [7] Reserved 0 0 1011 Target Black Level LSB 0010 0000 [7] Reserved 0 0 1011 Target Black Level LSB 0000 0000 [7] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1100 OS ₈ CLAMP Control 0000 0000 [7] Not Used 0 0 1110 OS ₈ CLAMP Control 0000 0000 [7] Not Used 0 0 1110 OS R CLAMP Control 0000 00000					[3:2]	01 Divide by 16
0 0 1001 Auto Black Level Clamp Position 0000 0000 [1:0] [1:0] 01 Auto Black Clamp pulse delayed from falling edge of SH pulse 0 0 1001 Auto Black Level Clamp Position 0000 0000 [1:0] 11 Reserved 0 0 1010 Target Black Level Clamp Position 0000 0000 [1:0] Reserved 0 0 1010 Target Black Level MSB 0010 0000 [7:0] The B MSBs of the 10 Bit target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:0] The B MSBs of the 10 Bit target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1010 OS _R CLAMP Control 0000 0000 [7:2] Reserved 0 0 1110 OS _R CLAMP Control 0000 0000 [7:2] Reserved 0 0 1101 OS _R CLAMP Control 0000 0000 [7:2] Reserved 0 0 1100 OS _R CLAMP Control 0000 0000 [7:2] Reserved 0 0 1101 OS _R CLAMP Control 0000 00000 [7:3]						
0 0 1001 Auto Black Level Clamp Position 0000000000 [1:0] 004 uoto Black Clamp Circuitry Disabled (default) 0 0 1001 Auto Black Level Clamp Position 0000 0000 [1:0] 12 Reserved 0 0 1010 Target Black Level Clamp Position 0010 0000 [7:0] The 8 MSS of the 10 Bit target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1010 Target Black Level LSB 0000 0000 [7:0] The 8 MSS of the 10 Bit target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:0] The target store toput code for black pixels when using the Auto Black Level Correction loop. 0 0 1101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1100 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1110 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1110 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 11110 OS _R CLAMP Control						
0 0 1001 Auto Black Level Clamp Position 0000 0000 [1:0] 01 Auto Black Clamp pulse delayed from falling edge of SH pulse 0 0 1001 Auto Black Level Clamp Position 0000 0000 [7] Reserved 0 0 1010 Target Black Level MSB 0010 0000 [7:0] The Starserved 0 0 1011 Target Black Level MSB 0010 0000 [7:0] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:0] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:3] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1100 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1111 OS _R CLAMP Control 0000 00000 [7:5]						
0 0 0 Hold Auto Black Level Clamp Position 0000 0000 [7] Reserved 0 0 1001 Auto Black Level Clamp Position 0000 0000 [7] Reserved 0 0 1010 Target Black Level MSB 0010 0000 [7] Reserved 0 0 1010 Target Black Level MSB 0010 0000 [7] The 8 MSB of the 10 Bit target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1100 OS _R CLAMP Control 0000 0000 [7] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1100 OS _R CLAMP Control 0000 0000 [7] Reserved [4] OS _R CLAMP Control 0000 0000 [7] Not Used [2] CLAMP _R Position: A value of 0 will force the position of this pulse to be at the mode dependant default. 0 0 1110 OS _R CLAMP Control 0000 0000 [7] Not Used [2] CLAMP _R Position: A value of					[4.0]	00 Auto Black Clamp Circuitry Disabled (default)
Image: constraint of the position Auto Black Level Clamp Position 0000 0000 11 Reserved 0 0 1001 Auto Black Level Clamp Position 0000 0000 [7] Reserved 0 0 1010 Target Black Level MSB 0010 0000 [7] The 8 MSB of the 1 Bit target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:3] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1010 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1111 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1111 OS _R SAMPLE Control 0000 0000 [7:5] Not Used 0 11111 OS _R SAMPLE Control <td< td=""><td></td><td></td><td></td><td></td><td rowspan="2">[1:0]</td><td>01 Auto Black Clamp pulse delayed from falling edge of SH pulse</td></td<>					[1:0]	01 Auto Black Clamp pulse delayed from falling edge of SH pulse
0 0 1001 Auto Black Level Clamp Position 0000 0000 [7] Reserved 0 0 1010 Target Black Level MSB 0010 0000 [7:0] The B MSBs of the 10 Bit target output code for black pixels when using the Auto Black I selected trigger source. 0 0 1010 Target Black Level LSB 0010 0000 [7:0] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:0] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1010 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1111 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 1111 OS R SAMPLE Control 0000 0000 [7:5] Not Used						10 Auto Black Clamp pulse delayed from falling edge of CLPIN pulse
0 01001 Auto Black Level Clamp Position 0000 0000 [6:0] Black Level Clamp Position. Number of pixels in which Auto Black pulse is delayed, retat selected trigger source. 0 0 1010 Target Black Level MSB 0010 0000 [7:0] The B MSB of the 10 Bit target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:0] The target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1100 OS ₈ CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS ₆ CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS ₆ CLAMP Control 0000 0000 [7:5] Not Used 0 0 1101 OS ₆ CLAMP Control 0000 0000 [7:5] Not Used 0 0 1111 OS ₈ CLAMP Control 0000 0000 [7:5] Not Used 0 0 1111 OS ₈ CLAMP Control 0000 0000 [7:5] Not Used 0 0 1111 OS R SAMPLE Control 0000 0000 [7:5] Not Used 0 0 11111 OS R SAMPLE Control 0000 000						11 Reserved
0 0 0 0 0 0 0 0 0 1000 Target Black Level MSB 0010 0000 [7:0] The 8 MSBs of the 10 Bit target output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:0] The 1arget output code for black pixels when using the Auto Black Level Correction loop. 0 0 1011 Target Black Level LSB 0000 0000 [7:2] Reserved 0 0 1100 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 0 01101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 0 01101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 0 01101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 01101 OS _R CLAMP Control 0000 0000 [7:5] Not Used 0 0 0 0 0 0000 0000 [7:5] Not Used 0 0 0 0<	0	0.4004	Auto Black Level Clamp	0000 0000	[7]	Reserved
0 0	U	0 1001		0000 0000	[6:0]	Black Level Clamp Position. Number of pixels in which Auto Black pulse is delayed, relative to selected trigger source.
$ \begin{array}{ c c c c c c } \hline 0 & 0 & 1011 & Target Black Level LSB & 0000 0000 & \hline [7:2] & Reserved & \hline [1:0] & The 2 LSBs of the 10 Bit target output code for black pixels when using the Auto Black L \\ \hline [1:0] & The 2 LSBs of the 10 Bit target output code for black pixels when using the Auto Black L \\ \hline [1:0] & Correction loop. & \hline [7:5] & Not Used & \hline [4:0] & CLAMP_P Position. A value of 0 will force the position of this pulse to be at the mode dependant default. \\ \hline 0 & 0 & 1101 & OS_{6} CLAMP Control & 0000 & 0000 & \hline [4:0] & CLAMP_P Position. A value of 0 will force the position of this pulse to be at the mode dependant default. \\ \hline 0 & 0 & 1110 & OS_{6} CLAMP Control & 0000 & 0000 & \hline [4:0] & Reserved & \hline [4:0] & CLAMP_P Position. A value of 0 will force the position of this pulse to be at the mode dependant default. \\ \hline 0 & 0 & 1110 & OS_{8} CLAMP Control & 0000 & 0000 & \hline [4:0] & Reserved & \hline [4:0] & CLAMP_{8} Position. A value of 0 will force the position of this pulse to be at the mode dependant default. \\ \hline 0 & 0 & 1111 & OS R SAMPLE Control & 0000 & 0000 & \hline [6:0] & SAMPLE_{8} Position. A value of 0 will force the position of this pulse to be at the mode dependant default. \\ \hline 0 & 1 & 0000 & OS_{6} SAMPLE Control & 0000 & 0000 & \hline [6:0] & SAMPLE_{8} Position. A value of 0 will force the position of this pulse to be at its mode dependant default. \\ \hline 0 & 1 & 10001 & OS_{8} SAMPLE Control & 0000 & \hline [6:0] & SAMPLE_{9} Position. A value of 0 will force the position of this pulse to be at its mode dependant default. \\ \hline 0 & 1 & 1111 & Page Register & 0000 & 0000 & \hline [7] & Not Used & \hline [7] & Not Used & \hline [6:0] & SAMPLE_{9} Position. A value of 0 will force the position of this pulse to be at its mode dependant default. \\ \hline 0 & 1 & 1111 & Page Register & 0000 & 0000 & \hline [7] & Not Used & \hline [6:0] & SAMPLE_{9} Position. A value of 0 will force the position of this pulse to be at its mode dependant default. \\ \hline 0 & 1 & 11111 & Page Register $	0	0 1010	Target Black Level MSB	0010 0000	[7:0]	The 8 MSBs of the 10 Bit target output code for black pixels when using the Auto Black Level Correction loop.
0 0		0 1011 Target Black Level LSB 0000 0000	Target Black Level LSB	0000 0000	[7:0]	The target output code for black pixels when using the Auto Black Level Correction loop
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c c } \hline \end{tabular} \end{tabular}$	0				[7:2]	Reserved
$ \begin{array}{ c c c c c } \hline 0 & 0 & 1100 & OS_{R} \ CLAMP \ Control & 0000 \ 0000 & \hline \end{tabular} \\ \hline 0 & 0 & 1101 & OS_{G} \ CLAMP \ Control & 0000 \ 0000 & \hline \end{tabular} \\ \hline 0 & 0 & 1101 & OS_{G} \ CLAMP \ Control & 0000 \ 0000 & \hline \end{tabular} \\ \hline \end{tabular} \\ \hline 0 & 0 & 1110 & OS_{B} \ CLAMP \ Control & 0000 \ 0000 & \hline \end{tabular} \\ \hline tabular$			[1:0]	The 2 LSBs of the 10 Bit target output code for black pixels when using the Auto Black Level Correction loop.		
$ \begin{array}{ c c c c c } \hline \begin{array}{ c c } \hline \end{array} \hline \begin{array}{ c } \hline \begin{array}{ c } \hline \end{array} \hline \end{array} \hline \end{array} \\ \hline \begin{array}{ c } \hline \begin{array}{ c } \hline \begin{array}{ c } \hline \end{array} \hline \end{array} \\ \hline \begin{array}{ c } \hline \begin{array}{ c } \hline \end{array} \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c } \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \\ \hline \end{array} \end{array} \end{array} \end{array}$				0000 0000	[7:5]	Not Used
0 0 1101 OS ₆ CLAMP Control 0000 0000 [4:0] CLAMP ₆ Position. A value of 0 will force the position of this pulse to be at the mode dependant default. 0 0 1110 OS ₈ CLAMP Control 0000 0000 [4:0] CLAMP ₆ Position. A value of 0 will force the position of this pulse to be at the mode dependant default. 0 0 1110 OS ₈ CLAMP Control 0000 0000 [4:0] CLAMP ₈ Position. A value of 0 will force the position of this pulse to be at the mode dependant default. 0 0 1111 OS R SAMPLE Control 0000 0000 [6:0] SAMPLE _R Position. A value of 0 will force the position of this pulse to be at the mode dependant default. 0 1 0000 OS ₆ SAMPLE Control 0000 0000 [7] Not Used 0 1 0000 OS ₆ SAMPLE Control 0000 0000 [7] Not Used 0 1 0001 OS ₆ SAMPLE Control 0000 0000 [6:0] SAMPLE ₆ Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 0001 OS ₈ SAMPLE Control 0000 0000 [6:0] SAMPLE ₆ Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 1001 OS ₈ SAMPLE Control 0000 0000 [6:0] <td< td=""><td>0</td><td>0 1100</td><td>OS_R CLAMP Control</td><td>[4:0]</td><td></td></td<>	0	0 1100	OS _R CLAMP Control		[4:0]	
$ \begin{array}{ c c c c c } \hline \begin{array}{ c c } \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \end{array} \\ \\ \hline \\ \end{array} \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array}					[7:5]	Not Used
0 0 1110 OS _B CLAMP Control 0000 0000 [4:0] CLAMP _B Position. A value of 0 will force the position of this pulse to be at the mode dependant default. 0 0 1111 OS R SAMPLE Control 0000 0000 [6:0] SAMPLE _R Position. A value of 0 will force the position of this pulse to be at the mode dependant default. 0 0 1111 OS R SAMPLE Control 0000 0000 [6:0] SAMPLE _R Position. A value of 0 will force the position of this pulse to be at the mode dependant default. 0 1 0000 OS _G SAMPLE Control 0000 0000 [6:0] SAMPLE _G Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 0001 OS _B SAMPLE Control 0000 0000 [6:0] SAMPLE _G Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 0001 OS _B SAMPLE Control 0000 0000 [6:0] SAMPLE _B Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 1111 Page Register 0000 0000 [7:0] Used to select desired page of registers being accessed. Page 1 Registers	0	0 1101	OS _G CLAMP Control	0000 0000	[4:0]	
0 0 1111 OS R SAMPLE Control 0000 0000 [7] Not Used 0 1 0000 OS _G SAMPLE Control 0000 0000 [7] Not Used 0 1 0000 OS _G SAMPLE Control 0000 0000 [7] Not Used 0 1 0000 OS _G SAMPLE Control 0000 0000 [7] Not Used 0 1 0001 OS _G SAMPLE Control 0000 0000 [6:0] SAMPLE _G Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 0001 OS _B SAMPLE Control 0000 0000 [7] Not Used 0 1 0001 OS _B SAMPLE Control 0000 0000 [7] Not Used 0 1 1111 Page Register 0000 0000 [6:0] SAMPLE _B Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 1111 Page Register 0000 0000 [7:0] Used to select desired page of registers being accessed.					[7:5]	Not Used
0 0 1111 OS R SAMPLE Control 0000 0000 [6:0] SAMPLE _R Position. A value of 0 will force the position of this pulse to be at the mode dependant default. 0 1 0000 OS ₆ SAMPLE Control 0000 0000 [7] Not Used 0 1 0001 OS ₆ SAMPLE Control 0000 0000 [6:0] SAMPLE _G Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 0001 OS ₈ SAMPLE Control 0000 0000 [7] Not Used 0 1 0001 OS ₈ SAMPLE Control 0000 0000 [6:0] SAMPLE _B Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 1111 Page Register 0000 0000 [7:0] Used to select desired page of registers being accessed. Page 1 Registers	0	0 1110	OS _B CLAMP Control	0000 0000	[4:0]	
0 1 0000 OS ₆ SAMPLE Control 0000 0000 [7] Not Used 0 1 0001 OS ₆ SAMPLE Control 0000 0000 [6:0] SAMPLE ₆ Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 0001 OS ₈ SAMPLE Control 0000 0000 [7] Not Used 0 1 0001 OS ₈ SAMPLE Control 0000 0000 [7] Not Used 0 1 1111 Page Register 0000 0000 [7:0] Used to select desired page of registers being accessed. Page 1 Registers					[7]	Not Used
0 1 0000 OS _G SAMPLE Control 0000 0000 [6:0] SAMPLE _G Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 0001 OS _B SAMPLE Control 0000 0000 [7] Not Used 0 1 1111 Page Register 0000 0000 [7:0] Used to select desired page of registers being accessed. Page 1 Registers	0	0 1111	OS R SAMPLE Control	0000 0000	[6:0]	
Image: Construct of the position of this pulse to be at its index of the position of the position of this pulse to be at its index of the position of this pulse to be at its index of the position of this pulse to be at its index of the position of this pulse to be at its index of the position of this pulse to be at its index of the position of					[7]	Not Used
0 1 0001 OS _B SAMPLE Control 0000 0000 [6:0] SAMPLE _B Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 1111 Page Register 0000 0000 [7:0] Used to select desired page of registers being accessed. Page 1 Registers The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 1 lines.	0	1 0000	OS _G SAMPLE Control	0000 0000	[6:0]	
0 1 0001 OS _B SAMPLE Control 0000 0000 [6:0] SAMPLE _B Position. A value of 0 will force the position of this pulse to be at its mode dependant default. 0 1 1111 Page Register 0000 0000 [7:0] Used to select desired page of registers being accessed. Page 1 Registers The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 1 lines.					[7]	Not Used
0 1 1111 Page Register 0000 0000 [7:0] Used to select desired page of registers being accessed. Page 1 Registers The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 1 lines.	0	1 0001	OS _B SAMPLE Control	0000 0000	[6:0]	
Page 1 Registers The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 1 lines.	0	1 1111	Page Register	0000 0000	[7:0]	
The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 1 lines.				1	1	
1 0 0000 Color 1 PGA 0101 0100 [7:0]	1	0 0000	Color 1 PGA	0101 0100	[7:0]	In Mode 1b, Mode 2 or Mode 3, the register used to define the PGA setting for the OS_R input.
The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 2 lines.		0.0771	0.1	0404 5155		The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 2 lines.
1 0 0001 Color 2 PGA 0101 0100 [7:0] In Mode 1b, Mode 2 or Mode 3, the register used to define the PGA setting for the OS _G i	1	U 0001	Color 2 PGA	0101 0100	[7:0]	In Mode 1b, Mode 2 or Mode 3, the register used to define the PGA setting for the OS_G input.
The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 3 lines.	4	0.0010	Color 2 DCA	0101 0100	17:01	The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 3 lines.
1 0 0010 Color 3 PGA 0101 0100 [7:0] In Mode 1b, Mode 2 or Mode 3, the register used to define the PGA setting for the OS _B i	I	0 00 10	COIDI 3 PGA	0101 0100	[7:0]	In Mode 1b, Mode 2 or Mode 3, the register used to define the PGA setting for the OS_B input.

LM98714 SNAS254B-OCTOBER 2006-REVISED APRIL 2017

www.ti.com

NSTRUMENTS

ÈXAS

Table 17. Register Descriptions (continued)

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
	0.0011		0101 0100	[7.0]	The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 4 lines.
1	0 0011	Color 4 PGA	0101 0100	[7:0]	Not used in Mode 1b, Mode 2 or Mode 3.
4	0.0100	Color 5 DCA	0101 0100	[7:0]	The eight bit byte selected by the 5:1 PGA MUX in Mode 1a during Color 5 lines.
1	0 0100	Color 5 PGA	0101 0100	[7:0]	Not used in Mode 1b, Mode 2 or Mode 3.
					The MSBs selected by the 5:1 DAC MUX in Mode 1a during Color 1 lines.
1	0 0101	Color 1 Black Level DAC MSB	1000 0000	[7:0]	In Mode 1b/c, Mode 2 or Mode 3, the register used to define the DAC setting for the $\rm OS_R$ input. The DAC value is in offset Binary format.
				[7:0]	Color 1 Black Level DAC LSB
				[7:2]	Not Used
1	0 0110	Color 1 Black Level DAC LSB	0000 0000		The LSBs selected by the 5:1 DAC MUX in Mode 1a during Color 1 lines.
				[1:0]	In Mode 1b, Mode 2 or Mode 3, the register used to define the DAC setting for the ${\rm OS}_{\rm R}$ input. The DAC value is in offset Binary format.
					The MSBs selected by the 5:1 DAC MUX in Mode 1a during Color 2 lines.
1	0 0111	Color 2 Black Level DAC MSB	1000 0000	[7:0]	In Mode 1b, Mode 2 or Mode 3, the register used to define the DAC setting for the ${\rm OS}_{\rm G}$ input. The DAC value is in offset Binary format.
				[7:0]	Color 2 Black Level DAC LSB
				[7:2]	Not Used
1	0 1000	Color 2 Black Level DAC LSB	0000 0000		The LSBs selected by the 5:1 DAC MUX in Mode 1a during Color 2 lines.
				[1:0]	In Mode 1b, Mode 2 or Mode 3, the register used to define the DAC setting for the $\rm OS_G$ input. The DAC value is in offset Binary format.
					The MSBs selected by the 5:1 DAC MUX in Mode 1a during Color 3 lines.
1	0 1001	Color 3 Black Level DAC MSB	1000 0000	[7:0]	In Mode 1b, Mode 2 or Mode 3, the register used to define the DAC setting for the ${\sf OS}_{\sf B}$ input. The DAC value is in offset Binary format.
				[7:0]	Color 3 Black Level DAC LSB
		Color 3 Black Level DAC LSB	0000 0000	[7:2]	Not Used
1	0 1010				The LSBs selected by the 5:1 DAC MUX in Mode 1a during Color 3 lines.
				[1:0]	In Mode 1b, Mode 2 or Mode 3, the register used to define the DAC setting for the ${\sf OS}_{\sf B}$ input. The DAC value is in offset Binary format.
1	0 1011	Color 4 Black Level DAC MSB	1000 0000	[7:0]	The MSBs selected by the 5:1 DAC MUX in Mode 1a during Color 4 lines.
'	0 1011			[7.0]	Not used in Mode 1b, Mode 2 or Mode 3. The DAC value is in offset Binary format.
1	0 1100	Color 4 Black Level DAC LSB	0000 0000	[7:0]	Color 4 Black Level DAC LSB
				[7:2]	Not Used
•				[1:0]	The LSBs selected by the 5:1 DAC MUX in Mode 1a during Color 4 lines.
				[0]	Not used in Mode 1b, Mode 2 or Mode 3. The DAC value is in offset Binary format.
1	0 1101	Color 5 Black Level DAC MSB	1000 0000	[7:0]	The MSBs selected by the 5:1 DAC MUX in Mode 1a during Color 5 lines.
•	0			[1:0]	Not used in Mode 1b, Mode 2 or Mode 3. The DAC value is in offset Binary format.
				[7:0]	Color 5 Black Level DAC LSB
1	0 1110	Color 5 Black Level DAC LSB	0000 0000	[7:2]	Not Used
			0000 0000	[1:0]	The LSBs selected by the 5:1 DAC MUX in Mode 1a during Color 5 lines.
				[1.0]	Not used in Mode 1b/c, Mode 2 or Mode 3. The DAC value is in offset Binary format.
				[7:0]	Color 1 Digital Offset
				[7]	Not Used
1	0 1111	Color 1 Digital Offset	0100 0000		The Digital Offset applied to the ADC result in Mode 1a during Color 1 lines.
				[6:0]	In Mode 1b/c, Mode 2 or Mode 3, the register used to define the Digital Offset setting for the OS_{R} input. The DAC value is in offset Binary format.
				[7:0]	Color 2 Digital Offset
				[7]	Not Used
1	1 0000	Color 2 Digital Offset	0100 0000		The Digital Offset applied to the ADC result in Mode 1a during Color 2 lines.
				[6:0]	In Mode 1b/c, Mode 2 or Mode 3, the register used to define the DAC setting for the $\rm OS_G$ input. The DAC value is in offset Binary format.
	1 0001			[7:0]	Color 3 Digital Offset
			0100 0000	[7]	Not Used
1		Color 3 Digital Offset			The Digital Offset applied to the ADC result in Mode 1a during Color 3 lines.
				[6:0]	In Mode 1b/c, Mode 2 or Mode 3, the register used to define the DAC setting for the $\rm OS_8$ input. The DAC value is in offset Binary format.
				[7:0]	Color 4 Digital Offset
1	1 0010	Color 4 Digital Offact	0100 0000	[7]	Not Used
1	1 0010	Color 4 Digital Offset	0100 0000	[0:0]	The Digital Offset applied to the ADC result in Mode 1a during Color 4 lines.
				[6:0]	Not used in Mode 1b/c, Mode 2 or Mode 3. The DAC value is in offset Binary format.

Copyright © 2006–2017, Texas Instruments Incorporated

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
				[7:0]	Color 5 Digital Offset
	4 0014		0400 0000	[7]	Not Used
1	1 0011	Color 5 Digital Offset	0100 0000	[0:0]	The Digital Offset applied to the ADC result in Mode 1a during Color 5 lines.
				[6:0]	Not used in Mode 1b/c, Mode 2 or Mode 3. The DAC value is in offset Binary format.
1	1 1111	Page Register	0000 0000	[7:0]	Used to select desired page of registers being accessed.
				Page 2	2 Registers
					SH Output Enable.
				[7]	0 Enable SH Output
					1 SH Output Tristate
					SH Master/Slave Select.
				[6]	0 External SH_R input. CCD Timing Generator runs in Slave mode, with SH triggered by an external pulse on the SH_R pin.
2	0 0000	SH Mode	0000 0000		1 Auto generated SH. CCD Timing Generator runs in Master mode, with SH generated internally with a programmable period and width.
					SH Output Mode.
					00 SH Output = SH
				[5:4]	01 SH Output = SH
					10 SH Output = 0
					11 SH Output = 1
					SH Delay from SH_R
					Additional delay
2	0 0001	SH Pulse Width	0010 0111	[7:0]	SH Pulse Width
					SH Pulse Width = (2 * [7:0]) + 1
		PIX1/2 Control		[7]	PIX1 Activity
					0 Disabled
					1 Enabled
				[6]	PIX1 Polarity
					0 Normal - Low when off
					1 Inverted - High when off
				[5]	PIX1 Frequency 0 Pixel Rate
					1 1/2 Pixel Rate
					PIX1 Activity During SH
				[4]	0 Inactive
					1 Active
2	0 0010		1100 1000		PIX2 Activity
				[3]	0 Disabled
				[-]	1 Enabled
					PIX2 Polarity
				[2]	0 Normal - Low when off
					1 Inverted - High when off
					PIX2 Frequency
				[1]	0 Pixel Rate
					1 1/2 Pixel Rate
					PIX2 Activity During SH
				[0]	0 Inactive
					1 Active

LM98714 SNAS254B-OCTOBER 2006-REVISED APRIL 2017

TEXAS INSTRUMENTS

www.ti.com

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
					PIX3 Activity
				[7]	0 Disabled
					1 Enabled
					PIX3 Polarity
				[6]	0 Normal - Low when off
					1 Inverted - High when off
					PIX3 Frequency
				[5]	0 Pixel Rate
					1 1/2 Pixel Rate
					PIX3 Activity During SH
				[4]	0 Inactive
2	0 0011	PIX3/4 Control	1000 1000		1 Active
_					PIX4 Activity
				[3]	0 Disabled
					1 Enabled
					PIX4 Polarity
				[2]	0 Normal - Low when off
					1 Inverted - High when off
				[1]	PIX4 Frequency
					0 Pixel Rate
					1 1/2 Pixel Rate
				[0]	PIX4 Activity During SH
					0 Inactive
					1 Active
				[7]	PIX5 Activity
					0 Disabled
				[6]	1 Enabled
					PIX5 Polarity
					0 Normal - Low when off 1 Inverted - High when off
				[5]	PIX5 Frequency 0 Pixel Rate
					1 1/2 Pixel Rate
					PIX5 Activity During SH
				[4]	0 Inactive
					1 Active
2	0 0100	PIX5/6 Control	0000 0000		PIX6 Activity
				[3]	0 Disabled
				[0]	1 Enabled
					PIX6 Polarity
				[2]	0 Normal - Low when off.
					1 Inverted - High when off.
					PIX6 Frequency
				[1]	0 Pixel Rate
					1 1/2 Pixel Rate
					PIX6 Activity During SH
				[0]	0 Inactive
					1 Active

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
					PIX7 Activity
				[7]	0 Disabled
					1 Enabled
					PIX7 Polarity
				[6]	0 Normal - Low when off
					1 Inverted - High when off
					PIX7 Frequency
				[5]	0 Pixel Rate
					1 1/2 Pixel Rate
					PIX7 Activity During SH
				[4]	0 Inactive
					1 Active
2	0 0101	PIX7/8 Control	0000 0000		PIX8 Activity
				[3]	0 Disabled
					1 Enabled
					PIX8 Polarity
				[2]	0 Normal - Low when off
					1 Inverted - High when off
					PIX8 Frequency
				[1]	0 Pixel Rate
					1 1/2 Pixel Rate
				[0]	PIX8 Activity During SH
					0 Inactive
					1 Active
	0 0110	Line Clamp Enable		[7]	PIX8 Line Clamp Enable. Enables single Line Clamp pulse per line from PIX8.
					0 Disabled. PIX generator functions as normal.
					1 Enabled. PIX generates a single clock per line for Line Clamp function.
				[6] [5]	PIX7 Line Clamp Enable. Enables single Line Clamp pulse per line from PIX7.
					0 Disabled. PIX generator functions as normal.
					1 Enabled. PIX generates a single clock per line for Line Clamp function.
					PIX6 Line Clamp Enable. Enables single Line Clamp pulse per line from PIX6.
					0 Disabled. PIX generator functions as normal.
					1 Enabled. PIX generates a single clock per line for Line Clamp function.
				[4]	PIX5 Line Clamp Enable. Enables single Line Clamp pulse per line from PIX5.
					0 Disabled. PIX generator functions as normal.
2			0000 0000		1 Enabled. PIX generates a single clock per line for Line Clamp function.
-					PIX4 Line Clamp Enable. Enables single Line Clamp pulse per line from PIX4.
					0 Disabled. PIX generator functions as normal.
				[3]	1 Enabled. PIX generates a single clock per line for Line Clamp function.
					PIX3 Line Clamp Enable. Enables single Line Clamp pulse per line from PIX3.
					0 Disabled. PIX generator functions as normal.
				[2]	1 Enabled. PIX generates a single clock per line for Line Clamp function.
					PIX2 Line Clamp Enable. Enables single Line Clamp pulse per line from PIX2.
					0 Disabled. PIX generator functions as normal.
				[1]	1 Enabled. PIX generates a single clock per line for Line Clamp function.
					PIX1 Line Clamp Enable. Enables single Line Clamp pulse per line from PIX1.
				[0]	0 Disabled. PIX generator functions as normal.
				[0]	1 Enabled. PIX generates a single clock per line for Line Clamp function.
				[7]	Reserved. Set to 0.
2	0 0111	PIX1 Start	0000 0000	[6:0]	PIX1 on point. Defines when the PIX1 signal turns on within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	0 1000	PIX1 End	0001 0101	[6:0]	PIX1 off point. Defines when the PIX1 signal turns off within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)

LM98714 SNAS254B-OCTOBER 2006-REVISED APRIL 2017

www.ti.com

NSTRUMENTS

Texas

Table 17. Register Descriptions (continued)

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
			. ,	[7]	Reserved. Set to 0.
2	0 1010	PIX2 Start	0000 0000	[6:0]	PIX2 on point. Defines when the PIX2 signal turns on within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	0 1011	PIX2 End	0001 0101	[6:0]	PIX2 off point. Defines when the PIX2 signal turns off within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	0 1101	PIX3 Start	0000 1011	[6:0]	PIX3 on point. Defines when the PIX3 signal turns on within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	0 1110	PIX3 End	0000 1101	[6:0]	PIX3 off point. Defines when the PIX3 signal turns off within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	1 0000	PIX4 Start	0001 0000	[6:0]	PIX4 on point. Defines when the PIX4 signal turns on within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	1 0001	PIX4 End	0001 0011	[6:0]	PIX4 off point. Defines when the PIX4 signal turns off within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	1 0011	PIX5 Start	0000 0000	[6:0]	PIX5 on point. Defines when the PIX5 signal turns on within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	1 0100	PIX5 End	0000 0000	[6:0]	PIX5 off point. Defines when the PIX5 signal turns off within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	1 0110	PIX6 Start	0000 0000	[6:0]	PIX6 on point. Defines when the PIX6 signal turns on within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	1 0111	PIX6 End	0000 0000	[6:0]	PIX6 off point. Defines when the PIX6 signal turns off within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	1 1001	PIX7 Start	0000 0000	[6:0]	PIX7 on point. Defines when the PIX7 signal turns on within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	1 1010	PIX7 End	0000 0000	[6:0]	PIX7 off point. Defines when the PIX7 signal turns off within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0.
2	1 1100	PIX8 Start	0000 0000	[6:0]	PIX8 on point. Defines when the PIX8 signal turns on within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
				[7]	Reserved. Set to 0
2	1 1101	PIX8 End	0000 0000	[6:0]	PIX8 off point. Defines when the PIX8 signal turns off within the pixel period. Can be set to any available edge within the pixel period. (For 1/2 frequency signals, the count can be any available edge within 2 pixel periods)
	1 1110	CMOS Data Mode Status Bit Enable			Reserved. Set to 000
				[7:6]	When mapping the CLK5 to CLK10 pins as either CLKOUT or CB outputs, the Sample Timing Monitor 1 (Page 4, Register 0x0C) cannot be used.
				[5]	0 - CLK10 mapped normally, 1 - CLK10 = CLKOUT
2			0000 0000	[4]	0 - CLK9 mapped normally, 1- CLK9 = CB[4] status bit 0 - CLK8 mapped normally, 1- CLK8 = CB[3] status bit
				[3] [2]	0 - CLK7 mapped normally, 1- CLK7 = CB[3] status bit 0 - CLK7 mapped normally, 1- CLK7 = CB[2] status bit
				[2]	0 - CLK6 mapped normally, 1- CLK6 = CB[1] status bit
				[0]	0 - CLK5 mapped normally, 1- CLK5 = CB[0] status bit

Copyright © 2006–2017, Texas Instruments Incorporated

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
				Page 3	3 Registers
					Setting CLKn =
					0000 Tristate
					0001 PIX1
				17.41	0010 PIX2
				[7:4] CLK 1	0011 PIX3
					0100 PIX4
					0101 PIX5
		Output Mapping CLK1/CLK2			0110 PIX6
3	0 0000	This register sets which timing signal is present on the	0000 0000		0111 PIX7
		respective CLKn output pin.			1000 PIX8
					1001 LAMP _R
					1010 LAMP _G
				[3:0]	1011 LAMP _B
				CLK 2	1100 LAMPIR1
					1101 LAMPIR2
					1110 MODE
					1111 SH
					Setting CLKn =
	0 0001			[7:4] CLK 3	0000 Tristate
					0001 PIX1
		Output Mapping CLK3/CLK4 This register sets which timing signal is present on the respective CLKn output pin.			0010 PIX2
			0000 0000		0011 PIX3
					0100 PIX4 0101 PIX5
					010 PIX5
3					0111 PIX7
3					1000 PIX8
				[3:0] CLK 4	1001 LAMP _R
					1010 LAMP _G
					1011 LAMP _B
					1100 LAMPIR1
					1101 LAMPIR2
					1110 MODE
					1111 SH
					Setting CLKn =
					0000 Tristate
					0001 PIX1
					0010 PIX2
				[7:0] CLK 5	0011 PIX3
				CLK 5	0100 PIX4
					0101 PIX5
		Output Mapping CLK5/CLK6			0110 PIX6
3	0 0010	This register sets which timing signal is present on the	0000 0000		0111 PIX7
	0.0010	respective CLKn output pin.			1000 PIX8
					1001 LAMP _R
					1010 LAMP _G
				[3:0]	1011 LAMP _B
				CLK 6	1100 LAMPIR1
					1101 LAMPIR2
					1110 MODE
					1111 SH
				1	·

SNAS254B-OCTOBER 2006-REVISED APRIL 2017

80 Submit Documentation Feedback

Product Folder	l inks:	1 M98714
	LIIIKS.	LIVI307 14

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
					Setting CLKn =
					0000 Tristate
					0001 PIX1
					0010 PIX2
				[7:0] CLK 7	0011 PIX3
				-	0100 PIX4
					0101 PIX5
		Output Mapping CLK7/CLK8			0110 PIX6
3	0 0011	This register sets which timing signal is present on the	0000 0000		0111 PIX7
		respective CLKn output pin.			1000 PIX8
					1001 LAMP _R
					1010 LAMP _G
				[3:0]	1011 LAMP _B
				CLK 8	1100 LAMPIR1
					1101 LAMPIR2
					1110 MODE
					1111 SH
	0 0100			[7:4] CLK 9	Setting CLKn =
					0000 Tristate
					0001 PIX1
		Output Mapping CLK9/CLK10 This register sets which timing signal is present on the	0000 0000		0010 PIX2
					0011 PIX3
					0100 PIX4
					0101 PIX5
					0110 PIX6
3					0111 PIX7
		respective CLKn output pin.		[3:0] CLK 10	1000 PIX8
					1001 LAMP _R
					1010 LAMP _G
					1011 LAMP _B
					1100 LAMPIR1
					1101 LAMPIR2
					1110 MODE
					1111 SH
				[7]	LAMP _R Normal State
					0 = Low, 1 = High
				[6]	LAMP _G Normal State
		Illumination Mode (see also AFE color modes)	0000 0000		0 = Low, 1 = High
				[5]	LAMP _B Normal State
	0 0101				0 = Low, 1 = High
3				[4]	LampIR1 Normal State
					0 = Low, 1 = High
				[3]	LampIR2 Normal State
				[0:4]	0 = Low, 1 = High
				[2:1]	Reserved
				[0]	SH/LAMP Overlap Enable
				[0]	0 Disabled
					1 Overlap Enabled

www.ti.com

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
				[7:5]	Reserved. Set to 000
					Red Lamp Enable
				[4]	0 Red Disabled
					1 Red Enabled
					Green Lamp Enable
				[3]	0 Green Disabled
3					1 Green Enabled
	0 0110	Line 1 Lamp Selection	0000 0000		Blue Lamp Enable
	0 0110			[2]	0 Blue Disabled
					1 Blue Enabled
					IR1 Lamp Enable
				[1]	0 IR1 Disabled
					1 IR1 Enabled
					IR2 Lamp Enable
				[0]	0 IR2 Disabled
					1 IR2 Enabled
				[7:5]	Reserved. Set to 000
	0 0111				Red Lamp Enable
				[4]	0 Red Disabled
					1 Red Enabled
		Line 2 Lamp Selection	0000 0000	[3]	Green Lamp Enable
					0 Green Disabled
					1 Green Enabled
3					Blue Lamp Enable
5				[2]	0 Blue Disabled
					1 Blue Enabled
				[1]	IR1 Lamp Enable
					0 IR1 Disabled
					1 IR1 Enabled
				[0]	IR2 Lamp Enable
					0 IR2 Disabled
					1 IR2 Enabled
				[7:5]	Reserved. Set to 000
					Red Lamp Enable
				[4]	0 Red Disabled
					1 Red Enabled
					Green Lamp Enable
				[3]	0 Green Disabled
					1 Green Enabled
3	0 1000	Line 3 Lamp Selection	0000 0000		Blue Lamp Enable
3				[2]	0 Blue Disabled
					1 Blue Enabled
					IR1 Lamp Enable
				[1]	0 IR1 Disabled
					1 IR1 Enabled
					IR2 Lamp Enable
				[0]	0 IR2 Disabled
					1 IR2 Enabled

LM98714 SNAS254B-OCTOBER 2006-REVISED APRIL 2017

Texas Instruments

www.ti.com

	(Binary)	Title	(Binary)	Bit No.	Description
				[7:5]	Reserved. Set to 000
					Red Lamp Enable
				[4]	0 Red Disabled
					1 Red Enabled
					Green Lamp Enable
				[3]	0 Green Disabled
					1 Green Enabled
					Blue Lamp Enable
3	0 1001	Line 4 Lamp Selection	0000 0000	[2]	0 Blue Disabled
					1 Blue Enabled
					IR1 Lamp Enable
				[1]	0 IR1 Disabled
					1 IR1 Enabled
					IR2 Lamp Enable
				[0]	0 IR2 Disabled
				[0]	1 IR2 Enabled
				[7:5]	Reserved. Set to 000
				[1.0]	Red Lamp Enable
	0 1010			[4]	0 Red Disabled
		Line 5 Lamp Selection	0000 0000		1 Red Enabled
					Green Lamp Enable
				[3]	0 Green Disabled
					1 Green Enabled
					Blue Lamp Enable
3				[2]	0 Blue Disabled
					1 Blue Enabled
				-	
				[1]	IR1 Lamp Enable
					0 IR1 Disabled 1 IR1 Enabled
					IR2 Lamp Enable
					0 IR2 Disabled
				(7.5)	1 IR2 Enabled
				[7:5]	Reserved. Set to 000
		LAMP _R On MSB	0000 0000	[4]	LAMP _R SH_OR Enable
3	0 1011				0 No ORing
	01011				1 LAMP _R uses SH_OR function
				[3:0]	LAMP _R On Time Most Significant Bits
				[0.0]	This selects the pixel count at which the LAMP _R output goes high.
3	0 1100	LAMP _R On LSB	0001 0001	[7:0]	LAMP _R On Time Least Significant Byte
					This selects the pixel count at which the LAMP _R output goes high.
				[7:4]	Reserved. Set to 0000
3	0 1101	LAMP _R Off MSB	0000 0011	[3:0]	LAMP _R Off Time Most Significant Bits
					This selects the pixel count at which the LAMP _R output goes low.
3	0 1110	LAMP _R Off LSB	0000 0110	[7:0]	LAMP _R Off Time Least Significant Byte
-	*	LAMP _R Off LSB		,	This selects the pixel count at which the LAMP _R output goes low.
	0 1111			[7:5]	Reserved. Set to 000
					LAMP _G SH_OR Enable.
3			0000 0000	[4]	0 No ORing
Ŭ					1 LAMP _G uses SH_OR function
				[0.0]	LAMP _G On Time Most Significant Bits.
				[3:0]	This selects the pixel count at which the LAMP _R output goes high.
2	1 0000		0001 0010	[7:0]	LAMP _G On Time Least Significant Byte
3	1 0000	LAMP _G On LSB		[7:0]	This selects the pixel count at which the LAMP _R output goes high.

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
				[7:4]	Reserved. Set to 0000
3	1 0001	LAMP _G Off MSB	0000 0011		LAMP _G Off Time Most Significant Bits
				[3:0]	This selects the pixel count at which the LAMP _R output goes low.
	4 0040		0000 0000	[7:0]	LAMP _G Off Time Least Significant Byte
3	1 0010	LAMP _G Off LSB	0000 0000	[7:0]	This selects the pixel count at which the LAMP _R output goes low.
				[7:5]	Reserved. Set to 000
					LAMP _B SH_OR Enable
2	1 0011		0000 0000	[4]	0 No ORing
3	1 0011	LAMP _B On MSB	0000 0000		1 LAMP _B uses SH_OR function
				[0.0]	LAMP _B On Time Most Significant Bits
				[3:0]	This selects the pixel count at which the LAMP _R output goes high.
_	1 0 1 0 0			17 01	LAMP _B On Time Least Significant Byte
3	1 0100	LAMP _B On LSB	0001 0011	[7:0]	This selects the pixel count at which the LAMP _R output goes high.
				[7:4]	Reserved. Set to 0000
3	1 0101	LAMP _B Off MSB	0000 0011	[0.0]	LAMP _B Off Time Most Significant Bits
				[3:0]	This selects the pixel count at which the LAMP _R output goes low.
_				17 01	LAMP _B Off Time Least Significant Byte
3	1 0110	LAMP _B Off LSB	0011 0000	[7:0]	This selects the pixel count at which the LAMP _R output goes low.
				[7:5]	Reserved. Set to 000
					LAMPIR1 SH_OR Enable
				[4]	0 No ORing
3	1 0111	LAMPIR1 On MSB	0000 0000		1 LAMPIR1 uses SH_OR function
					LAMPIR1 On Time Most Significant Bits
				[3:0]	This selects the pixel count at which the LAMP _R output goes high.
_					LAMPIR1 On Time Least Significant Byte
3	1 1000	LAMPIR1 On LSB	0001 0100	[7:0]	This selects the pixel count at which the LAMP _R output goes high.
				[7:4]	Reserved. Set to 0000
3	1 1001	LAMPIR1 Off MSB	0000 0011	[0.0]	LAMPIR1 Off Time Most Significant Bits
				[3:0]	This selects the pixel count at which the LAMP _R output goes low.
	4 4040		0014 0000	[7:0]	LAMPIR1 Off Time Least Significant Byte
3	1 1010	LAMPIR1 Off LSB	0011 0000	[7:0]	This selects the pixel count at which the LAMP _R output goes low.
				[7:5]	Reserved. Set to 000
					LAMPIR2 SH_OR Enable.
2	1 1011	LAMPIR2 On MSB	0000 0000	[4]	0 No ORing
3	1 1011	LAMPIRZ ON MSB	0000 0000		1 LAMPIR2 uses SH_OR function
				[2:0]	LAMPIR2 On Time Most Significant Bits.
				[3:0]	This selects the pixel count at which the LAMP _R output goes high.
2	1 1100		0001 0101	[7:0]	LAMPIR2 On Time Least Significant Byte
3	1 1100	LAMPIR2 On LSB	0001 0101	[7:0]	This selects the pixel count at which the $LAMP_R$ output goes high.
				[7:4]	Reserved. Set to 0000
3	1 1101	LAMPIR2 Off MSB	0000 0011	[2:0]	LAMPIR2 Off Time Most Significant Bits
				[3:0]	This selects the pixel count at which the $LAMP_R$ output goes low.
2	1 1110		0011 0000	[7:0]	LAMPIR2 Off Time Least Significant Byte
3	1 1110	LAMPIR2 Off LSB	0011 0000	[7:0]	This selects the pixel count at which the LAMP _R output goes low.
3	1 1111	Page Register	0000 0000	[7:0]	Used to select desired page of registers being accessed.
				Page 4	Registers
				[7:4]	Reserved. Set to 0000
4	0 0000	Mode On MSB	0000 0010	[2:0]	Mode On Time Most Significant Bits
				[3:0]	This selects the pixel count at which the Mode output goes high.
	0.0001	Me +- 0 100	0000 0000	17.03	Mode On Time Least Significant Byte
4	0 0001	Mode On LSB	0000 0000	[7:0]	This selects the pixel count at which the Mode output goes high.
				[7:4]	Reserved. Set to 0000
4	0 0010	Mode Off MSB	0000 0011		Mode Off Time Most Significant Bits
				[3:0]	This selects the pixel count at which the Mode output goes low.

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
	0.0011	Mada Off LCD	0000 0001	[7:0]	Mode Off Time Least Significant Byte
4	0 0011	Mode Off LSB	0000 0001	[7:0]	This selects the pixel count at which the Mode output goes low.
4	0 0100	Optical Black Pixels Start	0000 0000	[7:0]	Starting point for optical black clamping
4	0 0100	Oplical Black Fixels Start	0000 0000	[7.0]	nnnnnnn - n pixels (0-255)
4	0 0101	Optical Black Pixels End	0000 0000	[7:0]	End point for optical black clamping
4	00101		0000 0000	[7:0]	nnnnnnn - n pixels (0-255)
				[7:6]	Reserved. Set to 00
4	0 0110	Start of Valid Pixels - MSB	0000 0000	[5:0]	Start of Valid Pixels - Most Significant Bits.
				[0:0]	Selects the pixel count where the data status bits begin to indicate valid pixels.
4	0 0111	Start of Valid Pixels - LSB	0000 0000	[7:0]	Start of Valid Pixels - Least Significant Bits.
				[]	Selects the pixel count where the data status bits begin to indicate valid pixels.
				[7:6]	Reserved. Set to 00
4	0 1000	End of Valid Pixels - MSB	0011 1111	[5:0]	End of Valid Pixels - Most Significant Bits.
					Selects the pixel count where the data status bits stop indicating valid pixels.
4	0 1001	End of Valid Pixels - LSB	1111 1110	[7:0]	End of Valid Pixels - Least Significant Bits.
					Selects the pixel count where the data status bits stop indicating valid pixels.
				[7:6]	Reserved. Set to 00.
4	0 1010	Line End - MSB	0011 1111	15.01	Line End Value - Most Significant 6 Bits
				[5:0]	Selects the pixel count where the current line is ended and the next one begins. Controls the integration time of one line and the period between SH pulses.
					Line End Value Least Significant Byte
4	0 1011	Line End - LSB	1111 1111	[7:0]	Selects the pixel count where the current line is ended and the next one begins. Controls the integration time of one line and the period between SH pulses.
					n pixels (0 - 16383)
				Enables Sample and Clamp timing signals to be observed on one of the sensor timing control outputs. This function overrides any other settings for sensor control signal mapping.	
				[7:0]	Important Note: Sample Timing Monitor 1 cannot be used if the CMOS Data Mode Status Bit Enable Register (Page 2, Register 0x1E) is being programmed to map CLKOUT to CLK10 or any Control Bit to CLK5-CLK9. Sample Timing Monitors 2 and 3 are not effected by this limitation.
					Upper 4 bits select timing signal to be monitored.
					0000 Sample Red
					0001 Clamp Red
				[7:4]	0010 Sample Green
				[7.4]	0011 Clamp Green
					0100 Sample Blue
					0101 Clamp Blue
4	0 1100	Sample Timing Monitor 1	1111 1111		1111 No signal monitored
					Lower 4 bits select which output pin is used as a monitor.
					0000 CLK1
					0001 CLK2
					0010 CLK3
					0011 CLK4
				[3:0]	0100 CLK5
				[0.0]	0101 CLK6
					0110 CLK7
					0111 CLK8
					1000 CLK9
					1001 CLKOUT/CLK10
					1111 All outputs normal

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
				[7:0]	Enables Sample and Clamp timing signals to be observed on one of the sensor timing control outputs. This function overrides any other settings for sensor control signal mapping.
					Upper 4 bits select timing signal to be monitored.
					0000 Sample Red
					0001 Clamp Red
				[7.4]	0010 Sample Green
				[7:4]	0011 Clamp Green
					0100 Sample Blue
					0101 Clamp Blue
					1111 No signal monitored
					Lower 4 bits select which output pin is used as a monitor.
4	0 1101	Sample Timing Monitor 2	1111 1111		0000 CLK1
					0001 CLK2
					0010 CLK3
					0011 CLK4
					0100 CLK5
				[3:0]	0101 CLK6
					0110 CLK7
					0111 CLK8
					1000 CLK9
					1001 CLKOUT/CLK10
					1111 All outputs normal
				[7:0]	Enables Sample and Clamp timing signals to be observed on one of the sensor timing control
				[7:0]	outputs. This function overrides any other settings for sensor control signal mapping.
				[7:4]	Upper 4 bits select timing signal to be monitored.
					0000 Sample Red
					0001 Clamp Red
					0010 Sample Green
					0011 Clamp Green
					0100 Sample Blue
					0101 Clamp Blue
					1111 No signal monitored
					Lower 4 bits select which output pin is used as a monitor.
4	0 1110	Sample Timing Monitor 3	1111 1111		0000 CLK1
					0001 CLK2
					0010 CLK3
					0011 CLK4
				[2,0]	0100 CLK5
				[3:0]	0101 CLK6
					0110 CLK7
					0111 CLK8
					1000 CLK9
					1001 CLKOUT/CLK10
					1111 All outputs normal
				[7:0]	Controls the optional SH2 and SH3 output signals. These signals can override the Lamp IR1
				[7:0]	and Lamp IR2 outputs if additional SH signals are required.
				[7:4]	Not Used.
					SH3 Output Select.
	0 4 4 4 4		0000 0000	[3]	0 Lamp IR2 output is programmed from Lamp IR2 Generator
4	0 1111	SH2/SH3 Control	0000 0000		1 Lamp IR2 output is SH3
					SH2 Output Select.
				[2]	0 Lamp IR1 output is programmed from Lamp IR1 Generator
					1 Lamp IR1 output is SH2
				[1:0]	Not Used

SNAS254B – OCTOBER 2006 – REVISED APRIL 2017

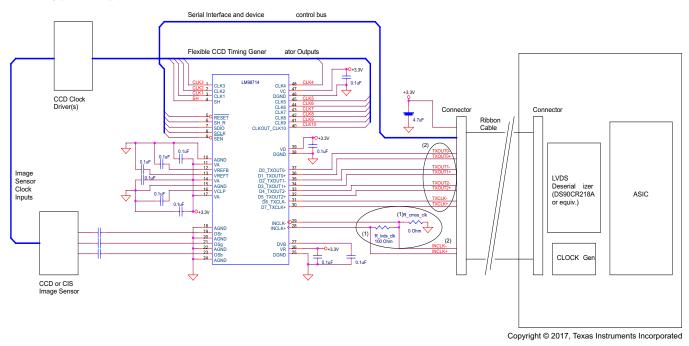
LM98714

www.ti.com

Texas Instruments

Table 17. Register Descriptions (continued)	Table 17.	7. Registe	Descriptions	(continued)
---	-----------	------------	--------------	-------------

Page	Address (Binary)	Register Title	Default (Binary)	Bit No.	Description
				[7:0]	Controls the optional OR and NOR operations on the PIX generator outputs as described below. These signals can override the normal PIX generator outputs to pro vide OR and NOR functionality for uses such as Pixel Lumping. If multiple functions are selected, the order of priority from highest to lowest is PIX OR/NOR Control 1 Bit[0] to Bit [7], then PIX OR/NOR Control 2 Bit[0] to Bit[7] (i.e PIX OR/NOR Control 1 Bit[7] has a higher priority on the PIX5 output than PIX OR/NOR Control 2 Bit[0] or Bit[2]).
					For reference purposes, the normal, unmodified PIX generator outputs are named pix1 through pix8 (lower case) and the final signal prior to the CLK pins are named PIX1 through PIX8 (upper case).
4	1 0000	PIX OR/NOR Control 1	0000 0000	[0]	0 No effect (default); 1 PIX1 = ~(pix1 pix2)
				[1]	0 No effect (default); 1 PIX2 = (pix1 pix2)
				[2]	0 No effect (default); 1 PIX2 = ~(pix2 pix3)
				[3]	0 No effect (default); 1 PIX3 = (pix2 pix3)
				[4]	0 No effect (default); 1 PIX3 = ~(pix3 pix4)
				[5]	0 No effect (default); 1 PIX4 = (pix3 pix4)
				[6]	0 No effect (default); 1 PIX4 = ~(pix4 pix5)
				[7]	0 No effect (default); 1 PIX5 = (pix4 pix5)
				[7:0]	Controls the optional OR and NOR operations on the PIX generator outputs as described below. These signals can override the normal PIX generator outputs to pro vide OR and NOR functionality for uses such as Pixel Lumping. If multiple functions are selected, the order of priority from highest to lowest is PIX OR/NOR Control 1 Bit[0] to Bit [7], then PIX OR/NOR Control 2 Bit[0] to Bit[7] (i.e PIX OR/NOR Control 1 Bit[7] has a higher priority on the PIX5 output than PIX OR/NOR Control 2 Bit[0] or Bit[2]).
					For reference purposes, the normal, unmodified PIX generator outputs are named pix1 through pix8 (lower case) and the final signal prior to the CLK pins are named PIX1 through PIX8 (upper case).
4	1 0001	PIX OR/NOR Control 2	0000 0000	[0]	0 No effect (default); 1 PIX5 = ~(pix5 pix6)
				[1]	0 No effect (default); 1 PIX6 = (pix5 pix6)
				[2]	0 No effect (default); 1 PIX5 = ~(pix4 pix5 pix6)
				[3]	0 No effect (default); 1 PIX6 = (pix4 pix5 pix6)
				[4]	0 No effect (default); 1 PIX7 = ~(pix3 pix7 pix8)
				[5]	0 No effect (default); 1 PIX8 = (pix3 pix7 pix8)
				[6]	0 No effect (default); 1 PIX7 = ~(pix7 pix8)
				[7]	0 No effect (default); 1 PIX8 = (pix7 pix8)
4	1 1111	Page Register	0000 0000	[7:0]	Used to select desired page of registers being accessed.
	Γ	I	1	Page \$	5 Registers
5	0 0000	PIX1/SH On Guardbands	0000 1111	[7:0]	PIX1 on guardband. Number of pixel periods from end of SH pulse to start of PIX1.
5	0 0001	PIX1/SH Off Guardbands	0000 0111	[7:0]	PIX1 off guardband. Number of pixel periods before start of SH pulse that PIX1 stops.
5	0 0010	PIX2/SH On Guardbands	0000 1111	[7:0]	PIX2 on guardband. Number of pixel periods from end of SH pulse to start of PIX2.
5	0 0011	PIX2/SH Off Guardbands	0000 0111	[7:0]	PIX2 off guardband. Number of pixel periods before start of SH pulse that PIX2 stops.
5	0 0100	PIX3/SH On Guardbands	0000 1111	[7:0]	PIX3 on guardband. Number of pixel periods from end of SH pulse to start of PIX3.
5	0 0101	PIX3/SH Off Guardbands	0000 0111	[7:0]	PIX3 off guardband. Number of pixel periods before start of SH pulse that PIX3 stops.
5	0 0110	PIX4/SH On Guardbands	0000 1111	[7:0]	PIX4 on guardband. Number of pixel periods from end of SH pulse to start of PIX4.
5	0 0111	PIX4/SH Off Guardbands	0000 0111	[7:0]	PIX4 off guardband. Number of pixel periods before start of SH pulse that PIX4 stops.
5	0 1000	PIX5/SH On Guardbands	0000 1111	[7:0]	PIX5 on guardband. Number of pixel periods from end of SH pulse to start of PIX5.
5	0 1001	PIX5/SH Off Guardbands	0000 0111	[7:0]	PIX5 off guardband. Number of pixel periods before start of SH pulse that PIX5 stops.
5	0 1010	PIX6/SH On Guardbands	0000 1111	[7:0]	PIX6 on guardband. Number of pixel periods from end of SH pulse to start of PIX6.
5	0 1011	PIX6/SH Off Guardbands	0000 0111	[7:0]	PIX6 off guardband. Number of pixel periods before start of SH pulse that PIX6 stops.
5	0 1100	PIX7/SH On Guardbands	0000 1111	[7:0]	PIX7 on guardband. Number of pixel periods from end of SH pulse to start of PIX7.
5	0 1101	PIX7/SH Off Guardbands	0000 0111	[7:0]	PIX7 off guardband. Number of pixel periods before start of SH pulse that PIX7 stops.
5	0 1110	PIX8/SH On Guardbands	0000 1111	[7:0]	PIX8 on guardband. Number of pixel periods from end of SH pulse to start of PIX8.
5	0 1111	PIX8/SH Off Guardbands	0000 0111	[7:0]	PIX8 off guardband. Number of pixel periods before start of SH pulse that PIX8 stops.



8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Typical Application

(1) If using an LVDS input clock, terminate the clock at the pins with a 100- Ω resistor and remove the 0- Ω resistor from INCLK- to ground.

If using a CMOS input clock, short the INCLK- pin to ground and remove the 100- Ω LVDS termination resistor.

(2) Maintain 100- Ω impedance for all LVDS differential pair paths.

Figure 61. Typical Application Diagram

TEXAS INSTRUMENTS

www.ti.com

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Device Support

9.1.1.1 Development Support

For development support see the LM98714 IBIS Model.

9.1.2 Related Documentation

For related documentation see the following: AN-1538 Interfacing Texas Instruments DS90CR218A and LM98714

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

9.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	-		Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
LM98714BCMT/NOPB	ACTIVE	TSSOP	DGG	48	38	RoHS & Green	SN	Level-2-260C-1 YEAR	0 to 70	LM98714 BCMT	Samples
LM98714BCMTX/NOPB	ACTIVE	TSSOP	DGG	48	1000	RoHS & Green	SN	Level-2-260C-1 YEAR	0 to 70	LM98714 BCMT	Samples
LM98714CCMT/NOPB	ACTIVE	TSSOP	DGG	48	38	RoHS & Green	SN	Level-2-260C-1 YEAR	0 to 70	LM98714 CCMT	Samples
LM98714CCMTX/NOPB	ACTIVE	TSSOP	DGG	48	1000	RoHS & Green	SN	Level-2-260C-1 YEAR	0 to 70	LM98714 CCMT	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

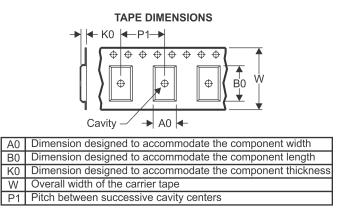
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

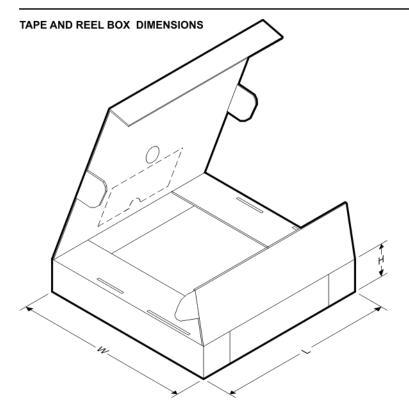

PACKAGE MATERIALS INFORMATION

Texas Instruments

www.ti.com

TAPE AND REEL INFORMATION

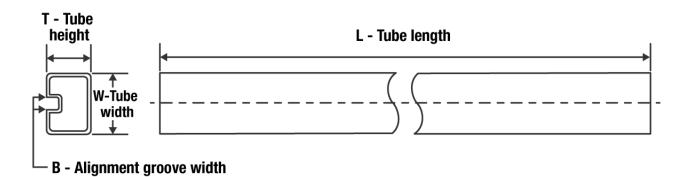
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM98714BCMTX/NOPB	TSSOP	DGG	48	1000	330.0	24.4	8.6	13.2	1.6	12.0	24.0	Q1
LM98714CCMTX/NOPB	TSSOP	DGG	48	1000	330.0	24.4	8.6	13.2	1.6	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

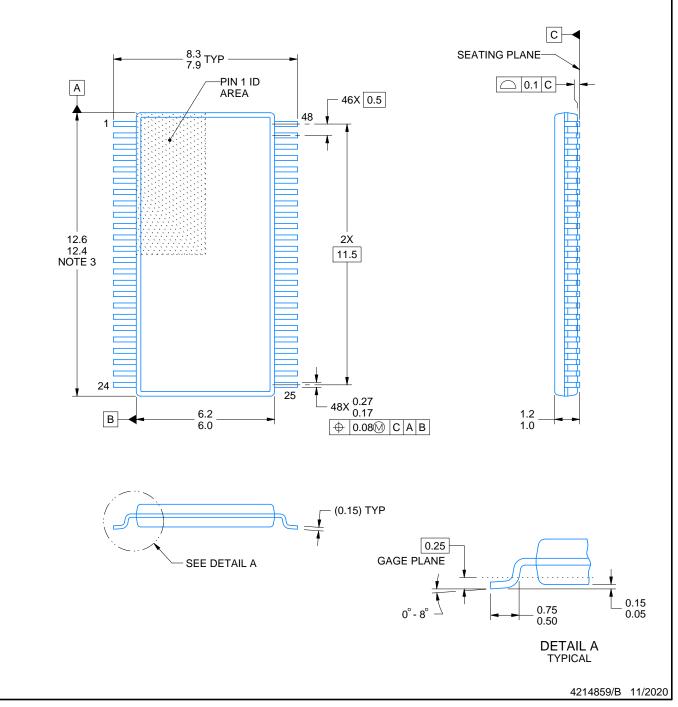
5-Jan-2022


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM98714BCMTX/NOPB	TSSOP	DGG	48	1000	367.0	367.0	45.0
LM98714CCMTX/NOPB	TSSOP	DGG	48	1000	367.0	367.0	45.0

5-Jan-2022

TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
LM98714BCMT/NOPB	DGG	TSSOP	48	38	495	10	2540	5.79
LM98714CCMT/NOPB	DGG	TSSOP	48	38	495	10	2540	5.79

PACKAGE OUTLINE

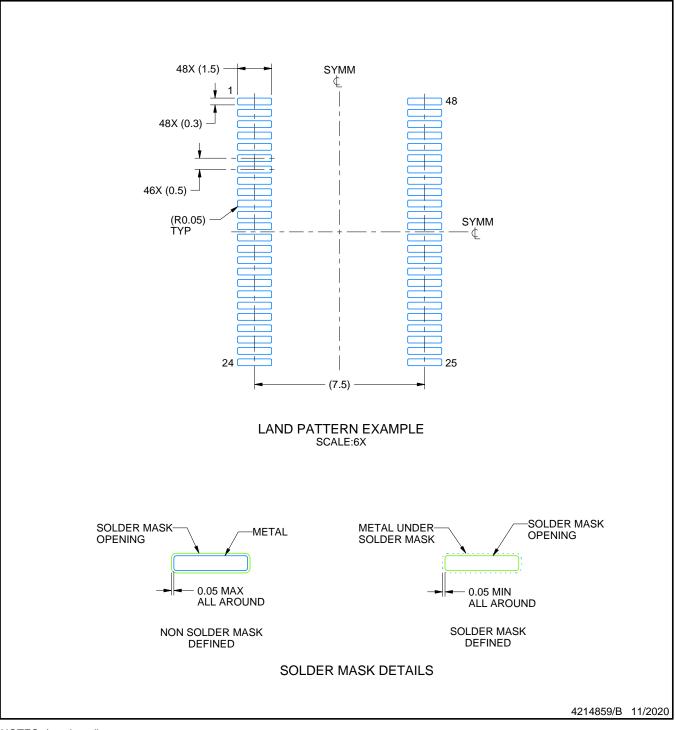
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.


DGG0048A

DGG0048A

EXAMPLE BOARD LAYOUT

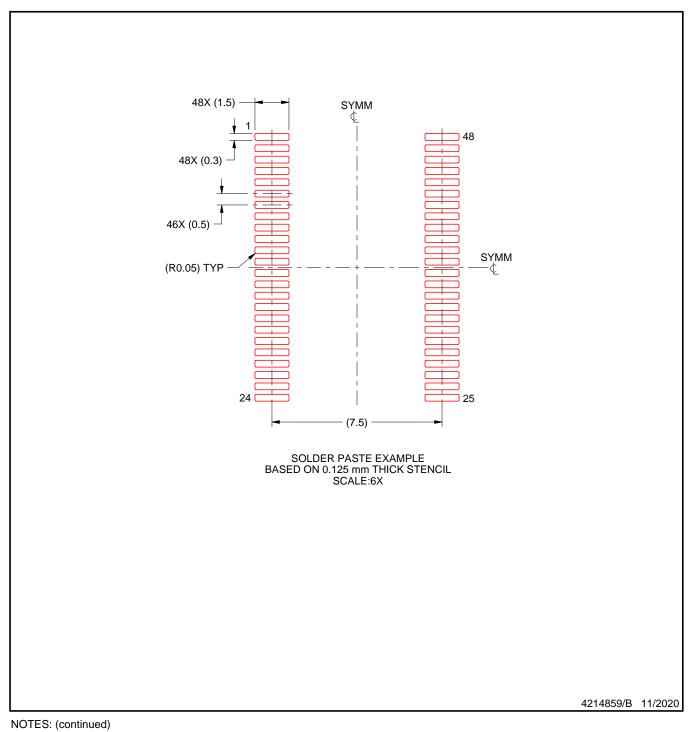
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0048A

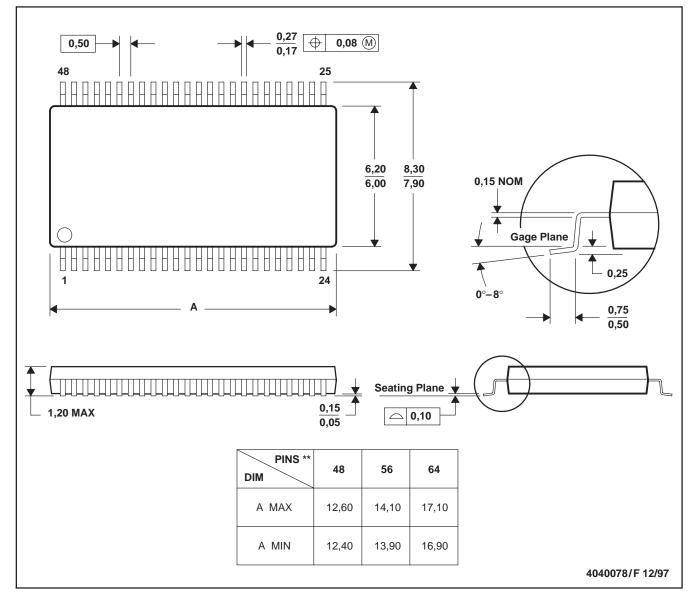
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

design recommendations. 8. Board assembly site may have different recommendations for stencil design.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated