NLAS4717EP

4.5 Ω High Bandwidth, Dual SPDT Analog Switch

The NLAS4717EP is an advanced CMOS analog switch fabricated in sub-micron silicon gate CMOS technology. The device is a dual independent Single Pole Double Throw (SPDT) switch featuring low $\mathrm{R}_{\mathrm{DS}(\text { on })}$ of 4.5Ω at 3.0 V .

The device also features guaranteed Break-Before-Make (BBM) switching, assuring the switches never short the driver.

The NLAS4717EP is available in two small size packages:

- Microbump: $2.0 \times 1.5 \mathrm{~mm}$
- WQFN-10: $1.4 \times 1.8 \mathrm{~mm}$

Features

- Low $\mathrm{R}_{\mathrm{DS}(\text { on) }}: 4.5 \Omega$ @ 3.0 V
- Matching Between the Switches $\pm 0.5 \Omega$
- Wide Voltage Range: 1.8 V to 5.5 V
- High Bandwidth > 90 MHz
- 1.65 V to 5.5 V Operating Range
- Low Threshold Voltages on Pins 4 and 8 (CTRL Pins)
- Ultra-Low Charge Injection $\leq 6.0 \mathrm{pC}$
- Low Standby Current: $\mathrm{I}_{\mathrm{CC}}=1.0 \mathrm{nA}$ (Max) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- *OVT on Pins 4 and 8 (CTRL Logic Pins)
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Cell Phones
- PDAs
- MP3s
- Digital Still Cameras
- USB 2.0 Full Speed (USB1.1) - 12 Mbps Compliant

Important Information

- ESD Protection:
- Human Body Model (HBM) $=2500 \mathrm{~V}$,
- Machine Model (MM) $=200 \mathrm{~V}$
- Latchup Max Rating: 200 mA (Per JEDEC EIA/JESD78)
- Pin-to-Pin Compatible with MAX4717

*OVT

- Overvoltage Tolerant (OVT) specific pins operate higher than normal supply voltages, with no damage to the devices or to signal integrity.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

FUNCTION TABLE		
IN_	NO_	NC_
0	OFF	ON
1	ON	OFF

ORDERING INFORMATION

Device	Package	Shipping †
NLAS4717EPFCT1G	Microbump-10 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS4717EPMTR2G	WQFN-10 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NLAS4717EP

Figure 1. Device Circuit Diagrams and Pin Configurations

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{+}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage $\left(\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}\right.$, or $\left.\mathrm{V}_{\mathrm{COM}}\right)$ (Note 1)	$-0.5 \leq \mathrm{V}_{\mathrm{IS}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{I}} \leq+7.0$	V
I_{IK}	DC Current, Into or Out of Any Pin (Continuous)	± 100	mA
I_{PK}	Peak Current (10\% Duty Cycle)	± 200	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Signal voltage on NC, NO, and COM exceeding VCC or GND are clamped by the internal diodes. Limit forward diode current to maximum current rating.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V+	DC Supply Voltage	1.8	5.5	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage	GND	5.5	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (NC, NO, COM)	GND	$\mathrm{V}_{\text {cc }}$	V
T_{A}	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns/V

ANALOG SWITCH DC CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Max	
V_{IH}	Input Logic High Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.65 \text { to } 2.2 \\ & 2.7 \text { to } 3.6 \\ & 4.5 \text { to } 5.5 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \times 0.55 \\ \mathrm{~V}_{\mathrm{CC}} \times 0.5 \\ 2.0 \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	Input Logic Low Voltage	$\begin{gathered} \mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ \text { I OUT } \leq 20 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 1.65 \text { to } 2.2 \\ 2.7 \text { to } 3.6 \\ 4.5 \text { to } 5.5 \end{gathered}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \times 0.2 \\ \mathrm{~V}_{\mathrm{CC}} \times 0.2 \\ 0.8 \end{gathered}$	V
IN	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	-100	+100	nA
V_{CC}	Power Supply Range	All	-	1.65	5.5	V
$I_{\text {cc }}$	Supply Current	$\begin{gathered} \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \text { lout }=0 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & 1.8 \\ & 3.3 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$

ANALOG SWITCH CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
Ron	ON Resistance (Note 2)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.0	-	3.2	4.5	Ω
			5.0	-	2.1	3.5	
$\Delta \mathrm{R}_{\text {ON }}$	ON Resistance Match Between Channels (Note 2 and 3)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.0	-	0.1	0.4	Ω
			5.0	-	0.1	0.4	
$\mathrm{R}_{\text {FLAT[ON] }}$	ON Resistance Flatness (Note 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.0	-	1.12	1.5	Ω
			5.0	-	0.55	1.36	
$\mathrm{I}_{\text {NO_[OFF] }}$ INC_[OFF]	NO_, NC_-Off-Leakage Current(Note 5)	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{gathered}$	3.6	-1.0	0.01	+1.0	nA
		$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \end{gathered}$	5.5	-1.0	0.01	+1.0	
ICOm_[ON]	COM On-Leakage Current (Note 5)	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{gathered}$	3.6	-2.0	0.01	+2.0	nA
		$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \end{gathered}$	5.5	-2.0	0.01	+2.0	

ANALOG SWITCH AC CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
t_{ON}	Turn-On Time	$\begin{gathered} \mathrm{V}_{\mathrm{NC}_{-},} \mathrm{V}_{\mathrm{NO}_{-}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IN}[\mathrm{x}]}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$	1.8 to 5.5	-	-	30	nS
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\begin{gathered} \mathrm{V}_{\mathrm{NC}_{-},} \mathrm{V}_{\mathrm{NO}}^{-}= \\ \mathrm{R}_{\mathrm{L}}=300 \mathrm{~V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{IN}[\mathrm{~L}]}=\mathrm{V}_{\mathrm{IH}} \text { or }=35 \mathrm{p} \mathrm{~V}_{\mathrm{IL}} \end{gathered}$	1.8 to 5.5	-	-	40	nS
$t_{\text {BBM }}$	Break-Before-Make Time Delay (Note 5)	$\begin{gathered} \mathrm{V}_{\mathrm{NC}_{-},} \mathrm{V}_{\mathrm{NO}_{-}}=1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	-	-	8.0	-	nS
tskew		$\mathrm{R}_{\mathrm{S}}=39 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	-	0.15	2.0	nS

2. R_{ON} characterized for V_{CC} range (1.65 V to 5.5 V).
3. $\Delta R_{O N}=R_{O N}(M A X)-R_{O N}(M I N)$.
4. $R_{F L A T[O N]}=R_{O N}(M A X)-R_{O N}(M I N)$, measured over $V_{C C}$ range.
5. Guaranteed by design.

ANALOG SWITCH APPLICATION CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
Q	Charge Injection	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ \mathrm{R}_{\mathrm{In}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF} \\ \mathrm{Q}=\mathrm{C}_{\mathrm{L}}-\Delta \mathrm{V}_{\text {OUT }} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	9.0			pC
VISO	Off-Isolation	$\begin{gathered} \mathrm{f}=10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\text {NC- }}=1.0 \mathrm{Vp-p} \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \end{gathered}$	1.65 to 5.5	-50			dB
		$\begin{gathered} \mathrm{f}=1.0 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{NO}}^{-}, \\ \mathrm{V}_{\mathrm{NC}}^{-} \end{gathered}=1.0 \mathrm{Vp-p}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} .$		-75			
VCT	Cross-Talk	$\begin{gathered} \mathrm{f}=10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}_{-}}=1.0 \mathrm{Vp-p} \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \end{gathered}$	1.65 to 5.5	-80			dB
		$\begin{gathered} \mathrm{f}=1.0 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}}^{-} \end{gathered}=1.0 \mathrm{Vp-p}, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} .$		-110			
BW	On-Channel -3.0 db Bandwidth	$\begin{gathered} \text { Signal }=0 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \end{gathered}$	1.8 to 5.0	90			MHz
THD	Total Harmonic Distortion	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=2.0 \mathrm{Vp}-\mathrm{p}, \\ \mathrm{RL}=600 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	-	0.02			\%
$\mathrm{C}_{\text {NO_[OFF] }}$ $\mathrm{C}_{\text {NC_[OFF] }}$	$\begin{gathered} \text { NO_, NC_- } \\ \text { OFF-Capacitance } \end{gathered}$	$\mathrm{F}=1.0 \mathrm{MHz}$	-	15			pF
$\overline{\mathrm{C}_{\mathrm{NO}} \text { _[ON] }}$ $\mathrm{C}_{\mathrm{NC} \text { _[ON] }}$	NO_, NC_ ON-Capacitance	$\mathrm{F}=1.0 \mathrm{MHz}$	-	38			pF

Figure 2. $\mathbf{R}_{\mathrm{DS}(o n)} @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 4. Delta $R_{D S(o n)} @ V_{c c}=5.0 \mathrm{~V}$

Figure 3. $\mathbf{R}_{\mathrm{DS}(\mathrm{on})} @ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 5. Delta $\mathbf{R}_{\mathrm{DS}(o n)} @ \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V}$

Figure 6. Charge Injection

Figure 7. Total Harmonic Distortion

Figure 8. Frequency Response

Figure 9. Bandwidth and Phase

Figure 10. t_{BB} (Time Break-Before-Make)

Figure 11. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 12. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20$ Log $\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20$ Log $\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3.0 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 13. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ $V_{\text {ONL }}$

Figure 14. Charge Injection: (Q)

SCALE 5:1

WQFN10, $1.4 \times 1.8,0.4 P$
CASE 488AQ-01
ISSUE C
DATE 19 JUN 2007

MOUNTING FOOTPRINT

| DOCUMENT NUMBER: | 98AON20791D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WQFN10, 1.4 X1.8,0.4P | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

10 PIN FLIP-CHIP

CASE 489AA-01
ISSUE A
DATE 04 MAY 2004

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLING DIMENSION: MILLIMETERS.
3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

	MILLIMETERS	
DIM	MIN	MAX
A	---	0.650
A1	0.210	0.270
A2	0.280	0.380
D	1.965 BSC	
E	1.465 BSC	
b	0.250	0.350
e	0.500 BSC	
D1	1.500 BSC	
E1	1.000 BSC	

GENERIC
MARKING DIAGRAM*

xxxx = Specific Device Code
YY = Year
WW = Work Week
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present.

| DOCUMENT NUMBER: | 98AON12946D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 10 PIN FLIP-CHIP | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

