

FlexOut Ultra Low Jitter Clock Generator

Features

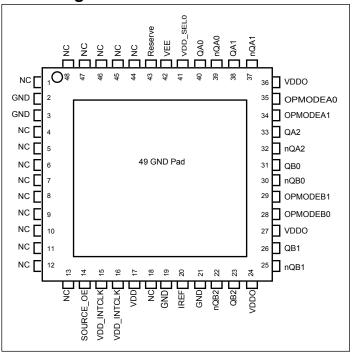
- → Ultra low jitter 156.25MHz clock generator <0.1ps max (12k to 20MHz) in LVPECL configuration
- → 6 differential outputs with 2 banks
- → User configurable output signaling standard for each bank: LVDS or LVPECL or HCSL
- → Separate supply voltages for customized output levels
- → Low skew between outputs within banks (<40ps)
- \rightarrow 2.5V / 3.3V power supply
- → Industrial temperature support
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.
 - https://www.diodes.com/quality/product-definitions/
- → Packaging (Pb-free & Green):
 - 48-pin, LQFP (FBE)

Description

The PI6CXG06F62a is part of Diodes' FlexOut clock generator family. FlexOut generators combine a low jitter high performance clock generator along with fanout capabilities. It also integrates a unique feature with user configurable output signaling standards on per bank basis which provide great flexibility to users. This device is ideal for systems that need to distribute low jitter clock signals to multiple destinations.

Applications

- → Networking systems including switches and routers
- → High frequency backplane based computing and telecom platforms


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Description

Pin #	Pin Name	Type	Description
2, 3, 19, 21	GND	Power	Connect to Ground
14	SOURCE_OE	Input	Control of embedded clock source ON/ OFF
15, 16	VDD_INTCLK	Power	Voltage supply for embedded clock source
17	VDD	Power	Power supply for core
20	IREF	Output	Reference current for HCSL output tuning. Typically connected with external 475 Ω resistor to GND
22, 23	nQB2 QB2	Output	Bank B differential output pair. Pin selectable LVPECL/LVDS/HCSL interface levels.
24, 27, 36	VDDO	Power	Power supply for output buffers
25, 26	nQB1 QB1	Output	Bank B differential output pair. Pin selectable LVPECL/LVDS/HCSL interface levels.
28	OPMODEB0	Input	Bank B output selection pin
29	OPMODEB1	Input	Bank B output selection pin
30, 31	nQB0 QB0	Output	Bank B differential output pair. Pin selectable LVPECL/LVDS/HCSL interface levels.
32, 33	nQA2 QA2	Output Bank A differential output pair. Pin selectable LVPECL/LVDS/HCSL int	
34	OPMODEA1	Input	Bank A output selection pin

Pin Description Cont.

Pin #	Pin Name	Туре	Description
35	OPMODEA0	Input	Bank A output selection pin
37, 38	nQA1	Output	Bank A differential output pair. Pin selectable LVPECL/LVDS/HCSL interface levels.
	QA1	_	• •
39, 40	nQA0	Output	Bank A differential output pair. Pin selectable LVPECL/LVDS/HCSL interface levels.
37, 40	QA0	Output	Bank A differential output pair. I in selectable Ly I LeL/Ly Do/1105L interface levels.
41	VDD_SEL0	Power	Connect to power supply, tie high
42	VEE	Power	Connect to Negative power supply
43	Reserve	Output (Do not connect)	Embedded source debug pin. To be left open and not connected in application.
49	GND Pad	Power	Exposed pad to be connected to Ground
1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 44, 45, 46, 47, 48	NC	-	No connect

Output Mode Select Function

OPMODEA/B [1]	OPMODEA/B [0]	Output Bank A / Bank B Mode
0	0	LVPECL
0	1	LVDS
1	0	HCSL
1	1	Hi-Z

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested)

Storage temperature	55 to +150°C
Supply Voltage to Ground Potential	
(All VDD, VDDO)	0.5 to +4.6V
Inputs (Referenced to GND)	0.5 to VDD+0.5V
Clock Output (Referenced to GND)	0.5 to VDD+0.5V
V _{EE}	0.5V
Latch up	±200mA
ESD Protection	2000 V min (HBM)

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Power Supply Characteristics and Operating Conditions

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V V	Cumply Voltage		3.135		3.465	V
$V_{DD,}V_{DD_{\perp}X}$	Supply Voltage		2.375		2.625	V
17	O-44 Cl W-14		3.135		3.465	V
V_{DDO}	Output Supply Voltage		2.375		2.625	V
V_{EE}	Negative Supply Voltage		-0.5		0	V
I_{DD}	Core Power Supply Current	All outputs unloaded		85	110	
	Output Power Supply Current	All LVPECL outputs unloaded		69	100	mA
I_{DDO}		All LVDS outputs loaded		82	100	
		All HCSL outputs unloaded		51	70	
$I_{DDTOTAL}$	Total Power Supply Current	All outputs unloaded			210	
T _A	Ambient Operating Temperature		-40		85	°C

DC Electrical Specifications - LVCMOS Inputs

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I_{IH}	Input High current	$Input = V_{DD}$			150	uA
I _{IL}	Input Low current	Input = GND	-150			uA
V _{IH}	Input high voltage	$V_{DD}=3.3V$	2.0		V _{DD} +0.3	V
V_{IL}	Input low voltage	$V_{DD}=3.3V$	-0.3		0.8	V
V _{IH}	Input high voltage	$V_{DD}=2.5V$	1.7		V _{DD} +0.3	V
V _{IL}	Input low voltage	V _{DD} =2.5V	-0.3		0.7	V

DC Electrical Specifications- LVPECL Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage	V_{DD} =3.3V	2.1		2.6	V
		V_{DD} =2.5 V	1.3		1.6	
V _{OL} Output Low v	Output Louvelte co	V_{DD} =3.3 V	1.3		1.8	- V
	Output Low voltage	V_{DD} =2.5V	0.5		0.8	

DC Electrical Specifications- LVDS Outputs

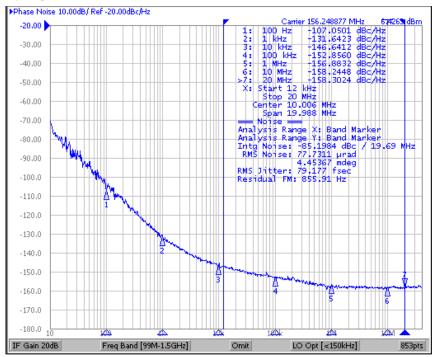
Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage			1.433		V
V _{OL}	Output Low voltage			1.064		V
Vocm	Output common mode voltage			1.25		V
DVocm	Change in Vocm between output states				55	mV
Ro	Output impedance		85		140	Ω

DC Electrical Specifications- HCSL Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage		520	800		mV
V _{OL}	Output Low voltage			0	150	mV

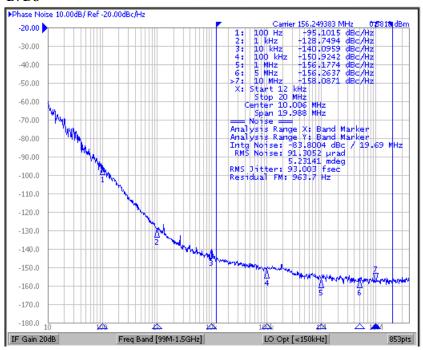

AC Electrical Specifications – Differential Outputs

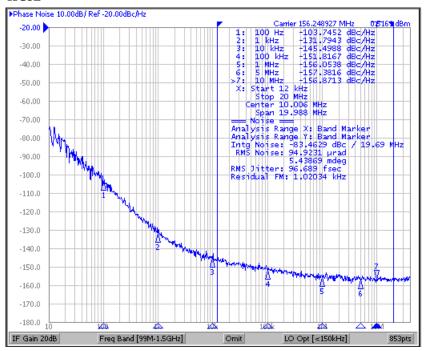
Parameter	Description	Conditions	Min.	Тур.	Max.	Units
F _{OUT}	Clock output frequency			156.25		MHz
F _{STAB}	Frequency stability				±25	ppm
T _r	Output rise time	From 20% to 80%		150		ps
$T_{\rm f}$	Output fall time	From 80% to 20%		150		ps
T_{ODC}	Output duty cycle	Generator mode	48		52	%
		LVPECL outputs	400			
$V_{\mathtt{PP}}$	Output swing Single-ended	LVDS outputs	250			mV
		HCSL outputs	520			1
		LVPECL		0.07	0.1	
T_{PHASEJ}	Phase jitter RMS	LVDS		0.09	0.12	ps
		HCSL		0.09	0.15	-
V _{CROSS}	Absolute crossing voltage	HCSL	160		460	mV
DV _{CROSS}	Total variation of crossing voltage	HCSL			140	mV
T_{sK}	Output Skew	6 outputs devices, outputs in same bank, with same load, at DUT.		40		ps
T_{OD}	Valid to HiZ		200			ns
T _{OE}	HiZ to valid		200			ns
T_{start}	Start-Up Time	Counted from V _{DD} reaches 90%			10	ms



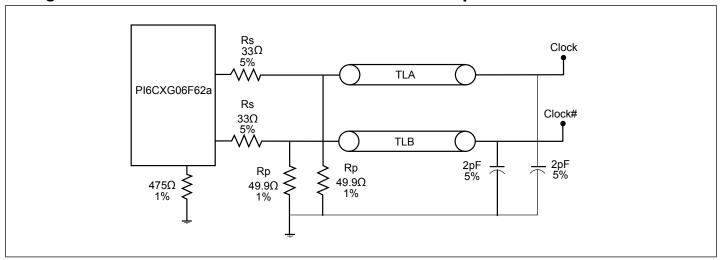
Output Skew

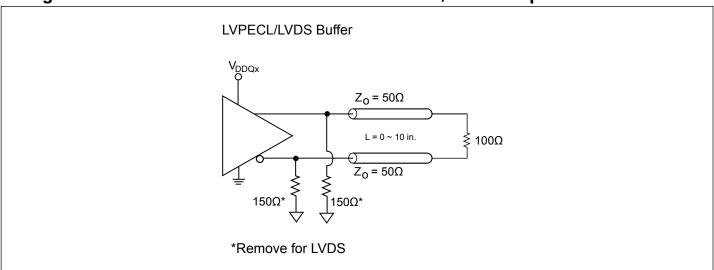
Phase Noise Plots


LVPECL



LVDS


HCSL



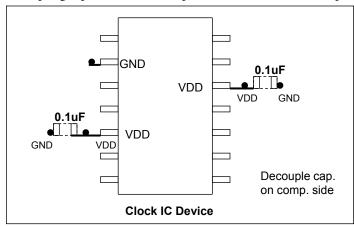
Configuration Test Load Board Termination for HCSL Outputs

Configuration Test Load Board Termination for LVPECL/ LVDS Outputs

Application Information Suggest for Unused Inputs and Outputs

LVCMOS Input Control Pins

It is suggested to add pull-up=4.7k and pull-down=1k for LVCMOS pins even though they have internal pull-up/down but with much higher value (>=50k) for higher design reliability.

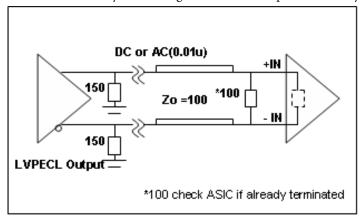

Outputs

All unused outputs are suggested to be left open and not connected to any trace. This can lower the IC power supply power.

Power Decoupling & Routing

VDD Pin Decoupling

As general design rule, each VDD pin must have a 0.1uF decoupling capacitor. For better decoupling, 1uF can be used. Locating the decoupling capacitor on the component side has better decoupling filter result as below.

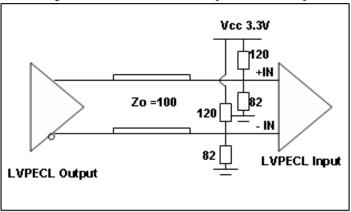


Placement of Decoupling caps

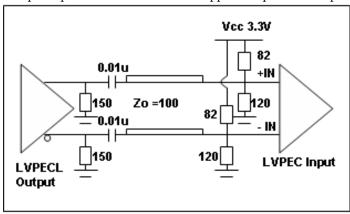
Device LVPECL Output Terminations

LVPECL Output Popular Termination

The most popular LVPECL termination is 150Ω pull-down bias and 100Ω across at RX side. Please consult ASIC datasheet if it already has 100Ω or equivalent internal termination. If so, do not connect external 100Ω across. This popular termination's advantage is that it does not allow any bias through from V_{DD} . This prevents V_{DD} system noise coupling onto clock trace.

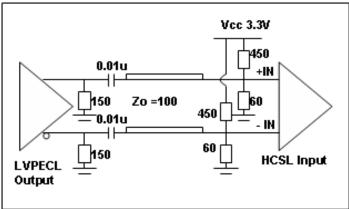

LVPECL Output Popular Termination

LVPECL Output Thevenin Termination


Below is an LVPECL output Thevenin termination which is used for shorter trace drive (<5in.), but it takes V_{DD} bias current and V_{DD} noise can get onto clock trace. It also requires more component count. So it is seldom used today.

LVPECL Thevenin Output Termination

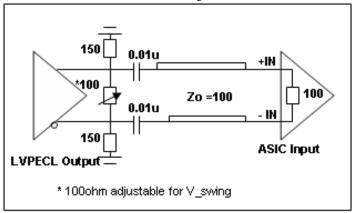
LVPECL Output AC Thevenin Termination


LVPECL AC Thevenin terminations require a 150Ω pull-down before the AC coupling capacitor at the source as shown below. Note that pull-up/down resistor value is swapped compared to the previous example. This circuit is good for short trace (<5in.) application

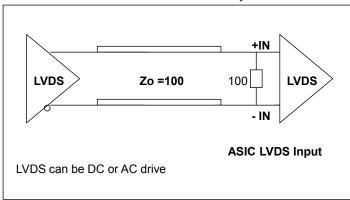
LVPECL Output AC Thenvenin Termination

LVPECL Output Drive HCSL Input

Using the LVPECL output to drive a HCSL input can be done using a typical LVPECL AC Thenvenin termination scheme. Use pull-up/down $450/60\Omega$ to generate Vcm=0.4V for the HCSL input clock. This termination is equivalent to 50Ω load as shown below.

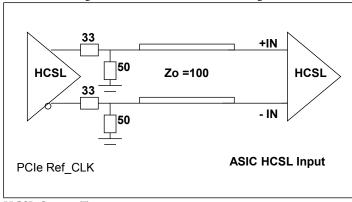


LVPECL Output V_swing Adjustment


It is suggested to add another cross 100Ω at TX side to tune the LVPECL output V_swing without changing the optimal 150Ω pull-down bias in Fig. 12. This form of double termination can reduce the V_swing in ½ of the original at the RX side. By fine tuning the 100Ω resistor at the TX side with larger values like 150 to 200Ω , one can increase the V_swing by > 1/2 ratio.

LVPECL Output V_swing Adjustment

LVDS Output Termination


LVDS termination is different from LVPECL by removing the 150 Ω pull-down bias. LVDS requires anRX termination equivalent of 100 Ω across at the RX side. LVDS can be implemented via AC coupling if the ASIC has an internal termination with DC bias.

LVDS Output Driving LVDS Input

HCSL Output Termination

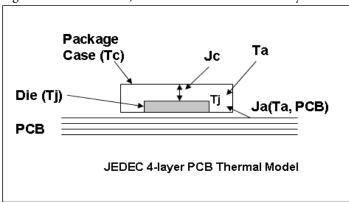
HCSL output is mostly used in PCIe reference clocking. It needs DC coupling to drive HCSL input with TX a 33/50 Ω termination. To get better SI, it is better to put 33/50 Ω termination on the component side. HCSL can AC drive LVPECL, LVDS and CML inputs too, but the V_swing will be ½ of the HCSL V_swing due to the TX and RX side double 50 Ω termination.

Clock Jitter Definitions

Total jitter= RJ + DJ

Random Jitter (RJ) is unpredictable and unbounded timing noise that can fit in a Gaussian math distribution in RMS. RJ test values are directly related with how long or how many test samples are available. Deterministic Jitter (DJ) is timing jitter that is predictable and periodic in fixed interference frequency. Total Jitter (TJ) is the combination of random jitter and deterministic jitter: , where is a factor based on total test sample count. JEDEC std. specifies digital clock TJ in 10k random samples.

Phase Jitter


Phase noise is short-term random noise attached on the clock carrier and it is a function of the clock offset from the carrier, for example dBc/Hz@10kHz which is phase noise power in 1-Hz normalized bandwidth vs. the carrier power @10kHz offset. Integration of phase noise in plot over a given frequency band yields RMS phase jitter, for example, to specify phase jitter <=1ps at 12k to 20MHz offset band as SONET standard specification.

PCIe Ref CLK Jitter

PCIe reference clock jitter specification requires testing via the PCI-SIG jitter tool, which is regulated by US PCI-SIG organization. The jitter tool has PCIe Serdes embedded filter to calculate the equivalent jitter that relates to data link eye closure. Direct peak-peak jitter or phase jitter test data, normally is higher than jitter measure using PCI-SIG jitter tool. It has high-frequency jitter and low-frequency jitter spec. limit. For more information, please refer to the PCI-SIG website: http://www.pcisig.com/specifications/pciexpress/

Device Thermal Calculation

Figure below shows the JEDEC thermal model in a 4-layer PCB.

JEDEC IC Thermal Model

Important factors to influence device operating temperature are:

- 1) The power dissipation from the chip (P_chip) is after subtracting power dissipation from external loads. Generally it can be the no-load device Idd
- 2) Package type and PCB stack-up structure, for example, 1oz 4 layer board. PCB with more layers and are thicker has better heat dissipation
- 3) Chassis air flow and cooling mechanism. More air flow M/s and adding heat sink on device can reduce device final die junction temperature Tj

The individual device thermal calculation formula:

Tj =Ta + Pchip x Ja

Tc = Tj - Pchip x Jc

Ja ___ Package thermal resistance from die to the ambient air in C/W unit; This data is provided in JEDEC model simulation. An air flow of 1 m/s will reduce Ja (still air) by $20 \sim 30\%$

Jc ___ Package thermal resistance from die to the package case in C/W unit

Tj ___ Die junction temperature in C (industry limit <125C max.)

Ta ___ Ambiant air température in C

Tc ____ Package case temperature in C

Pchip___ IC actually consumes power through Iee/GND current

Device Iee or GND current to calculate Tj, especially for LVPECL buffer ICs that have a 150Ω pull-down and equivalent 100Ω differential RX load.

Thermal Calculation Example

To calculate Tj and Tc of PI6CV304 in an SOIC-8 package:

Step 1: Go to Pericom web to find Ja=157 C/W, Jc=42 C/W

http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermal-characteristics/

Step 2: Go to device datasheet to find Idd=40mA max.

2. L	do to de lice c	atabileet to iiiia iaa		1 111421.
		C _L = 33pF/33MHz	20	
		C _L = 33pF/66MHz	40	
•	Supply Current	C _L = 22pF/80MHz	35	mA
ID		C _L = 15pF/100MHz	32	mA
		C _L = 10pF/125MHz	28	
		C _L = 10pF/155MHz	41	

Step 3: P_total= 3.3Vx40mA=0.132W

Step 4: If Ta=85°C

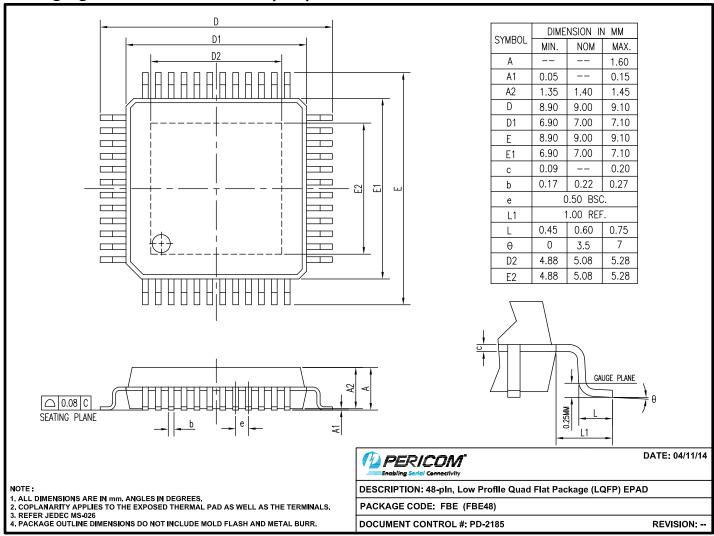
 $Tj = 85 + Ja \times P_{total} = 85 + 25.9 = 105.7$ °C

 $Tc = Tj + Jc \times P_{total} = 105.7 - 5.54 = 100.1$ °C

Note:

The above calculation is directly using Idd current without subtracting the load power, so it is a conservative estimation. For more precise thermal calculation, use P_unload or P_chip from device Iee or GND current to calculate Tj, especially for LVPECL buffer ICs that have a 150Ω pull-down and equivalent 100Ω differential RX load.

Part Marking



Z: Die Rev YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 48-LQFP (FBE)

14-0045

For latest package info.

 $please\ check:\ http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/packaging-mechanical-and-thermal-characteristics/packaging-mech$

Ordering Information

Ordering Code	Package Code	Package Description	Operating Temperature
PI6CXG06F62aFBEIEX	FBE	48-pin, Low Profile Quad Flat Package (LQFP) EPAD	-40 °C to 85 °C

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. I = Industrial
- 5. E = Pb-free and Green
- 6. X suffix = Tape/Reel

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com