Small Signal MOSFET

-20 V, -200 mA, Dual P-Channel, $1.0 \times 1.0 \mathrm{~mm}$ SOT-963 Package

Features

- Dual P-Channel MOSFET
- Offers a Low $\mathrm{R}_{\mathrm{DS}(\text { on })}$ Solution in the Ultra Small $1.0 \times 1.0 \mathrm{~mm}$ Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile ($<0.5 \mathrm{~mm}$) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics.
- This is a $\mathrm{Pb}-$ Free Device

Applications

- High Side Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Equipment

MAXIMUM RATINGS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			$\mathrm{V}_{\text {DSS }}$	-20	V
Gate-to-Source Voltage			V_{GS}	± 8	V
Continuous Drain Current (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$I_{\text {D }}$	-200	mA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		-140	
	$\mathrm{t} \leq 5 \mathrm{~s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-250	
Power Dissipation (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	-125	mW
	$\mathrm{t} \leq 5 \mathrm{~s}$			-200	
Pulsed Drain Current		$\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	IDM	-600	mA
Operating Junction and Storage Temperature			$\mathrm{T}_{\mathrm{J},}$	$\begin{gathered} -55 \text { to } \\ 150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current (Body Diode) (Note 2)			Is	-200	mA
Lead Temperature for Soldering Purposes ($1 / 8^{\prime \prime}$ from case for 10 s)			T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using the minimum recommended pad size, 1 ozCu .
2. Pulse Test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

PINOUT: SOT-963

Top View

4 = Specific Device Code
M = Date Code
$=$ Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

NTUD3171PZ

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$\mathrm{R}_{\theta J \mathrm{~A}}$	1000	
		600	

3. Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu .

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$		-20			V
Zero Gate Voltage Drain Current	IDSS	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			-50	nA
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$			-100	
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-16 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			-200	
Gate-to-Source Leakage Current	IGSS	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 5.0 \mathrm{~V}$				± 100	nA

ON CHARACTERISTICS (Note 4)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.4		-1.0	V
Drain-to-Source On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mathrm{~mA}$		2.0	5.0	Ω
		$\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-50 \mathrm{~mA}$		2.6	6.0	
		$\mathrm{V}_{\mathrm{GS}}=-1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-20 \mathrm{~mA}$		3.4	7.0	
		$\mathrm{V}_{\mathrm{GS}}=-1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}$		4.0	10	
		$\mathrm{V}_{\mathrm{GS}}=-1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~mA}$		6.0		
Forward Transconductance	gFs	$\mathrm{V}_{\mathrm{DS}}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-125 \mathrm{~mA}$		0.35		S
Source-Drain Diode Voltage	V_{SD}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$		-0.6	-1.0	V

CHARGES, CAPACITANCES AND GATE RESISTANCE

Input Capacitance	$\mathrm{C}_{\text {ISS }}$	$\begin{gathered} f=1 \mathrm{MHz}, V_{G S}=0 \mathrm{~V} \\ V_{D S}=-15 \mathrm{~V} \end{gathered}$	13.5	pF
Output Capacitance	Coss		3.8	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$		2.0	

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{G S}}=4.5 \mathrm{~V}$ (Note 4)

Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-15 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=-200 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=2.0 \Omega \end{gathered}$	26	ns
Rise Time	tr_{r}		46	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		196	
Fall Time	t_{f}		145	

4. Switching characteristics are independent of operating junction temperatures

ORDERING INFORMATION

Device	Package	Shipping †
NTUD3171PZT5G	SOT-963 (Pb-Free)	$8000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTUD3171PZ

TYPICAL CHARACTERISTICS

VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (V)
Figure 3. On-Resistance vs. Gate Voltage

Figure 5. On-Resistance Variation with Temperature

V_{GS}, GATE-TO-SOURCE VOLTAGE (V)
Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTUD3171PZ

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

Figure 9. Diode Forward Voltage vs. Current

SOT-963
CASE 527AD-01 ISSUE E
SCALE 4:1

TOP VIEW

SIDE VIEW

$$
\text { BOTTOM VIEW } \begin{array}{|l|l|l|l|}
\hline & 0.08 & \mathrm{X} & \mathrm{Y} \\
\hline
\end{array}
$$

STYLE 1:
PIN 1. EMITTER 1 2. BASE 1
3. COLLECTOR 2
4. EMITTER 2
5. BASE 2
6. COLLECTOR 1

STYLE 4:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR

STYLE 7 :
PIN 1. CAThode
2. ANODE
3. CATHODE
4. CATHODE
5. ANODE
6. CATHODE

STYLE 10:
PIN 1. CATHODE 1
2. N / C
3. CATHODE 2
4. ANODE 2
5. N / C
6. ANODE 1

STYLE 2:
PIN 1. EMITTER 1
2. EMITTER2
3. BASE 2
4. COLLECTOR 2
5. BASE 1
6. COLLECTOR 1

STYLE 5:
PIN 1. CATHODE
2. CATHODE
3. ANODE
4. ANODE
5. CATHODE

STYLE 8:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. SOURCE
5. DRAIN
6. DRAIN

STYLE 3:
PIN 1. CATHODE 1
2. CATHODE 1
3. ANODE/ANODE 2
4. CATHODE 2
6. ANODE/ANODE 1

STYLE 6:
PIN 1. CATHODE
2. ANODE
2. ANTHEDE
3. CATHODE
4. CATHODE
6. CATHODE

STYLE 9:
PIN 1. SOURCE 1
2. GATE 1
3. DRAIN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

| DOCUMENT NUMBER: | 98AON26456D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-963, 1X1, 0.35P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

