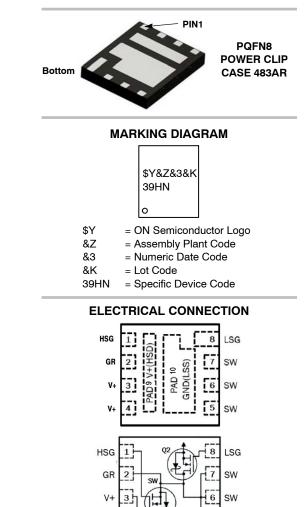
MOSFET – Power, Dual, N-Channel, Power Clip, Trench, Asymmetric 30 V

NTMFD001N03P9

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications


- DC–DC Converters
- System Voltage Rails

ON Semiconductor®

www.onsemi.com

FET	V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1	30 V	5.0 mΩ @ 10 V	57 A
Gri	30 V	6.5 mΩ @ 4.5 V	57 4
00	20.1/	1.0 mΩ @ 10 V	165 4
Q2	30 V	1.2 mΩ @ 4.5 V	165 A

ORDERING INFORMATION

V-

See detailed ordering and shipping information on page 10 of this data sheet.

SW

Table 1. MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Q1	Q2	Unit		
Drain-to-Source Voltage	V _{DSS}	30	30	V		
Gate-to-Source Voltage				±20	+16 V -12 V	V
Continuous Drain Current $R_{\theta JC}$ (Note 3)	Steady State	T _C = 25°C	Ι _D	57	165	А
		T _C = 85°C		41	119	
Power Dissipation $R_{\theta JC}$ (Note 3)		T _C = 25°C	PD	25	41	W
Continuous Drain Current $R_{\theta JA}$ (Note 1, 3)	Steady State	T _A = 25°C	Ι _D	16	38	А
		T _A = 85°C		12	27	
Power Dissipation $R_{\theta JA}$ (Note 1, 3)		$T_A = 25^{\circ}C$	PD	2.1	2.3	W
Continuous Drain Current $R_{\theta JA}$ (Note 2, 3)	Steady State	$T_A = 25^{\circ}C$	Ι _D	11	25	А
		$T_A = 85^{\circ}C$		8	18	
Power Dissipation $R_{\theta JA}$ (Note 2, 3)		T _A = 25°C	PD	0.96	1.04	W
Pulsed Drain Current	T _A = 25°C,	t _p = 10 μs	I _{DM}	300	500	А
Single Pulse Drain-to-Source Avalanche Energy Q1: $I_L = 5.3 A_{pk}$, L = 3 mH (Note 4) Q2: $I_L = 8.35 A_{pk}$, L = 3 mH (Note 4)			E _{AS}	42	104	mJ
Operating Junction and Storage Temperature			T _J , T _{stg}	-5	55 to 150	°C
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			ΤL		260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. THERMAL RESISTANCE RATINGS

Parameter	Symbol	Q1 Max	Q2 Max	Units
Junction-to-Case - Steady State (Note 1, 3)	Rejc	5.0	3.0	°C/W
Junction-to-Ambient – Steady State (Note 1, 3)	RθJA	60	55	
Junction-to-Ambient – Steady State (Note 2, 3)	RθJA	130	120	

Surface-mounted on FR4 board using 1 in² pad size, 2 oz Cu pad.
Surface-mounted on FR4 board using minimum pad size, 2 oz Cu pad.

3. The entire application environment impacts the thermal resistance values shown. They are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro-mechanical application board design. R_{OCA} is determined by the user's board design. 4. Q1 100% UIS tested at L = 0.1 mH, I_{AS} = 20 A. Q2 100% UIS tested at L = 0.1 mH, I_{AS} = 47 A.

Table 3. ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Test Condition		FET	Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		Q1	30			V
		V _{GS} = 0 V, I	V_{GS} = 0 V, I_D = 1 mA		30			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS} /	$I_D = 250 \ \mu A$, ref to $25^{\circ}C$		Q1		15		mV/°C
Temperature Coefficient	١J	I _D = 50 mA, r	ref to 25°C	Q2		16		
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T.₁ = 25°C	Q1			1	μA
		V _{DS} = 24 V	1j = 25°0	Q2			500	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = 20 V$		Q1			100	nA
		V _{DS} = 0 V, V	_{GS} = 16 V	Q2			100]

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	Q1	1.0		3.0	V
		$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	Q2	1.0		3.0	1
Threshold Temperature Coefficient	V _{GS(TH)} / T _J	$I_D = 250 \ \mu\text{A}$, ref to 25°C	Q1		-5		mV/°C
	/ Ij	$I_D = 50 \text{ mA}$, ref to $25^{\circ}C$	Q2		-3		1
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I_{D} = 17 A	Q1		4.5	5.0	mΩ
		V_{GS} = 4.5 V, I _D = 14 A			5.4	6.5	1
		V_{GS} = 10 V, I _D = 40 A	Q2		0.75	1.0	1
		V_{GS} = 4.5 V, I _D = 37 A			0.9	1.2	1
Forward Transconductance	9 _{FS}	$V_{DS} = 5 V, I_D = 14 A$	Q1		93		S
		V_{DS} = 5 V, I_D = 37 A	Q2		248		1
Gate Resistance	R _G	T 0500	Q1		1		Ω
		$T_A = 25^{\circ}C$	Q2		1		1

CHARGES & CAPACITANCES

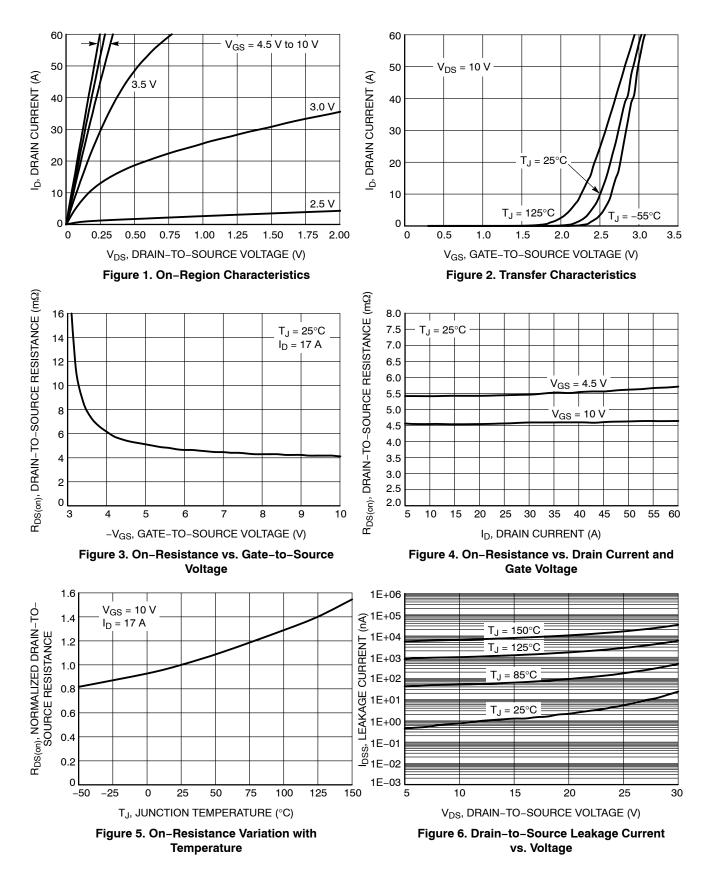
Input Capacitance	C _{ISS}		Q1	1224	pF
			Q2	6575	
Output Capacitance	C _{OSS}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz	Q1	397	pF
		f = 1 MHz	Q2	2086	
Reverse Capacitance	C _{RSS}		Q1	42	pF
			Q2	138	
Total Gate Charge	Q _{G(TOT)}		Q1	7.9	nC
			Q2	43	
Gate-to-Drain Charge	Q _{GD}	Q1: V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 14 A	Q1	2.0	nC
		Q2: V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 37 A	Q2	9.5	
Gate-to-Source Charge	Q _{GS}	VDS = 13 V, 10 = 37 A	Q1	3.1	nC
			Q2	15.8	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 14 A	Q1	17	nC
		V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 37 A	Q2	93	

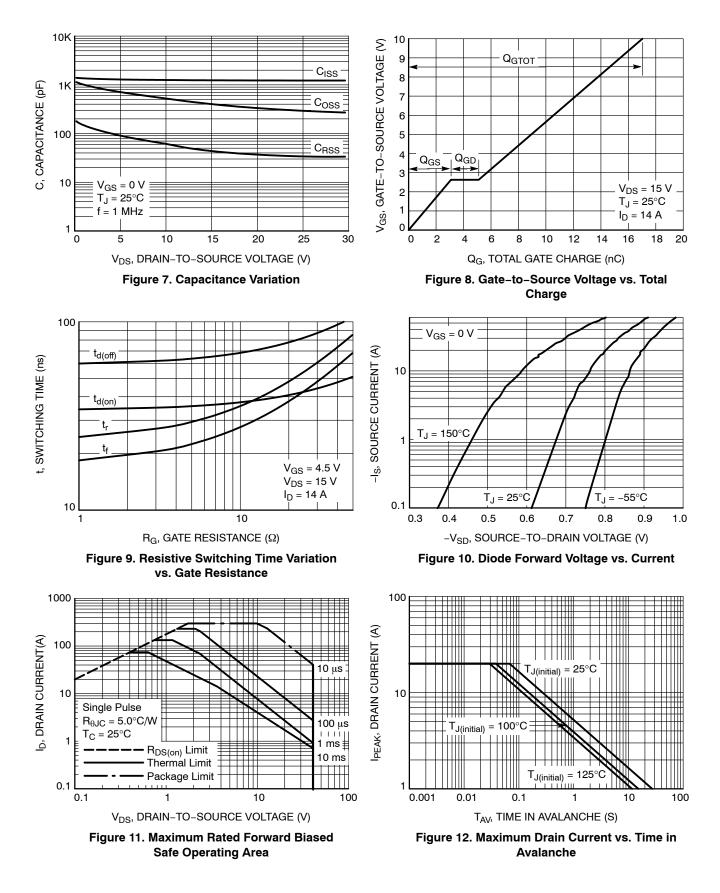
5. Pulse Test: pulse width \leq 300 $\mu s,$ duty cycle \leq 2% 6. Switching characteristics are independent of operating junction temperatures

Table 3. ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Test Condition	FET	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS VGS	- 4 5 V (Not	ie 6)					

SWITCHING CHARACTERISTI	CS, VGS = 4.5 V (NO	te 6)			
Turn-On Delay Time	t _{d(ON)}		Q1	36	ns
			Q2	12.6	
Rise Time	t _{r(ON)}	V _{GS} = 4.5 V	Q1	30.7	ns
		Q1: $I_D = 14 \text{ A}$, $V_{DD} = 15 \text{ V}$, $R_G = 6 \Omega$	Q2	21.5	
Turn-Off Delay Time	t _{d(OFF)}	Q2: $I_D = 37 \text{ A}, V_{DD} = 15 \text{ V},$ $R_G = 6 \Omega$	Q1	64.7	ns
		$R_{G} = 6 \Omega$	Q2	17.5	
Fall Time	t _f		Q1	23.5	ns
			Q2	7.3	


SWITCHING CHARACTERISTICS, VGS = 10 V (Note 6)


Turn–On Delay Time	t _{d(ON)}		Q1	8.0	ns
			Q2	8.6	
Rise Time	t _{r(ON)}	V _{GS} = 10 V	Q1	2.0	ns
		Q1: I_D = 17 A, V_{DD} = 15 V, R _G = 6 Ω	Q2	18.2	
Turn-Off Delay Time	t _{d(OFF)}	Q2: In = 40 A. Vnn = 15 V.	Q1	23.5	ns
		$R_{G} = 6 \Omega$	Q2	4.5	
Fall Time	t _f		Q1	2.0	ns
			Q2	4.5	

SOURCE-TO-DRAIN DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	Q1	0.79	1.2	V
		V _{GS} = 0 V, I _S = 14 A	T _J = 125°C		0.66		
		V _{GS} = 0 V,	$T_J = 25^{\circ}C$	Q2	0.77	1.2	
		V _{GS} = 0 V, I _S = 37 A	T _J = 125°C		0.63		
Reverse Recovery Time	t _{RR}			Q1	23		ns
		V _{GS} = Q1: I _S = 14 A, dI		Q2	4.6		
Reverse Recovery Charge	Q _{RR}	Q1: $I_{S} = 14$ A, dI Q2: $I_{S} = 37$ A, dI		Q1	8.0		nC
				Q2	68.3		

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 6. Switching characteristics are independent of operating junction temperatures

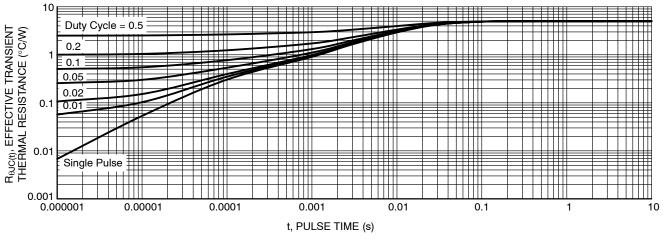
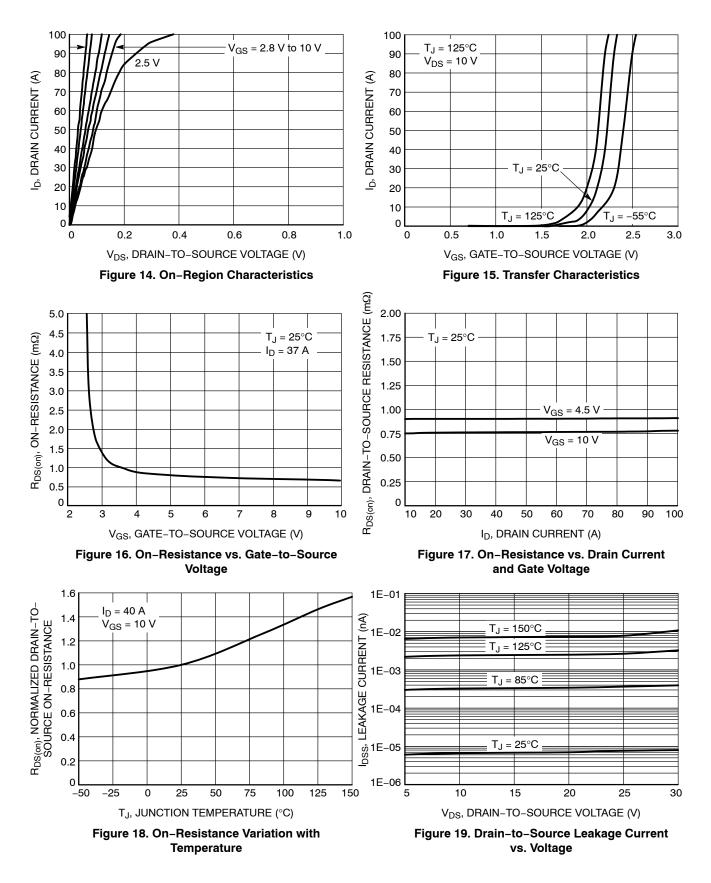
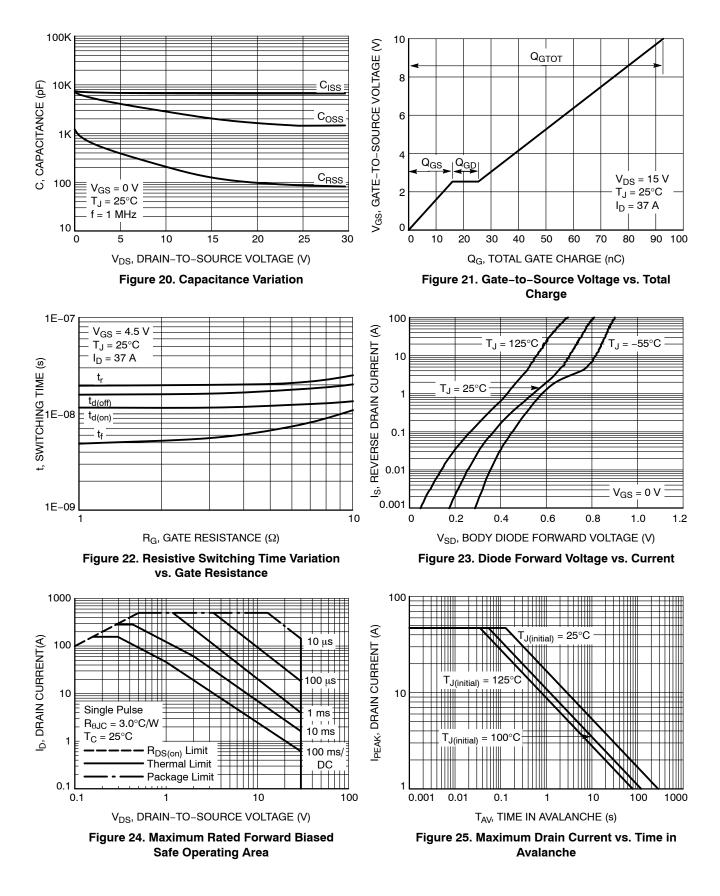
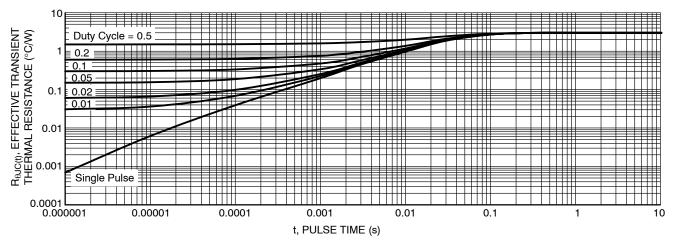





Figure 13. Thermal Response

TYPICAL CHARACTERISTICS – Q2

Figure 26. Transient Thermal Impedance

ORDERING INFORMATION

Device	Package	Shipping
NTMFD001N03P9	DFN8 (Pb–Free)	3000 / Tape & Reel

PKG

TOP VIEW

-D2

6

т Φ

-e1-

-e-

Ģ

4

A

0

8

В

0.10 C

2X

SEE

// 0.10 C

Á

0.10 C

2X

PKG Q.

INDICATOR

PIN #1-/5

(z1)-

PQFN8 5x6, 1.27P CASE 483AR **ISSUE A**

(A3)

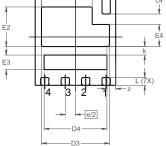
DETAIL A

(SCALE: 2X)

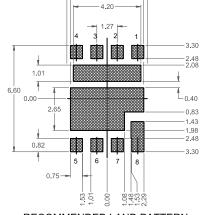
A1

5.00

4.56


DATE 21 MAY 2021

NOTES: UNLESS OTHERWISE SPECIFIED


- A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229, DATED 11/2001.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

DIM	N	ILLIMET	ERS			
	MIN.	NOM.	MAX.			
A	0.70	0.75	0.80			
A1	0.00	-	0.05			
A3	C	.20 REF				
b	().51 BSC				
D	4.90	5.00	5.10			
D2	3.05	3.15	3.25			
D3	4.12	4.22	4.32			
D4	3.80	3.90	4.00			
E	5.90	6.00	6.10			
E2	2.36	2.46	2.56			
E3	0.81	0.91	1.01			
E4	1.27	1.37	1.47			
е	,	1.27 BSC				
e/2	().635 BS	С			
e1		3.81 BSC	;			
k	0.42	0.52	0.62			
L	0.38	0.48	0.58			
L4	1.47 1.57 1.67					
z	0.55 REF					
z1		0.39 REF				

DETAIL A SIDE VIEW 6.60 -b (8X) 0.00 8 . 7 Φ

BOTTOM VIEW

C

SEATING

PLANE

RECOMMENDED LAND PATTERN

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13666G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PQFN8 5x6, 1.27P		PAGE 1 OF 1
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the			

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales