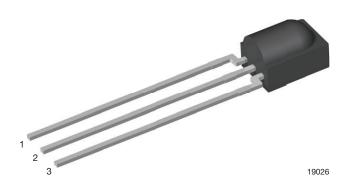


www.vishay.com


Vishay Semiconductors

RoHS

HALOGEN FREE

GREEN (5-2008)

IR Receiver Modules for Remote Control Systems

LINKS TO ADDITIONAL RESOURCES

DESCRIPTION

These products are miniaturized receivers for infrared remote control systems. A PIN diode and a preamplifier are assembled on a lead frame, the epoxy package contains an IR filter. The demodulated output signal can be directly connected to a microprocessor for decoding.

The TSOP583.. series devices are optimized to suppress almost all spurious pulses from Wi-Fi and CFL sources. They may suppress some data signals if continuously transmitted.

The TSOP581.. series devices are provided primarily for compatibility with old AGC1 designs. New designs should prefer the TSOP583.. series containing the newer AGC3. The TSOP585.. series are useful to suppress even extreme levels of optical noise, but may also suppress some data signals. Please check compatibility with your codes.

These components have not been qualified according to automotive specifications.

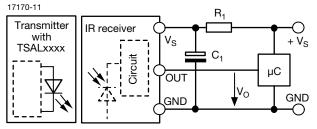
FEATURES

- · Improved immunity against HF and RF noise
- Low supply current
- Photo detector and preamplifier in one package
- · Internal filter for PCM frequency
- · Improved shielding against EMI
- Supply voltage: 2.5 V to 5.5 V
- Suitable for short bursts: burst length ≥ 6 carrier cycles
- Improved immunity against ambient light
- Insensitive to supply voltage ripple and noise
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

MECHANICAL DATA


Pinning for TSOP581.., TSOP583.., TSOP585:

 $1 = OUT, 2 = GND, 3 = V_S$


ORDERING CODE

TSOP58... - 1500 pieces in bags

BLOCK DIAGRAM

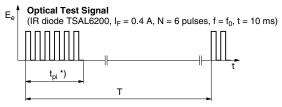
APPLICATION CIRCUIT

 R_1 and C_1 recommended to reduce supply ripple for $V_S < 2.8 \text{ V}$

TSOP581.., TSOP583.., TSOP585..

Vishay Semiconductors

PARTS TABLE					
AGC		LEGACY PRODUCT FOR SHORT BURST REMOTE CONTROLS (AGC1)	NOISY ENVIRONMENTS AND SHORT BURSTS (AGC3)	VERY NOISY ENVIRONMENTS AND SHORT BURSTS (AGC5)	
	30 kHz	TSOP58130	TSOP58330	TSOP58530	
	33 kHz	TSOP58133	TSOP58333	TSOP58533	
Carrier frequency	36 kHz	TSOP58136	TSOP58336 (1)	TSOP58536	
	38 kHz	TSOP58138	TSOP58338 (2)(3)(4)(5)	TSOP58538	
	40 kHz	TSOP58140	TSOP58340	TSOP58540	
	56 kHz	TSOP58156	TSOP58356	TSOP58556	
Package		Minicast			
Pinning		1 = OUT, 2 = GND, 3 = V _S			
Dimensions (mm)		5.0 W x 6.95 H x 4.8 D			
Mounting		Leaded			
Application		Remote control			
Best choice for		(1) MCIR (2) Mitsubishi (3) RECS-80 Code (4) r-map (5) XMP-1, XMP-2			


ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Supply voltage		V _S	-0.3 to +6	V	
Supply current		I _S	5	mA	
Output voltage		V _O	-0.3 to 5.5	V	
Voltage at output to supply		V _S - V _O	-0.3 to (V _S + 0.3)	V	
Output current		I _O	5	mA	
Junction temperature		Tj	100	°C	
Storage temperature range		T _{stg}	-25 to +85	°C	
Operating temperature range		T _{amb}	-25 to +85	°C	
Power consumption	T _{amb} ≤ 85 °C	P _{tot}	10	mW	
Soldering temperature	t ≤ 10 s, 1 mm from case	T _{sd}	260	°C	

Note

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability

ELECTRICAL AND OPTICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage		Vs	2.5	-	5.5	V
0	$V_{S} = 5 \text{ V}, E_{V} = 0$	I _{SD}	0.55	0.7	0.9	mA
Supply current	$E_v = 40 \text{ klx, sunlight}$	I _{SH}	-	0.8	-	mA
Transmission distance	$E_v = 0$, IR diode TSAL6200, $I_F = 50$ mA, test signal see Fig. 1	d	-	18	-	m
Output voltage low	I_{OSL} = 0.5 mA, E_{e} = 0.7 mW/m ² , test signal see Fig. 1	V _{OSL}	-	-	100	mV
Minimum irradiance	Pulse width tolerance: t_{pi} - $5/f_o < t_{po} < t_{pi} + 6/f_o$, test signal see Fig. 1	E _{e min.}	-	0.2	0.4	mW/m²
Maximum irradiance	t_{pi} - 5/f _o < t_{po} < t_{pi} + 6/f _o , test signal see Fig. 1	E _{e max.}	50	-	-	W/m ²
Directivity	Angle of half transmission distance	Ψ1/2	-	± 45	-	deg

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

*) $t_{pi} \ge 6/f_0$ is recommended for optimal function

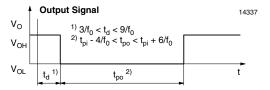


Fig. 1 - Output Active Low

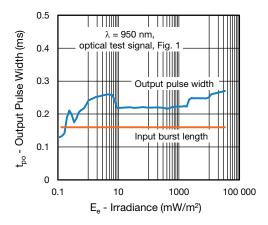


Fig. 2 - Pulse Length and Sensitivity in Dark Ambient

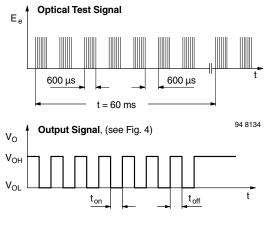


Fig. 3 - Output Function

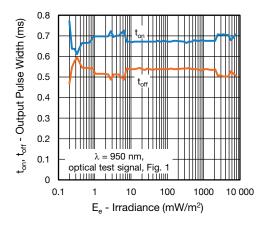


Fig. 4 - Output Pulse Diagram

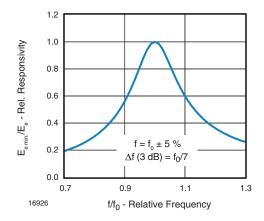


Fig. 5 - Frequency Dependence of Responsivity

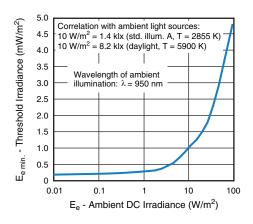


Fig. 6 - Sensitivity in Bright Ambient



Fig. 7 - Sensitivity vs. Supply Voltage Disturbances

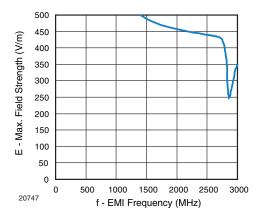


Fig. 8 - Sensitivity vs. Electric Field Disturbances

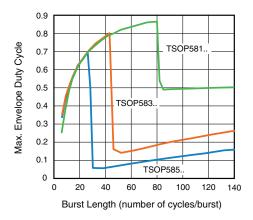


Fig. 9 - Max. Envelope Duty Cycle vs. Burst Length

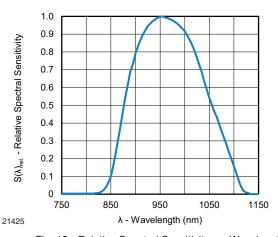


Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

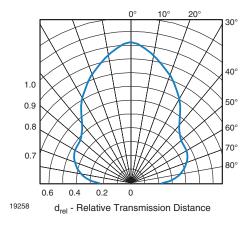


Fig. 11 - Horizontal Directivity

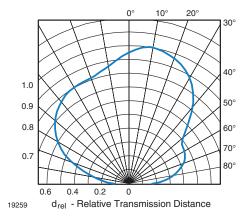


Fig. 12 - Vertical Directivity

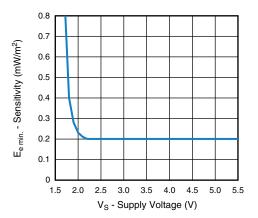


Fig. 13 - Sensitivity vs. Supply Voltage

SUITABLE DATA FORMAT

These products are designed to suppress spurious output pulses due to noise or disturbance signals. Data and disturbance signals can be distinguished by the devices according to carrier frequency, burst length and envelope duty cycle. The data signal should be close to the band-pass center frequency (e.g. 38 kHz) and fulfill the conditions in the table below.

When a data signal is applied to the IR receiver in the presence of a disturbance signal, the sensitivity of the receiver is reduced to insure that no spurious pulses are present at the output. Some examples of disturbance signals which are suppressed are:

- DC light (e.g. from tungsten bulb or sunlight)
- · Continuous signals at any frequency
- Modulated IR signals from common fluorescent lamps (example of noise pattern is shown in Fig. 15 or Fig. 16)
- 2.4 GHz and 5 GHz Wi-Fi

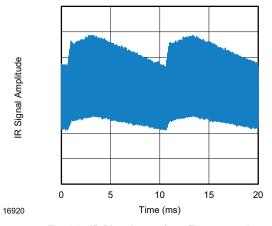
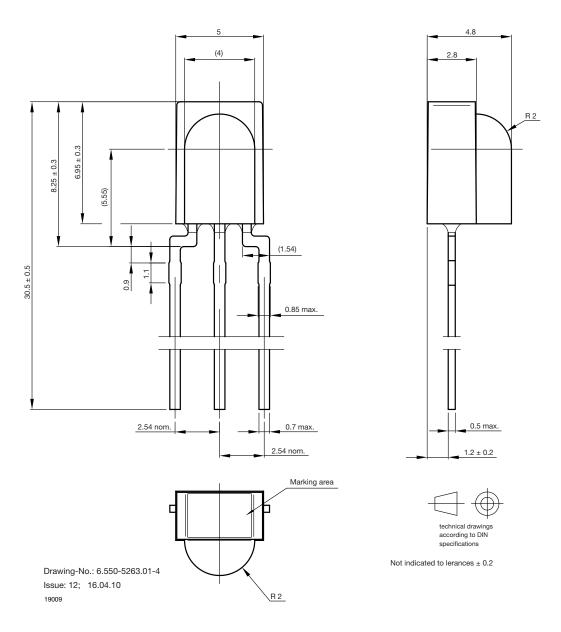


Fig. 14 - IR Disturbance from Fluorescent Lamp With Low Modulation




Fig. 15 - IR Disturbance from Fluorescent Lamp With High Modulation

	TSOP581	TSOP583	TSOP585	
Minimum burst length	6 cycles/burst	6 cycles/burst	6 cycles/burst	
After each burst of length A gap time is required of	6 to 70 cycles ≥ 10 cycles	6 to 35 cycles ≥ 10 cycles	6 to 24 cycles ≥ 10 cycles	
For bursts greater than a minimum gap time in the data stream is needed of	70 cycles > 1.2 x burst length	35 cycles 24 cycl > 6 x burst length > 25 m		
Maximum number of continuous short bursts/second	2000	2000	2000	
MCIR code	Yes	Preferred Yes		
XMP-1, XMP-2 code	Yes	Preferred	Yes	
Suppression of interference from fluorescent lamps	Mild disturbance patterns are suppressed (example: signal pattern of Fig. 15)	e: are suppressed (example: patterns are suppressed,		

Note

• For data formats with long bursts (more than 10 carrier cycles) please see the datasheet for TSOP582.., TSOP584..

PACKAGE DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.