PRODUCT CHANGE NOTIFICATION

March 03, 2017 PCN#030317

Subject: Notification of Change for the LTM4676A µModule Regulator

Dear Sir/Madam:

Please be advised that Linear Technology Corporation has made enhancements to the electrical specifications and manufacturing robustness of the LTM4676A μModule regulator. Minor changes to the substrate layout inside the LTM4676A now reflect best practices for manufacturability. The improvements to the electrical specifications are listed below:

- 1) Increased maximum input voltage
- 2) Reduced power up times
- 3) Improved on-chip EEPROM robustness
- 4) Reduced ADC update period
- 5) Reduced TON_MIN
- 6) Updated I²C PMBus voltage thresholds compatible with bus power supplies as low as 1.8 volts

Table 1- Summary of Improvements to the LTM4676A μModule Regulator

Parameters	New Version	Old Version
Input Voltage Range, V _{IN} (V _{INO,} V _{IN1,} SV _{IN})	4.5V to 26.5V; 28V _{ABSMAX}	4.5V to 17V; 20V _{ABSMAX}
Turn-On Start-Up Time (t _{START})	35ms	60ms
Minimum On-Time (T _{ON(MIN)})	45ns	90ns
NVM Protected by ECC	Yes	No
ADC Telemetry Update Period (t _{CONVERT-*})	90ms	100ms
V _{IL} Logic Thresholds of the Following Pins: SCL, SDA, RUN ₀ , RUN ₁ , GPIO ₀ , GPIO ₁	0.8V	1.4V
V _{IH} Logic Thresholds of the Following Pins: SCL, SDA, RUN ₀ , RUN ₁ , GPIO ₀ , GPIO ₁	1.35V	2.0V

- T_{INIT}, the time required from application of VIN until the part is ready to start sequencing output rails, is reduced from a typical value of 60ms to 35ms. This change is transparent in all applications that require sequencing of multiple power rails using multiple LTC Power System Management (PSM) parts connected in the recommended manner.
- Error Correcting Code (ECC) is added to the internal non-volatile memory to enhance its
 reliability. This change is transparent to the user and requires no modifications to
 programming files or system firmware. As a consequence of adding ECC, the area in the
 EEPROM available for fault log is reduced to 4 events. The read length of 147 bytes
 remains the same but the fifth and sixth events are a repeat of the fourth event if the part
 is reset. However, when reading the fault log from RAM, all 6 events of cyclical data are
 available.
- The ADC update period, T_{CONVERT}, is reduced from 100ms to 90ms, providing more timely telemetry of all monitored parameters.
- TON_MIN is reduced from nominally 90ns to 45ns to support large step down ratios at relatively high switching frequencies.
- I²C thresholds are reduced to support PMBus communication with other ICs using I/O interface supplies as low as 1.8 volts. The V_{IL} and V_{IH} specifications for the SDA, SCL, RUNO, RUN1, GPIO0 and GPIO1 pins are reduced from 1.4V and 2.0V, respectively, to 0.8V and 1.35V. The LTM4676A is fully compliant with PMBus 1.2. For more details, please refer to PMBus 1.2 revisions on the PMBus website http://pmbus.org/Specifications/OlderSpecifications and the SMBus Specification Version 2.0 at http://smbus.org/specs/smbus20.pdf.

Changes to the product datasheet electrical characteristics table are appended to this notice.

The only change to the PWM characteristics is the reduction in TON_MIN. These die-level changes to the module's control IC were qualified by performing module-level characterization over the full operating junction temperature range and through rigorous engineering evaluation across a broad range of application conditions. The revised control IC has successfully completed 1000 hours burn-in.

The new devices can be identified with the PMBus MFR_SPECIAL_ID command code reporting a value of 0x47XY where 'Y' is a hex value of 0x8-0xF and 'X' is a hex value 0xE. The affected part numbers are listed below.

List of affected part numbers:

LTM4676AEY#PBF LTM4676AIY#PBF LTM4676AIY Linear Technology will accept requests for revised samples within 30 days of the date of this notification. If we don't hear back from your company within this 30 day period, we will assume acceptance of this Change Notice by May 03, 2017. Production shipments of product incorporating the improved die will begin no sooner than May 03, 2017.

Should you have any further questions, please feel free to contact me at 408-432-1900 ext. xxx, or by E-mail <u>JASON.HU@LINEAR.COM</u>. If I do not hear from you by May 03, 2017 we will consider this change approved by your company.

Sincerely,

Jason Hu Quality Assurance Engineer

26.5

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4). $T_A = 25^{\circ}C$, $V_{IN} = 12V$, $RUN_n = 5V$, FREQUENCY_SWITCH = 500kHz and $V_{OUT,n}$ commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{IN}	Input DC Voltage	Test Circuit 1 Test Circuit 2; VIN_OFF < VIN_ON = 4.25V	•	5.75 4.5		17 5.75	١
V _{OUT} n	Range of Output Voltage Regulation	V _{OUTO} Differentially Sensed on V _{OSNSO} ⁺ /V _{OSNSO} ⁻ Pin-Pair; V _{OUT1} Differentially Sensed on V _{OSNS1} /SGND Pin-Pair; Commanded by Serial Bus or with Resistors Present at Start-Up on V _{OUTnCFG} and/or V _{TRIMnCFG}	•	0.5 0.5		5.5 5.5	1
V _{OUTn(DC)}	Output Voltage, Total Variation with Line and Load	(Note 5) V _{OUT,n} Low Range (MFR_PWM_MODE _n [1]=1 _b), FREQUENCY_SWITCH = 250kHz Digital Servo Engaged (MFR_PWM_MODE _n [6] = 1 _b) Digital Servo Disengaged (MFR_PWM_MODE _n [6] = 0 _b)	•	0.995 0.985	1.000 1.000	1.005 1.015	,
Input Specification	is		_				
INRUSH(VIN)	Input Inrush Current at Start-Up	Test Circuit 1, $V_{OUT,n}$ =1V, V_{IN} = 12V; No Load Besides Capacitors; TON_RISE_n = 3ms			400		m/
IQ(SVIN)	Input Supply Bias Current	Forced Continuous Mode, MFR_PWM_MODE _n [0] = 1 _b $RUN_n = 5V$, $RUN_{1-n} = 0V$ $Shutdown$, $RUN_0 = RUN_1 = 0V$			40 20		m/ m/
ls(VINn,PSM)	Input Supply Current in Pulse-Skipping Mode Operation	Pulse-Skipping Mode, MFR_PWM_MODE _n [0] = 0_b , $I_{OUTn} = 100$ mA			20		m/
IS(VINn,FCM)	Input Supply Current in Forced-Continuous Mode Operation	Forced Continuous Mode, MFR_PWM_MODE _n [0] = 1_b I_{OUTn} = 100mA I_{OUTn} = 13A			40 1.37		m/
I _{S(VIN<i>n</i>,SHUTDOWN)}	Input Supply Current in Shutdown	Shutdown, RUN _n = $0V$			50		μ
Output Specificatio	ons						
I _{OUTn}	Output Continuous Current Range	(Note 6)		0		13	,
ΔV _{OUT} _n (LINE) V _{OUT} _n	Line Regulation Accuracy	Digital Servo Engaged (MFR_PWM_MODE_n[6] = 1b) Digital Servo Disengaged (MFR_PWM_MODE_n[6] = 0b) SVIN and V_{INn} Electrically Shorted Together and INTV _{CC} Open Circuit; $I_{OUTn} = 0A, 5.75V \le V_{IN} \le PV$, V_{OUT} Low Range (MFR_PWM_MODE_n[1] = 1b) FREQUENCY_SWITCH = 250kHz (Referenced to $12V_{IN}$) (Note 5)	•		0.03 0.03	±0.2	%/\ %/\
ΔV _{OUT} _{n(LOAD)} V _{OUT} _n	Load Regulation Accuracy	Digital Servo Engaged (MFR_PWM_MODE_ n [6] = 1 _b) Digital Servo Disengaged (MFR_PWM_MODE_ n [6] = 0 _b) $0A \le I_{OUT_n} \le 13A$, V_{OUT} Low Range, (MFR_PWM_MODE_ n [1] = 1 _b) FREQUENCY_SWITCH = 250kHz (Note 5)	•		0.03 0.2	0.5	% %
V _{OUT} _{n(AC)}	Output Voltage Ripple				10		mV _{P-F}
f _S (Each Channel)	V _{OUT} , Ripple Frequency	FREQUENCY_SWITCH Set to 500kHz (0xFBE8)	•	462.5	500	537.5	kH
$\Delta V_{OUT,n}(START)$	Turn-On Overshoot	TON_RISE _n = 3ms (Note 12)			8		m\
t _{start}	Turn-On Start-Up Time	Time from V_{IN} Toggling from 0V to 12V to Rising Edge of $\overline{\text{GPIO}}_{R}$. TON_DELAY _R = 0ms, TON_RISE _R = 3ms, MFR_GPIO_PROPAGATE _R = 0x0100, MFR_GPIO_RESPONSE _R = 0x0000	•			70-	ms

4070.1

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4). $T_A = 25^{\circ}C$, $V_{IN} = 12V$, $RUN_n = 5V$, FREQUENCY_SWITCH = 500kHz and $V_{OUT,n}$ commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
t _{DELAY(0ms)}	Turn-On Delay Time	Time from First Rising Edge of RUN_n to Rising Edge of \overline{GPIO}_n . TON_DELAY_n= 0ms, TON_RISE_n= 3ms, MFR_GPIO_PROPAGATE_n= 0x0100, MFR_GPIO_RESPONSE_n= 0x0000. V _{IN} Having Been Established for at Least Z 0ms	•	2.75	3.1	3.5	ms
ΔV _{OUTn(LS)}	Peak Output Voltage Deviation for Dynamic Load Step	Load: 0A to 6.5A and 6.5A to 0A at 6.5A/ μ s, Figure & Circuit, $V_{OUT_n} = 1V$, $V_{IN} = 12V$ (Note 12)	3		50		mV
tsettle	Settling Time for Dynamic Load Step	Load: 0A to 6.5A and 6.5A to 0A at 6.5A/µs, Figure 6 Circuit, V _{OUT,n} = 1V, V _{IN} = 12V (Note 12)			35		μs
IOUT#(OCL_PK)	Output Current Limit, Peak	Cycle-by-Cycle Inductor Peak Current Limit Inception 69			22.5		A
OUT#(OCL_AVG)	Output Current Limit, Time Averaged	Time-Averaged Output Inductor Current Limit Inception Threshold, Commanded by IOUT_OC_FAULT_LIMIT_n (Note 12)		Specif	ication (e I _{O-RB-AC} Output C Accuracy	urrent
Control Section	·						
V _{FBCM0}	Channel 0 Feedback Input Common Mode Range	V _{OSNSO} ⁻ Valid Input Range (Referred to SGND) V _{OSNSO} * Valid Input Range (Referred to SGND)	•	-0.1		0.3 5.7	V V
V _{FBCM1}	Channel 1 Feedback Input Common Mode Range	SGND Valid Input Range (Referred to GND) V _{OSNS1} Valid Input Range (Referred to SGND)	•	-0.3		0.3 5.7	V
V _{OUT-RNGO}	Full-Scale Command Voltage, Range 0	(Notes 7, 15) V_{OUT_n} Commanded to 5.500V, MFR_PWM_MODE _n [1] = 0 _b Resolution LSB Step Size		5.422	12 1.375	5.576	V Bits mV
Vout-RNG1	Full-Scale Command Voltage, Range 1	(Notes 7, 15) V _{OUT n} Commanded to 2.750V, MFR_PWM_MODE _n [1] = 1 _b Resolution LSB Step Size		2.711	12 0.6875	2.788	V Bits mV
R _{VSENSE0} ⁺	V _{OSNS0} ⁺ Impedance to SGND	$0.05V \le V_{VOSNS0}^+ - V_{SGND} \le 5.5V$			41		kΩ
R _{VSENSE1}	V _{OSNS1} Impedance to SGND	0.05V ≤ V _{VOSNS1} − V _{SGND} ≤ 5.5V			37		kΩ
t _{ON(MIN)}	Minimum On-Time	(Note 8)			90		ns
Analog OV/UV (O	vervoltage/Undervoltage) Outp	ut Voltage Supervisor Comparators (VOUT_OV/UV_FAULT_LIMIT and V	0U1	_0V/UV_	WARN_	LIMIT Mo	onitors)
N _{OV/UV_COMP}	Resolution, Output Voltage Supervisors	(Note 15)			8		Bits
Vov-RNG	Output OV Comparator Threshold Detection Range	(Note 15) High Range Scale, MFR_PWM_MODE _n [1] = 0 _b Low Range Scale, MFR_PWM_MODE _n [1] = 1 _b		1 0.5		5.6 2.7	V
V _{OU-STP}	Output OV and UV Comparator Threshold Programming LSB Step Size	(Note 15) High Range Scale, MFR_PWM_MODE _n [1] = 0 _b Low Range Scale, MFR_PWM_MODE _n [1] = 1 _b			22 11		mV mV

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4). $T_A = 25^{\circ}C$, $V_{IN} = 12V$, $RUN_n = 5V$, FREQUENCY_SWITCH = 500kHz and $V_{OUT,n}$ commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

				_	ን	
SYMBOL	PARAMETER	CONDITIONS		MIN TYP MAX	UNITS	
tconvert-vo-rb	Output Voltage Readback Update Rate	MFR_ADC_CONTROL=0x00 (Notes 9, 15) MFR_ADC_CONTROL=0x0D (Notes 9, 15) MFR_ADC_CONTROL=0x05 or 0x09 (Notes 9, 15)		-100 27 8	ms ms ms	
Input Voltage (SV _I	N) Readback (READ_VIN)					
N _{SVIN-RB}	Input Voltage Readback Resolution and LSB Step Size	(Notes 10, 15)		10 15.625	Bits mV	
SV _{IN-F/S}	Input Voltage Full-Scale Digitizable Range	(Notes 11, 15)		38.91	V	
SV _{IN-RB-ACC}	Input Voltage Readback Accuracy	READ_VIN, $4.5V \le SV_{IN} \le \frac{17V}{26.5V}$	•	Within ±2% of Read	ling 690	
tconvert-svin-rb	Input Voltage Readback Update Rate	MFR_ADC_CONTROL=0x00 (Notes 9, 15) MFR_ADC_CONTROL=0x01 (Notes 9, 15)		100 8	ms ms	
Channels 0 and 1 0	utput Current (READ_IOUT _n)	, Duty Cycle (READ_DUTY_CYCLE _n), and Computed Input Current (MFR	RE	AD_IIN#) Readback		
N _{IO-RB}	Output Current Readback Resolution and LSB Step Size	(Notes 10, 12)		10 15.6	Bits mA	
l _{O-F/S} , l _{I-F/S}	Output Current Full-Scale Digitizable Range and Input Current Range of Calculation	(Note 12)		±40	A	
IO-RB-ACC	Output Current, Readback Accuracy	$\label{eq:real_loss} \begin{split} READ_IOUT_n, & \text{Channels 0 and 1, 0} \leq I_{OUT,n} \leq 10A, \\ & \text{Forced-Continuous Mode, MFR_PWM_MODE}_n[1:0] = 10_b \end{split}$	•	Within 250mA of Rea	ding	
I _{O-RB} (13A)	Full Load Output Current Readback	$I_{OUT,n}$ = 13A (Note 12). See Histograms in Typical Performance Characteristics		13.1	A	
N _{II-RB}	Computed Input Current, Readback Resolution and LSB Step Size	(Notes 10, 12)		10 1.95	Bits mA	
I _{I-RB-ACC}	Computed Input Current, Readback Accuracy, Neglecting I _{SVIN}	MFR_READ_IIN _n , Channels 0 and 1, $0 \le I_{OUT,n} \le 10A$, Forced-Continuous Mode, MFR_PWM_MODE _n [1:0] = 10_b , MFR_IIN_OFFSET _n = 0 mA	•	Within 150mA of Reading		
tconvert-10-rb	Output Current Readback Update Rate	MFR_ADC_CONTROL=0x00 (Notes 9, 15) MFR_ADC_CONTROL=0x0D (Notes 9, 15) MFR_ADC_CONTROL=0x06 or 0x0A (Notes 9, 15)		106 27 8	ms ms ms	
tconvert-II-rb	Computed Input Current, Readback Update Rate	MFR_ADC_CONTROL=0x00 (Notes 9, 15)		190	ms	
N _{DUTY-RB}	Resolution, Duty Cycle Readback	(Notes 10, 15)		10	Bits	
D _{RB-ACC}	Duty Cycle TUE	READ_DUTY_CYCLE _n , 16.3% Duty Cycle (Note 15)		±3	%	
tconvert-duty-rb	Duty Cycle Readback Update Rate	MFR_ADC_CONTROL=0x00 (Notes 9, 15)		190	ms	
Temperature Read and READ_TEMPE		el 1, and Controller (Respectively: READ_TEMPERATURE_1 ₀ , READ_	TEN	IPERATURE_1 ₁ ,		
T _{RES-RB}	Temperature Readback Resolution	Channel 0, Channel 1, and Controller (Note 15)		0.0625	°C	
T _{RB-CH-ACC(72mV)}	Channel Temperature TUE, Switching Action Off	Channels 0 and 1, PWM Inactive, RUN _n = 0V, $\Delta V_{TSNS,na} = 72 \text{mV}$	•	Within ±3°C of Read	ling	
	•		_			

4676af

LTM4676A

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4). $T_A = 25^{\circ}C$, $V_{IN} = 12V$, $RUN_n = 5V$, FREQUENCY_SWITCH = 500kHz and $V_{OUT}n$ commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
T _{RB-CH-ACC(ON)}	Channel Temperature TUE, Switching Action On	READ_TEMPERATURE_1 _n , Channels 0 and 1, PWM Active, RUN _n = 5V (Note 12)		Within ±3°C of Reading			
T _{RB} -CTRL-ACC(ON)	Control IC Die Temperature TUE, Switching Action On	READ_TEMPERATURE_2, PWM Active, RUN ₀ = RUN ₁ = 5V (Note 12)		Within ±1°C of Readin			
tconvert-temp-rb	Temperature Readback Update Rate	MFR_ADC_CONTROL=0x00 (Notes 9, 15) MFR_ADC_CONTROL=0x06 or 0x0A (Notes 9, 15)					ms ms
INTV _{CC} Regulator	•	~~~					
VINTVCC	Internal V _{CC} Voltage No Load	6V ≤ V _{IN} ≤ 17V 26.5∨ 3		4.8	5	5.2	V
ΔVINTVCC(LOAD) VINTVCC	INTV _{CC} Load Regulation	OmA ≤ I _{INTVCC} ≤ 50mA			0.5	±2	%
V _{DD33} Regulator							
V _{VDD33}	Internal V _{DD33} Voltage		П	3.2	3.3	3.4	V
ILIM(VDD33)	V _{DD33} Current Limit	V _{DD33} Electrically Short-Circuited to GND	\forall		70		mA
V _{VDD33_0V}	V _{DD33} Overvoltage Threshold	(Note 15)	\parallel		3.5		V
V _{VDD33_UV}	V _{DD33} Undervoltage Threshold	(Note 15)			3.1		V
V _{DD25} Regulator							
V _{VDD25}	Internal V _{DD25} Voltage		П		2.5		V
I _{LIM(VDD25)}	V _{DD25} Current Limit	V _{DD25} Electrically Short-Circuited to GND	П		50		mA
Oscillator and Pha	ase-Locked Loop (PLL)						
fosc	Oscillator Frequency Accuracy	FREQUENCY_SWITCH = 500kHz (0xFBE8) 250kHz ≤ FREQUENCY_SWITCH ≤ 1MHz (Note 15)	•			±7.5 ±7.5	% %
fsync	PLL SYNC Capture Range	FREQUENCY_SWITCH Set to Frequency Slave Mode (0x0000); MFR_CONFIG_ALL[4]=1b; SYNC Driven by External Clock; 3.3V _{OUT}	•	225		1100	kHz
V _{TH,SYNC}	SYNC Input Threshold	V _{SYNC} Rising (Note 15) V _{SYNC} Falling (Note 15)			1.5 1		V V
V _{OL,SYNC}	SYNC Low Output Voltage	I _{SYNC} = 3mA	•		0.3	0.4	V
ISYNC	SYNC Leakage Current in Frequency Slave Mode	$0V \le V_{SYNC} \le 3.6V$ MFR_CONFIG_ALL[4]=1 _b	•			±5	μА
esync-e0	SYNC-to-Channel 0 Phase Relationship, Lag from Falling Edge of Sync to Rising Edge of Top MOSFET (MT0) Gate				0 60 90 120		Deg Deg Deg Deg
θ _{SYNC} -θ1	SYNC-to-Channel 1 Phase Relationship, Lag from Falling Edge of Sync to Rising Edge of Top MOSFET (MT1) Gate	(Note 15) MFR_PWM_CONFIG[2:0] = 011 _b MFR_PWM_CONFIG[2:0] = 000 _b MFR_PWM_CONFIG[2:0] = 010 _b , 10X _b MFR_PWM_CONFIG[2:0] = 001 _b MFR_PWM_CONFIG[2:0] = 110 _b			120 180 240 270 300		Deg Deg Deg Deg Deg

4676af

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4). $T_A = 25^{\circ}C$, $V_{IN} = 12V$, $RUN_n = 5V$, FREQUENCY_SWITCH = 500kHz and $V_{OUT}n$ commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
EEPROM Charac	cteristics						
Endurance	(Note 13)	0°C ≤ T _J ≤ 85°C During EEPROM Write Operations (Note 3)	•	10,000			Cycles
Retention	(Note 13)	$T_J < T_{J(MAX)},$ with Most Recent EEPROM Write Operation Having Occurred at $0^{\circ}C \le T_J \le 85^{\circ}C$ (Note 3)	•	10			Years
Mass_Write	Mass Write Operation Time	Execution of STORE_USER_ALL Command, $0^{\circ}C \le T_{J} \le 85^{\circ}C$ (ATE-Tested at $T_{J} = 25^{\circ}C$) (Notes 3, 13)			440	4100	ms
Digital I/Os		کیٹیں-		\neg			
V _{IH}	Input High Threshold Voltage	SCL, SDA, RUN _D , GPIO _n (Note 15) 1.35 SHARE_CLK, WP (Note 15)		2.0 1.8			V V
V _{IL}	Input Low Threshold Voltage	SCL, SDA, RUN _n , GPIO _n (Note 15) SHARE_CLK, WP (Note 15) 0.8				1.4 0.6	V V
V _{HYST}	Input Hysteresis	SCL, SDA (Note 15)			80		mV
V _{OL}	Output Low Voltage	SCL, SDA, ALERT, RUN _D GPIO _D SHARE_CLK: I _{SINK} = 3mA	•		0.3	0.4	V
loL	Input Leakage Current	SDA, SCL, $\overline{\text{ALERT}}$, RUN_n : $0V \le V_{PIN} \le 5.5V$ $\overline{\text{GPIO}}_n$ and SHARE_CLK : $0V \le V_{PIN} \le 3.6V$	•			±5 ±2	µА ДЦ
t _{FILTER}	Input Digital Filtering	RUN _n (Note 15) GPIO _n (Note 15)			10 3		µs µs
CPIN	Input Capacitance	SCL, SDA, RUN, GPIO, SHARE_CLK, WP (Note 15)				10	pF
PMBus Interface	e Timing Characteristics						
fsmb	Serial Bus Operating Frequency	(Note 15)		10		400	kHz
t _{BUF}	Bus Free Time Between Stop and Start	(Note 15)		1.3			μs
t _{HD,STA}	Hold Time After Repeated Start Condition	Time Period After Which First Clock Is Generated (Note 15)		0.6			μs
t _{SU,STA}	Repeated Start Condition Setup Time	(Note 15)		0.6			μs
t _{SU,STO}	Stop Condition Setup Time	(Note 15)		0.6			μs
t _{HD,DAT}	Data Hold Time	Receiving Data (Note 15) Transmitting Data (Note 15)		0 0.3		0.9	µs µs
t _{SU,DAT}	Data Setup Time	Receiving Data (Note 15)		0.1			μs
t _{timeout_smb}	Stuck PMBus Timer Timeout	Measured from the Last PMBus Start Event: Block Reads, MFR_CONFIG_ALL[3]=0 _b (Note 15) Non-Block Reads, MFR_CONFIG_ALL[3]=0 _b (Note 15) MFR_CONFIG_ALL[3]=1 _b (Note 15)			150 32 250		ms ms ms
t _{LOW}	Serial Clock Low Period	(Note 15)		1.3		10000	μs
thigh	Serial Clock High Period	(Note 15)		0.6			μs

4676af