










## MSP430FR2111, MSP430FR2110, MSP430FR2100, MSP430FR2000

SLASE78E - AUGUST 2016 - REVISED JUNE 2021

# MSP430FR21xx, MSP430FR2000 Mixed-Signal Microcontrollers

#### 1 Features

- Embedded microcontroller
  - 16-bit RISC architecture up to 16 MHz
  - Wide supply voltage range from 3.6 V down to 1.8 V (minimum supply voltage is restricted by SVS levels, see the SVS specifications)
- Optimized low-power modes (at 3 V)
  - Active mode: 120 μA/MHz
  - Standby
    - LPM3.5 with VLO: 1 μA
    - Real-time clock (RTC) counter (LPM3.5 with 32768-Hz crystal): 1 μA
  - Shutdown (LPM4.5): 34 nA without SVS
- High-performance analog
  - 8-channel 10-bit analog-to-digital converter
    - Integrated temperature sensor
    - Internal 1.5-V reference
    - Sample-and-hold 200 ksps
  - Enhanced comparator (eCOMP)
    - Integrated 6-bit DAC as reference voltage
    - Programmable hysteresis
    - Configurable high-power and low-power modes
- Low-power ferroelectric RAM (FRAM)
  - Up to 3.75KB of nonvolatile memory
  - Built-in error correction code (ECC)
  - Configurable write protection
  - Unified memory of program, constants, and storage
  - 10<sup>15</sup> write cycle endurance
  - Radiation resistant and nonmagnetic
- Intelligent digital peripherals
  - One 16-bit timer with three capture/compare registers (Timer B3)
  - One 16-bit counter-only RTC counter
  - 16-bit cyclic redundancy checker (CRC)
- · Enhanced serial communications
  - Enhanced USCI A (eUSCI A) supports UART, IrDA, and SPI
- Clock system (CS)
  - On-chip 32-kHz RC oscillator (REFO)

- On-chip 16-MHz digitally controlled oscillator (DCO) with frequency-locked loop (FLL)
  - ±1% accuracy with on-chip reference at room temperature
- On-chip very-low-frequency 10-kHz oscillator (VLO)
- On-chip high-frequency modulation oscillator (MODOSC)
- External 32-kHz crystal oscillator (LFXT)
- Programmable MCLK prescalar of 1 to 128
- SMCLK derived from MCLK with programmable prescalar of 1, 2, 4, or 8
- General input/output and pin functionality
  - 12 I/Os on 16-pin package
  - 8 interrupt pins (4 pins of P1 and 4 pins of P2) can wake MCU from LPMs
  - All I/Os are capacitive touch I/Os
- Development tools and software (also see Tools and Software)
  - Free professional development environments
  - Development kits
    - MSP-TS430PW20
    - MSP-FET430U20
    - MSP-EXP430FR2311
    - MSP-EXP430FR4133
- Family members (also see Device Comparison)
  - MSP430FR2111: 3.75KB of program FRAM, 1KB of RAM
  - MSP430FR2110: 2KB of program FRAM, 1KB of RAM
  - MSP430FR2100: 1KB of program FRAM, 512 bytes of RAM
  - MSP430FR2000: 0.5KB of program FRAM, 512 bytes of RAM
- Package options
  - 16-pin: TSSOP (PW16)
  - 24-pin: VQFN (RLL)

# 2 Applications

- Appliance battery packs
- Smoke and heat detectors
- Door and window sensors
- Lighting sensors
- Power monitoring
- Personal care electronics
- Portable health and fitness devices

## 3 Description

MSP430FR2000 and MSP430FR21xx devices are part of the MSP430<sup>™</sup> microcontroller (MCU) value line sensing portfolio. This ultra-low-power, low-cost MCU family offers memory sizes from 0.5KB to 4KB of FRAM unified memory with several package options including a small 3-mm×3-mm VQFN package. The architecture, FRAM, and integrated peripherals, combined with extensive low-power modes, are optimized to achieve extended battery life in portable, battery-powered sensing applications. MSP430FR2000 and MSP430FR21xx devices offer a migration path for 8-bit designs to gain additional features and functionality from peripheral integration and the data-logging and low-power benefits of FRAM. Additionally, existing designs using MSP430G2x MCUs can migrate to the MSP430FR2000 and MSP430F21xx family to increase performance and get the benefits of FRAM.

The MSP430FR2000 and MSP430FR21xx MCUs feature a powerful 16-bit RISC CPU, 16-bit registers, and a constant generator that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) also allows the device to wake up from low-power modes to active mode typically in less than 10 µs. The feature set of this MCU meets the needs of applications ranging from appliance battery packs and battery monitoring to smoke detectors and fitness accessories.

The MSP ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatile behavior of flash.

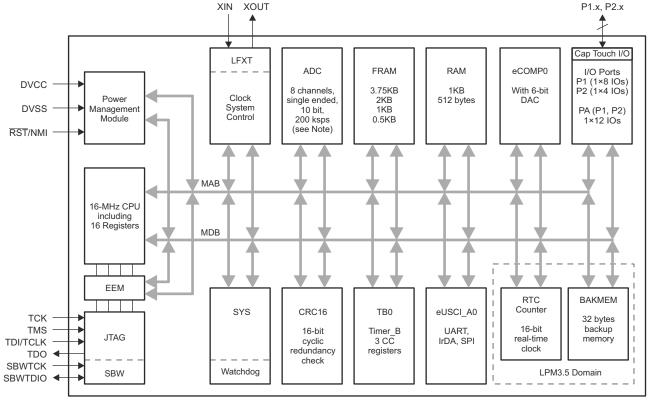
MSP430FR2000 and MSP430FR21x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP-EXP430FR2311 and MSP430FR4133 LaunchPad™ development kit and the MSP-TS430PW20 20-pin target development board. TI also provides free MSP430Ware™ software, which is available as a component of Code Composer Studio™ IDE desktop and cloud versions within TI Resource Explorer. MSP430 MCUs are also supported by extensive online collateral, such as our housekeeping example series, MSP Academy training, and online support through the TI E2E™ support forums.

For complete module descriptions, see the MSP430FR4xx and MSP430FR2xx Family User's Guide.

#### **Device Information**

| PART NUMBER <sup>(1)</sup> | PACKAGE               | BODY SIZE(2)       |  |  |
|----------------------------|-----------------------|--------------------|--|--|
| MSP430FR2111IPW16          |                       |                    |  |  |
| MSP430FR2110IPW16          | TSSOP (16)  VQFN (24) | 5 mm × 4.4 mm      |  |  |
| MSP430FR2100IPW16          |                       |                    |  |  |
| MSP430FR2000IPW16          |                       |                    |  |  |
| MSP430FR2111IRLL           |                       | 3 mm × 3 mm        |  |  |
| MSP430FR2110IRLL           |                       |                    |  |  |
| MSP430FR2100IRLL           |                       | 3 11111 ^ 3 111111 |  |  |
| MSP430FR2000IRLL           |                       |                    |  |  |

- (1) For the most current part, package, and ordering information, see the Package Option Addendum in Section 12, or see the TI website at www.ti.com.
- (2) The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 12.


#### **CAUTION**

System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical overstress or disturbing of data or code memory. See MSP430™ System-Level ESD Considerations for more information.



## 4 Functional Block Diagram

Figure 4-1 shows the functional block diagram.



NOTE: The ADC is not available on the MSP430FR2000 device.

Figure 4-1. Functional Block Diagram

- The device has one main power pair of DVCC and DVSS that supplies both digital and analog modules.
   Recommended bypass and decoupling capacitors are 4.7 μF to 10 μF and 0.1 μF, respectively, with ±5% accuracy.
- Four pins of P1 and four pins of P2 feature the pin-interrupt function and can wake the MCU from all LPMs, including LPM4, LPM3.5, and LPM4.5.
- The Timer\_B3 has three capture/compare registers. Only CCR1 and CCR2 are externally connected. CCR0 registers can be used only for internal period timing and interrupt generation.
- In LPM3.5, the RTC counter and backup memory can be functional while the rest of peripherals are off.
- All general-purpose I/Os can be configured as Capacitive Touch I/Os.



## **Table of Contents**

| 1 Footures                                                    | 9 Detailed Description                 |
|---------------------------------------------------------------|----------------------------------------|
| 1 Features                                                    | 9 Detailed Description<br>9.1 Overview |
| 2 Applications                                                | * *                                    |
| 3 Description 2                                               | 9.2 CPU Madaa                          |
| 4 Functional Block Diagram                                    | 9.3 Operating Modes.                   |
| 5 Revision History                                            | 9.4 Interrupt Vector A                 |
| 6 Device Comparison                                           | 9.5 Memory Organiza                    |
| 6.1 Related Products                                          | 9.6 Bootloader (BSL).                  |
| 7 Terminal Configuration and Functions8                       | 9.7 JTAG Standard In                   |
| 7.1 Pin Diagrams8                                             | 9.8 Spy-Bi-Wire Interf                 |
| 7.2 Pin Attributes9                                           | 9.9 FRAM                               |
| 7.3 Signal Descriptions11                                     | 9.10 Memory Protecti                   |
| 7.4 Pin Multiplexing13                                        | 9.11 Peripherals                       |
| 7.5 Connection of Unused Pins                                 | 9.12 Device Descripto                  |
| 7.6 Buffer Type13                                             | 9.13 Identification                    |
| 8 Specifications14                                            | 10 Applications, Imple                 |
| 8.1 Absolute Maximum Ratings14                                | 10.1 Device Connecti                   |
| 8.2 ESD Ratings14                                             | 10.2 Peripheral- and I                 |
| 8.3 Recommended Operating Conditions14                        | Information                            |
| 8.4 Active Mode Supply Current Into V <sub>CC</sub> Excluding | 10.3 Typical Application               |
| External Current15                                            | 11 Device and Docume                   |
| 8.5 Active Mode Supply Current Per MHz15                      | 11.1 Getting Started                   |
| 8.6 Low-Power Mode LPM0 Supply Currents Into                  | 11.2 Device Nomencl                    |
| V <sub>CC</sub> Excluding External Current15                  | 11.3 Tools and Softwa                  |
| 8.7 Low-Power Mode LPM3, LPM4 Supply Currents                 | 11.4 Documentation S                   |
| (Into V <sub>CC</sub> ) Excluding External Current16          | 11.5 Support Resource                  |
| 8.8 Low-Power Mode LPMx.5 Supply Currents (Into               | 11.6 Trademarks                        |
| V <sub>CC</sub> ) Excluding External Current17                | 11.7 Electrostatic Disc                |
| 8.9 Typical Characteristics – LPM Supply Currents18           | 11.8 Glossary                          |
| 8.10 Current Consumption Per Module                           | 12 Mechanical, Packag                  |
| 8.11 Thermal Resistance Characteristics                       | Information                            |
| 8.12 Timing and Switching Characteristics                     |                                        |

| 9 Detailed Description                         | 38   |
|------------------------------------------------|------|
| 9.1 Overview                                   | 38   |
| 9.2 CPU                                        | 38   |
| 9.3 Operating Modes                            | 38   |
| 9.4 Interrupt Vector Addresses                 | 40   |
| 9.5 Memory Organization                        | 41   |
| 9.6 Bootloader (BSL)                           |      |
| 9.7 JTAG Standard Interface                    | 41   |
| 9.8 Spy-Bi-Wire Interface (SBW)                |      |
| 9.9 FRAM                                       | 42   |
| 9.10 Memory Protection                         | 42   |
| 9.11 Peripherals                               |      |
| 9.12 Device Descriptors (TLV)                  | 60   |
| 9.13 Identification                            |      |
| 10 Applications, Implementation, and Layout    |      |
| 10.1 Device Connection and Layout Fundamental  | s 62 |
| 10.2 Peripheral- and Interface-Specific Design |      |
| Information                                    |      |
| 10.3 Typical Applications                      |      |
| 11 Device and Documentation Support            |      |
| 11.1 Getting Started                           | 67   |
| 11.2 Device Nomenclature                       |      |
| 11.3 Tools and Software                        |      |
| 11.4 Documentation Support                     |      |
| 11.5 Support Resources                         |      |
| 11.6 Trademarks                                |      |
| 11.7 Electrostatic Discharge Caution           | 71   |
|                                                |      |
| 11.8 Glossary                                  |      |
|                                                | 71   |



# **5 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from revision D to revision E

| <u>U</u> | ranges from December 11, 2019 to June 2, 2021 Page                                                                            |
|----------|-------------------------------------------------------------------------------------------------------------------------------|
| •        | Updated the numbering format for tables, figures, and cross references throughout the document1                               |
| •        | Updated Section 3, Description                                                                                                |
| •        | Updated Section 6.1, Related Products                                                                                         |
| •        | Added a note about the specifications for the 1.5-V internal reference in Section 8.12.5, VREF+ Built-in                      |
|          | Reference                                                                                                                     |
| •        | Added inverter to Schmitt-trigger enable in Figure 9-156                                                                      |
| _        |                                                                                                                               |
| CI       | nanges from revision C to revision D                                                                                          |
|          | nanges from August 30, 2018 to December 10, 2019 Page                                                                         |
|          | <u> </u>                                                                                                                      |
| •        | Changed the note that begins "Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset" in                         |
|          | Section 8.3, Recommended Operating Conditions                                                                                 |
| •        | Added the note that begins "TI recommends that power to the DVCC pin must not exceed the limits" in                           |
|          | Section 8.3, Recommended Operating Conditions                                                                                 |
| •        | Added the note that begins "A capacitor tolerance of ±20% or better is required" in Section 8.3,                              |
|          | Recommended Operating Conditions                                                                                              |
| •        | Added the note "See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing" to                 |
|          | Section 8.12.3.1, XT1 Crystal Oscillator (Low Frequency)                                                                      |
| •        | Changed the note that begins "Requires external capacitors at both terminals" in Section 8.12.3.1, XT1                        |
|          | Crystal Oscillator (Low Frequency)                                                                                            |
| •        | Added the t <sub>(int)</sub> parameter in Section 8.12.4.1, Digital Inputs                                                    |
| •        | Changed the parameter symbol from R <sub>I</sub> to R <sub>I,MUX</sub> in Section 8.12.8.1, ADC, Power Supply and Input Range |
|          | Conditions                                                                                                                    |
| •        | Corrected the test conditions for the R <sub>I,MUX</sub> parameter in Section 8.12.8.1, ADC, Power Supply and Input           |
|          | Range Conditions                                                                                                              |
| •        | Added R <sub>I,Misc</sub> TYP value of 34 kΩ in Section 8.12.8.1, ADC, Power Supply and Input Range Conditions 32             |
| •        | Added t <sub>CONVERT</sub> for external ADCCLK source in Section 8.12.8.2, <i>ADC</i> , 10-Bit Timing Parameters32            |
| •        | Added formula for R <sub>I</sub> in Section 8.12.8.2, ADC, 10-Bit Timing Parameters                                           |
| •        | Added the note that begins " $t_{Sample} = ln(2^{n+1}) \times \tau$ " in Section 8.12.8.2, ADC, 10-Bit Timing Parameters32    |
| •        | Removed the description of "±3°C" in table note that starts "The device descriptor structure" of Section                      |
|          | 8.12.8.3, ADC, 10-Bit Linearity Parameters                                                                                    |
| •        | Corrected bitfield from IRDSEL to IRDSSEL in Section 9.11.8, Timers (Timer0_B3), in the description that                      |
|          | starts "The interconnection of Timer0_B3 "                                                                                    |
| •        | Corrected the ADCINCHx column heading in Table 9-14, ADC Channel Connections                                                  |
| •        | Added P1SELC information in Table 9-26, Port P1, P2 Registers (Base Address: 0200h)51                                         |
| •        | Added P2SELC information in Table 9-26, Port P1, P2 Registers (Base Address: 0200h)51                                         |
|          |                                                                                                                               |
| CI       | nanges from revision B to revision C                                                                                          |
| CI       | nanges from July 14, 2017 to August 29, 2018 Page                                                                             |
| •        | Added note to V <sub>SVSH-</sub> and V <sub>SVSH+</sub> parameters in Section 8.12.1.1, PMM, SVS and BOR20                    |
| •        | Added the note "Controlled by the RTCCKSEL bit in the SYSCFG2 register" on Table 9-7, <i>Clock Distribution</i> . 43          |
| •        | Changed 1 µF capacitor to 10 µF in Figure 10-1, Power Supply Decoupling62                                                     |
| •        | Updated text and figure in Section 11.2, Device Nomenclature                                                                  |
| _        |                                                                                                                               |



Changes from revision A to revision B

| CI | nanges from August 13, 2016 to July 13, 2017 Pag                                                            | је         |
|----|-------------------------------------------------------------------------------------------------------------|------------|
| •  | Added MSP430FR2100 and MSP430FR2000 devices.                                                                | 1          |
| •  | Rearranged items in Section 1, Features                                                                     | 1          |
| •  | Corrected the package family for the RLL package throughout document (changed QFN to VQFN)                  | .1         |
| •  | Upated list of applications in Section 2                                                                    |            |
| •  | Updated Section 3, Description                                                                              |            |
| •  | Corrected number of bits in port P1 in Figure 4-1, Functional Block Diagram                                 | .3         |
| •  | Updated the note that starts "This is the remapped functionality controlled by the TBRMP bit" in Table 7-2, |            |
|    | Signal Descriptions                                                                                         |            |
| •  | Updated the note that starts "This is the remapped functionality controlled by the USCIARMP bit" in Table   |            |
|    | 7-2, Signal Descriptions                                                                                    | 11         |
| •  | Removed former Figure 5-2, Low-Power Mode 3 Supply Current vs Temperature                                   | 18         |
| •  | Updated notes on Section 8.11, Thermal Resistance Characteristics                                           | 19         |
| •  | Changed the entry for eUSCI_A in the LPM3 column from Off to Optional in Table 9-1, Operating Modes3        | 38         |
| •  | Updated the note that starts "This is the remapped functionality controlled by the USCIARMP bit" in Table   |            |
|    | 9-11, eUSCI Pin Configurations                                                                              | 16         |
| •  | Updated the note that starts "This is the remapped functionality controlled by the TBRMP bit" in Table 9-12 | <u>)</u> , |
|    | Timer0 B3 Signal Connections4                                                                               |            |
| •  | Removed SYSBERRIV register (not supported) from Table 9-21, SYS Registers                                   | 51         |
| •  | Updated descriptions of "Design Kits and Evaluation Modules" in Section 11.3, Tools and Software            | 86         |
| CI | nanges from initial release to revision A                                                                   |            |
| CI | nanges from August 11, 2016 to August 12, 2016 Pag                                                          | је         |
| •  | Changed document status from PRODUCT PREVIEW to PRODUCTION DATA                                             | .1         |



## **6 Device Comparison**

Table 6-1 summarizes the features of the available family members.

Table 6-1. Device Comparison

| Table of the botton of the particular |                          |                 |                        |         |                        |        |     |               |  |  |  |
|---------------------------------------|--------------------------|-----------------|------------------------|---------|------------------------|--------|-----|---------------|--|--|--|
| <b>DEVICE</b> (1) (2)                 | PROGRAM FRAM<br>(Kbytes) | SRAM<br>(Bytes) | ТВ0                    | eUSCI_A | 10-BIT ADC<br>CHANNELS | eCOMP0 | I/O | PACKAGE       |  |  |  |
| MSP430FR2111IPW16                     | 3.75                     | 1024            | 3 × CCR <sup>(3)</sup> | 1       | 8                      | 1      | 12  | 16 PW (TSSOP) |  |  |  |
| MSP430FR2110IPW16                     | 2                        | 1024            | 3 × CCR <sup>(3)</sup> | 1       | 8                      | 1      | 12  | 16 PW (TSSOP) |  |  |  |
| MSP430FR2100IPW16                     | 1                        | 512             | 3 × CCR <sup>(3)</sup> | 1       | 8                      | 1      | 12  | 16 PW (TSSOP) |  |  |  |
| MSP430FR2000IPW16                     | 0.5                      | 512             | 3 × CCR <sup>(3)</sup> | 1       | _                      | 1      | 12  | 16 PW (TSSOP) |  |  |  |
| MSP430FR2111IRLL                      | 3.75                     | 1024            | 3 × CCR <sup>(3)</sup> | 1       | 8                      | 1      | 12  | 24 RLL (VQFN) |  |  |  |
| MSP430FR2110IRLL                      | 2                        | 1024            | 3 × CCR <sup>(3)</sup> | 1       | 8                      | 1      | 12  | 24 RLL (VQFN) |  |  |  |
| MSP430FR2100IRLL                      | 1                        | 512             | 3 × CCR <sup>(3)</sup> | 1       | 8                      | 1      | 12  | 24 RLL (VQFN) |  |  |  |
| MSP430FR2000IRLL                      | 0.5                      | 512             | 3 × CCR <sup>(3)</sup> | 1       | -                      | 1      | 12  | 24 RLL (VQFN) |  |  |  |

- (1) For the most current device, package, and ordering information, see the Package Option Addendum in Section 12, or see the TI website at www.ti.com.
- (2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/
- (3) A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM outputs.

#### **6.1 Related Products**

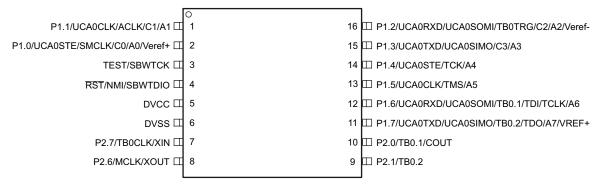
For information about other devices in this family of products or related products, see the following links.

#### Overview of Microcontrollers (MCUs) & processors

Our diverse portfolio of 16- and 32-bit microcontrollers (MCUs) with real-time control capabilities and high-precision analog integration are optimized for industrial and automotive applications. Backed by decades of expertise and innovative hardware and software solutions, our MCUs can meet the needs of any design and budget.

#### Overview of MSP430™ microcontrollers (MCUs)

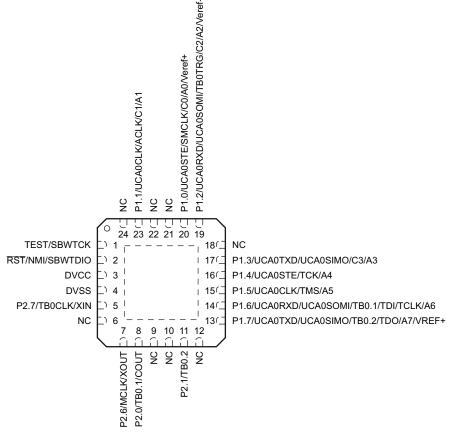
Our 16-bit MSP430™ microcontrollers (MCUs) provide affordable solutions for all applications. Our leadership in integrated precision analog enables designers to enhance system performance and lower system costs. Designers can find a cost-effective MCU within the broad MSP430 portfolio of over 2000 devices for virtually any need. Get started quickly and reduce time to market with our simplified tools, software, and best-in-class support.


#### Reference designs

Find reference designs leveraging the best in TI technology – from analog and power management to embedded processors.



# 7 Terminal Configuration and Functions7.1 Pin Diagrams


Figure 7-1 shows the pinout of the 16-pin PW package.



The ADC (signals A0 to A7, Veref+, and Veref-) is not available on the MSP430FR2000 device.

Figure 7-1. 16-Pin PW (TSSOP) (Top View)

Figure 7-2 shows the pinout of the 24-pin RLL package.



The ADC (signals A0 to A7, Veref+, and Veref-) is not available on the MSP430FR2000 device.

Figure 7-2. 24-Pin RLL (VQFN) (Top View)



## 7.2 Pin Attributes

Table 7-1 lists the attributes of all pins.

Table 7-1. Pin Attributes

| PIN NUMBER |     | (4) (2)               | SIGNAL              | THE Attributes             |              | RESET STATE              |
|------------|-----|-----------------------|---------------------|----------------------------|--------------|--------------------------|
| PW16       | RLL | SIGNAL NAME(1) (2)    | TYPE <sup>(3)</sup> | BUFFER TYPE <sup>(4)</sup> | POWER SOURCE | AFTER BOR <sup>(5)</sup> |
|            |     | P1.1 (RD)             | I/O                 | LVCMOS                     | DVCC         | OFF                      |
|            |     | UCA0CLK               | I/O                 | LVCMOS                     | DVCC         | _                        |
| 1          | 23  | ACLK                  | 0                   | LVCMOS                     | DVCC         | -                        |
|            |     | C1                    | I                   | Analog                     | DVCC         | _                        |
|            |     | A1 <sup>(6)</sup>     | I                   | Analog                     | DVCC         | -                        |
|            |     | P1.0 (RD)             | I/O                 | LVCMOS                     | DVCC         | OFF                      |
|            |     | UCA0STE               | I/O                 | LVCMOS                     | DVCC         | _                        |
| 0          | 20  | SMCLK                 | 0                   | LVCMOS                     | DVCC         | _                        |
| 2          | 20  | C0                    | I                   | Analog                     | DVCC         | _                        |
|            |     | A0 <sup>(6)</sup>     | I                   | Analog                     | DVCC         | -                        |
|            |     | Veref+ <sup>(6)</sup> | I                   | Power                      | DVCC         | _                        |
|            | 4   | TEST (RD)             | I                   | LVCMOS                     | DVCC         | OFF                      |
| 3          | 1   | SBWTCK                | I                   | LVCMOS                     | DVCC         | _                        |
|            |     | RST (RD)              | I/O                 | LVCMOS                     | DVCC         | OFF                      |
| 4          | 2   | NMI                   | I                   | LVCMOS                     | DVCC         | _                        |
|            |     | SBWTDIO               | I/O                 | LVCMOS                     | DVCC         | _                        |
| 5          | 3   | DVCC                  | Р                   | Power                      | DVCC         | N/A                      |
| 6          | 4   | DVSS                  | Р                   | Power                      | DVCC         | N/A                      |
|            | 5   | P2.7 (RD)             | I/O                 | LVCMOS                     | DVCC         | OFF                      |
| 7          |     | TB0CLK                | I                   | LVCMOS                     | DVCC         | _                        |
|            |     | XIN                   | I                   | LVCMOS                     | DVCC         | -                        |
|            | 7   | P2.6 (RD)             | I/O                 | LVCMOS                     | DVCC         | OFF                      |
| 8          |     | MCLK                  | 0                   | LVCMOS                     | DVCC         | _                        |
|            |     | XOUT                  | 0                   | LVCMOS                     | DVCC         | _                        |
|            | 44  | P2.1(RD)              | I/O                 | LVCMOS                     | DVCC         | OFF                      |
| 9          | 11  | TB0.2                 | I/O                 | LVCMOS                     | DVCC         | _                        |
|            |     | P2.0 (RD)             | I/O                 | LVCMOS                     | DVCC         | OFF                      |
| 10         | 8   | TB0.1                 | I/O                 | LVCMOS                     | DVCC         | _                        |
|            |     | COUT                  | 0                   | LVCMOS                     | DVCC         | -                        |
|            |     | P1.7 (RD)             | I/O                 | LVCMOS                     | DVCC         | OFF                      |
|            |     | UCA0TXD               | 0                   | LVCMOS                     | DVCC         | _                        |
|            |     | UCA0SIMO              | I/O                 | LVCMOS                     | DVCC         | _                        |
| 11         | 13  | TB0.2                 | I/O                 | LVCMOS                     | DVCC         | -                        |
|            |     | TDO                   | 0                   | LVCMOS                     | DVCC         | _                        |
|            |     | A7 <sup>(6)</sup>     | I                   | Analog                     | DVCC         | _                        |
|            |     | VREF+                 | 0                   | Power                      | DVCC         | _                        |

Table 7-1. Pin Attributes (continued)

| PIN N | UMBER                              | SIGNAL NAME(1) (2)    | SIGNAL              | BUFFER TYPE(4) |              | RESET STATE              |  |
|-------|------------------------------------|-----------------------|---------------------|----------------|--------------|--------------------------|--|
| PW16  | RLL                                | SIGNAL NAME(17 (2)    | TYPE <sup>(3)</sup> | BUFFER TYPE(4) | POWER SOURCE | AFTER BOR <sup>(5)</sup> |  |
|       |                                    | P1.6 (RD)             | I/O                 | LVCMOS         | DVCC         | OFF                      |  |
| 12    |                                    | UCA0RXD               | I                   | LVCMOS         | DVCC         | -                        |  |
|       |                                    | UCA0SOMI              | I/O                 | LVCMOS         | DVCC         | _                        |  |
|       | 14                                 | TB0.1                 | I/O                 | LVCMOS         | DVCC         | _                        |  |
|       |                                    | TDI                   | I                   | LVCMOS         | DVCC         | _                        |  |
|       |                                    | TCLK                  | I                   | LVCMOS         | DVCC         | _                        |  |
|       |                                    | A6 <sup>(6)</sup>     | I                   | Analog         | DVCC         | _                        |  |
|       |                                    | P1.5 (RD)             | I/O                 | LVCMOS         | DVCC         | OFF                      |  |
| 13    | 15                                 | UCA0CLK               | I/O                 | LVCMOS         | DVCC         | _                        |  |
| 13    | 15                                 | TMS                   | I                   | LVCMOS         | DVCC         | _                        |  |
|       |                                    | A5 <sup>(6)</sup>     | I                   | Analog         | DVCC         |                          |  |
|       | 16                                 | P1.4 (RD)             | I/O                 | LVCMOS         | DVCC         | OFF                      |  |
| 14    |                                    | UCA0STE               | I/O                 | LVCMOS         | DVCC         | _                        |  |
| 14    |                                    | TCK                   | I                   | LVCMOS         | DVCC         | _                        |  |
|       |                                    | A4 <sup>(6)</sup>     | I                   | Analog         | DVCC         | _                        |  |
|       | 17                                 | P1.3 (RD)             | I/O                 | LVCMOS         | DVCC         | OFF                      |  |
|       |                                    | UCA0TXD               | 0                   | LVCMOS         | DVCC         | _                        |  |
| 15    |                                    | UCA0SIMO              | I/O                 | LVCMOS         | DVCC         | _                        |  |
|       |                                    | C3                    | I                   | Analog         | DVCC         | _                        |  |
|       |                                    | A3 <sup>(6)</sup>     | I                   | Analog         | DVCC         | _                        |  |
|       |                                    | P1.2 (RD)             | I/O                 | LVCMOS         | DVCC         | OFF                      |  |
|       |                                    | UCA0RXD               | I                   | LVCMOS         | DVCC         | _                        |  |
|       |                                    | UCA0SOMI              | I/O                 | LVCMOS         | DVCC         | _                        |  |
| 16    | 19                                 | TB0TRG                | I                   | LVCMOS         | DVCC         | _                        |  |
|       |                                    | C2                    | I                   | Analog         | DVCC         | _                        |  |
|       |                                    | A2 <sup>(6)</sup>     | I                   | Analog         | DVCC         | _                        |  |
|       |                                    | Veref- <sup>(6)</sup> | I                   | Power          | DVCC         | _                        |  |
|       | 6, 9, 10,<br>12, 18, 21,<br>22, 24 | NC <sup>(7)</sup>     | _                   | _              | _            |                          |  |

- (1) Signals names with (RD) denote the reset default pin name.
- (2) To determine the pin mux encodings for each pin, see Section 9.11.15.
- (3) Signal Types: I = Input, O = Output, I/O = Input or Output.
- (4) Buffer Types: LVCMOS, Analog, or Power (see Section 7.6)
- (5) Reset States:

OFF = High-impedance input with pullup or pulldown disabled (if available) N/A = Not applicable

- (6) The ADC is not available on the MSP430FR2000 device.
- (7) NC = Not connected



## 7.3 Signal Descriptions

Table 7-2 describes the signals for all device variants and package options.

**Table 7-2. Signal Descriptions** 

|                    | Table 7-2. Signal Descriptions |      |            |          |                                                               |  |  |  |  |  |
|--------------------|--------------------------------|------|------------|----------|---------------------------------------------------------------|--|--|--|--|--|
| FUNCTION           | SIGNAL NAME                    |      | PIN NUMBER |          | DESCRIPTION                                                   |  |  |  |  |  |
|                    |                                | PW16 | RLL        | TYPE     |                                                               |  |  |  |  |  |
|                    | A0                             | 2    | 20         | I        | Analog input A0                                               |  |  |  |  |  |
|                    | A1                             | 1    | 23         | I        | Analog input A1                                               |  |  |  |  |  |
| ADC <sup>(1)</sup> | A2                             | 16   | 19         | I        | Analog input A2                                               |  |  |  |  |  |
|                    | A3                             | 15   | 17         | I        | Analog input A3                                               |  |  |  |  |  |
|                    | A4                             | 14   | 16         | I        | Analog input A4                                               |  |  |  |  |  |
|                    | A5                             | 13   | 15         | 1        | Analog input A5                                               |  |  |  |  |  |
|                    | A6                             | 12   | 14         | I        | Analog input A6                                               |  |  |  |  |  |
|                    | A7                             | 11   | 13         | I        | Analog input A7                                               |  |  |  |  |  |
|                    | Veref+                         | 2    | 20         | I        | ADC positive reference                                        |  |  |  |  |  |
|                    | Veref-                         | 16   | 19         | I        | ADC negative reference                                        |  |  |  |  |  |
|                    | C0                             | 2    | 20         | I        | Comparator input channel C0                                   |  |  |  |  |  |
|                    | C1                             | 1    | 23         | 1        | Comparator input channel C1                                   |  |  |  |  |  |
| eCOMP0             | C2                             | 16   | 19         | I        | Comparator input channel C2                                   |  |  |  |  |  |
|                    | C3                             | 15   | 17         | I        | Comparator input channel C3                                   |  |  |  |  |  |
|                    | COUT                           | 10   | 8          | 0        | Comparator output channel COUT                                |  |  |  |  |  |
|                    | ACLK                           | 1    | 23         | 0        | ACLK output                                                   |  |  |  |  |  |
|                    | MCLK                           | 8    | 7          | 0        | MCLK output                                                   |  |  |  |  |  |
| Clock              | SMCLK                          | 2    | 20         | 0        | SMCLK output                                                  |  |  |  |  |  |
|                    | XIN                            | 7    | 5          | 1        | Input terminal for crystal oscillator                         |  |  |  |  |  |
|                    | XOUT                           | 8    | 7          | 0        | Output terminal for crystal oscillator                        |  |  |  |  |  |
|                    | SBWTCK                         | 3    | 1          | 1        | Spy-Bi-Wire input clock                                       |  |  |  |  |  |
|                    | SBWTDIO                        | 4    | 2          | I/O      | Spy-Bi-Wire data input/output                                 |  |  |  |  |  |
|                    | TCK                            | 14   | 16         | 1        | Test clock                                                    |  |  |  |  |  |
|                    | TCLK                           | 12   | 14         | I        | Test clock input                                              |  |  |  |  |  |
| Debug              | TDI                            | 12   | 14         | I        | Test data input                                               |  |  |  |  |  |
|                    | TDO                            | 11   | 13         | 0        | Test data output                                              |  |  |  |  |  |
|                    | TMS                            | 13   | 15         | ı        | Test mode select                                              |  |  |  |  |  |
|                    | TEST                           | 3    | 1          | I        | Test mode pin – selected digital I/O on JTAG pins             |  |  |  |  |  |
|                    | NMI                            | 4    | 2          | I        | Nonmaskable interrupt input                                   |  |  |  |  |  |
| System             | RST                            | 4    | 2          | I/O      | Reset input, active low                                       |  |  |  |  |  |
|                    | DVCC                           | 5    | 3          | Р        | Power supply                                                  |  |  |  |  |  |
| Power              | DVSS                           | 6    | 4          | Р        | Power ground                                                  |  |  |  |  |  |
|                    | VREF+                          | 11   | 13         | Р        | Output of positive reference voltage with ground as reference |  |  |  |  |  |
|                    |                                |      | <u> </u>   | <u> </u> |                                                               |  |  |  |  |  |



**Table 7-2. Signal Descriptions (continued)** 

|              |                         |      | JMBER                                 | PIN  |                                                                      |  |  |
|--------------|-------------------------|------|---------------------------------------|------|----------------------------------------------------------------------|--|--|
| FUNCTION     | SIGNAL NAME             | PW16 | RLL                                   | TYPE | DESCRIPTION                                                          |  |  |
|              | P1.0                    | 2    | 20                                    | I/O  | General-purpose I/O                                                  |  |  |
|              | P1.1                    | 1    | 23                                    | I/O  | General-purpose I/O                                                  |  |  |
|              | P1.2                    | 16   | 19                                    | I/O  | General-purpose I/O                                                  |  |  |
| GPIO         | P1.3                    | 15   | 17                                    | I/O  | General-purpose I/O                                                  |  |  |
|              | P1.4                    | 14   | 16                                    | I/O  | General-purpose I/O (2)                                              |  |  |
|              | P1.5                    | 13   | 15                                    | I/O  | General-purpose I/O (2)                                              |  |  |
|              | P1.6                    | 12   | 14                                    | I/O  | General-purpose I/O <sup>(2)</sup>                                   |  |  |
|              | P1.7                    | 11   | 13                                    | I/O  | General-purpose I/O <sup>(2)</sup>                                   |  |  |
|              | P2.0                    | 10   | 8                                     | I/O  | General-purpose I/O                                                  |  |  |
|              | P2.1                    | 9    | 11                                    | I/O  | General-purpose I/O                                                  |  |  |
|              | P2.6                    | 8    | 7                                     | I/O  | General-purpose I/O                                                  |  |  |
|              | P2.7                    | 7    | 5                                     | I/O  | General-purpose I/O                                                  |  |  |
|              | UCA0CLK                 | 13   | 15                                    | I/O  | eUSCI_A0 SPI clock input/output                                      |  |  |
|              | UCA0RXD                 | 12   | 14                                    | I    | eUSCI_A0 UART receive data                                           |  |  |
|              | UCA0SIMO                | 11   | 13                                    | I/O  | eUSCI_A0 SPI slave in/master out                                     |  |  |
| SPI and UART | UCA0SOMI                | 12   | 14                                    | I/O  | eUSCI_A0 SPI slave out/master in                                     |  |  |
|              | UCA0STE                 | 14   | 16                                    | I/O  | eUSCI_A0 SPI slave transmit enable                                   |  |  |
|              | UCA0TXD                 | 11   | 13                                    | 0    | eUSCI_A0 UART transmit data                                          |  |  |
| SFI and OAKI | UCA0CLK <sup>(4)</sup>  | 1    | 23                                    | I/O  | eUSCI_A0 SPI clock input/output                                      |  |  |
|              | UCA0RXD <sup>(4)</sup>  | 16   | 19                                    | Ι    | eUSCI_A0 UART receive data                                           |  |  |
|              | UCA0SIMO <sup>(4)</sup> | 15   | 17                                    | I/O  | eUSCI_A0 SPI slave in/master out                                     |  |  |
|              | UCA0SOMI <sup>(4)</sup> | 16   | 19                                    | I/O  | eUSCI_A0 SPI slave out/master in                                     |  |  |
|              | UCA0STE <sup>(4)</sup>  | 2    | 20                                    | I/O  | eUSCI_A0 SPI slave transmit enable                                   |  |  |
|              | UCA0TXD <sup>(4)</sup>  | 15   | 17                                    | 0    | eUSCI_A0 UART transmit data                                          |  |  |
|              | TB0.1                   | 12   | 14                                    | I/O  | Timer TB0 CCR1 capture: CCI1A input, compare: Out1 outputs           |  |  |
|              | TB0.2                   | 11   | 13                                    | I/O  | Timer TB0 CCR2 capture: CCI2A input, compare: Out2 outputs           |  |  |
| Timer B      | TB0CLK                  | 7    | 5                                     | _    | Timer clock input TBCLK for TB0                                      |  |  |
| Tilliel_B    | TB0TRG                  | 16   | 19                                    | _    | TB0 external trigger input for TB0OUTH                               |  |  |
|              | TB0.1 <sup>(3)</sup>    | 10   | 8                                     | I/O  | Timer TB0 CCR1 capture: CCI1A input, compare: Out1 outputs           |  |  |
|              | TB0.2 <sup>(3)</sup>    | 9    | 11                                    | I/O  | Timer TB0 CCR2 capture: CCI2A input, compare: Out2 outputs           |  |  |
| NC pad       | NC                      | _    | 6, 9,<br>10, 12,<br>18, 21,<br>22, 24 | -    | Do not connect                                                       |  |  |
| VQFN pad     | Pad                     | _    | Pad                                   |      | VQFN package (RLL) exposed thermal pad. Connect to V <sub>SS</sub> . |  |  |

<sup>(1)</sup> The ADC is not available on the MSP430FR2000 device.

<sup>(2)</sup> Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to prevent collisions.

<sup>.</sup> This is the remapped functionality controlled by the TBRMP bit in the SYSCFG3 register. Only one selected port is valid at the same time when TB0 acts as capture input functionality. TB0 PWM outputs regardless of the setting on this remap bit.

<sup>(4)</sup> This is the remapped functionality controlled by the USCIARMP bit in the SYSCFG3 register. Only one selected port is valid at the same time.



#### 7.4 Pin Multiplexing

Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see Section 9.11.15.

#### 7.5 Connection of Unused Pins

Table 7-3 lists the correct termination of unused pins.

#### Table 7-3. Connection of Unused Pins

| PIN <sup>(1)</sup> | POTENTIAL | COMMENT                                                                              |
|--------------------|-----------|--------------------------------------------------------------------------------------|
| Px.0 to Px.7       | Open      | Set to port function, output direction (PxDIR.n = 1)                                 |
| RST/NMI            | DVCC      | 47-kΩ pullup or internal pullup selected with 10-nF (1.1 nF) pulldown <sup>(2)</sup> |
| TEST               | Open      | This pin always has an internal pulldown enabled.                                    |

<sup>(1)</sup> Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection guidelines.

## 7.6 Buffer Type

Table 7-4 defines the pin buffer types that are listed in Table 7-1.

#### Table 7-4. Buffer Type

| 145.5                     |                    |            |              |                                         |                                  |                                                  |  |  |  |  |
|---------------------------|--------------------|------------|--------------|-----------------------------------------|----------------------------------|--------------------------------------------------|--|--|--|--|
| BUFFER TYPE<br>(STANDARD) | NOMINAL<br>VOLTAGE | HYSTERESIS | PU OR PD     | NOMINAL<br>PU OR PD<br>STRENGTH<br>(µA) | OUTPUT DRIVE<br>STRENGTH<br>(mA) | OTHER<br>CHARACTERISTICS                         |  |  |  |  |
| LVCMOS                    | 3.0 V              | Υ(1)       | Programmable | See Section<br>8.12.4                   | See Section<br>8.12.4.3          |                                                  |  |  |  |  |
| Analog                    | 3.0 V              | No         | No           | N/A                                     | N/A                              | See the analog modules in Section 8 for details. |  |  |  |  |
| Power (DVCC)              | 3.0 V              | No         | No           | N/A                                     | N/A                              | SVS enables hysteresis on DVCC.                  |  |  |  |  |
| Power (AVCC)              | 3.0 V              | No         | No           | N/A                                     | N/A                              |                                                  |  |  |  |  |

(1) Only for input pins

<sup>(2)</sup> The pulldown capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like FET interfaces or GANG programmers.



## 8 Specifications

## 8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

|                                                            | MIN  | MAX                                  | UNIT |
|------------------------------------------------------------|------|--------------------------------------|------|
| Voltage applied at DVCC pin to V <sub>SS</sub>             | -0.3 | 4.1                                  | V    |
| Voltage applied to any pin <sup>(2)</sup>                  | -0.3 | V <sub>CC</sub> + 0.3<br>(4.1 V Max) | V    |
| Diode current at any device pin                            |      | ±2                                   | mA   |
| Maximum junction temperature, T <sub>J</sub>               |      | 85                                   | °C   |
| Storage temperature range, T <sub>stg</sub> <sup>(3)</sup> | -40  | 125                                  | °C   |

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages are referenced to V<sub>SS</sub>.
- (3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

#### 8.2 ESD Ratings

|                                            |  |                                                                                | VALUE | UNIT |
|--------------------------------------------|--|--------------------------------------------------------------------------------|-------|------|
| V                                          |  | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>              | ±1000 | V    |
| V <sub>(ESD)</sub> Electrostatic discharge |  | Charged-device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±250  | v    |

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±1000 V may actually have higher performance.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.

#### 8.3 Recommended Operating Conditions

|                     |                                                               |                                                    | MIN | NOM | MAX               | UNIT   |
|---------------------|---------------------------------------------------------------|----------------------------------------------------|-----|-----|-------------------|--------|
| V <sub>CC</sub>     | Supply voltage applied at DVCC pin <sup>(1)</sup> (2) (3) (4) |                                                    | 1.8 |     | 3.6               | V      |
| V <sub>SS</sub>     | Supply voltage applied at DVSS pin                            |                                                    |     | 0   |                   | V      |
| T <sub>A</sub>      | Operating free-air temperature                                |                                                    | -40 |     | 85                | °C     |
| TJ                  | Operating junction temperature                                |                                                    |     |     | 85                | °C     |
| C <sub>DVCC</sub>   | Recommended capacitor at DVCC <sup>(5)</sup>                  |                                                    |     | 10  |                   | μF     |
| £                   | Dracescar fraguency (maximum MCLV fraguency) (6)              | No FRAM wait states (NWAITSx = 0)                  | 0   | 8   |                   | NAL I- |
| f <sub>SYSTEM</sub> | Processor frequency (maximum MCLK frequency) <sup>(6)</sup>   | With FRAM wait states (NWAITSx = 1) <sup>(7)</sup> | 0   |     | 16 <sup>(8)</sup> | MHz    |
| f <sub>ACLK</sub>   | Maximum ACLK frequency                                        |                                                    |     |     | 40                | kHz    |
| f <sub>SMCLK</sub>  | Maximum SMCLK frequency                                       | Maximum SMCLK frequency                            |     |     | 16 <sup>(8)</sup> | MHz    |

- (1) Supply voltage changes faster than 0.2 V/μs can trigger a BOR reset even within the recommended supply voltage range. Following the data sheet recommendation for capacitor C<sub>DVCC</sub> limits the slopes accordingly.
- (2) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.
- (3) TI recommends that power to the DVCC pin must not exceed the limits specified in *Recommended Operating Conditions*. Exceeding the specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.
- (4) The minimum supply voltage is defined by the SVS levels. See the SVS threshold parameters in Section 8.12.1.1.
- (5) A capacitor tolerance of ±20% or better is required. A low-ESR ceramic capacitor of 100 nF (minimum) should be placed as close as possible (within a few millimeters) to the respective pin pair.
- (6) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
- (7) Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed without wait states.
- (8) If clock sources such as HF crystals or the DCO with frequencies >16 MHz are used, the clock must be divided in the clock system to comply with this operating condition.



## 8.4 Active Mode Supply Current Into V<sub>CC</sub> Excluding External Current

 $V_{CC} = 3.0 \text{ V}, T_A = 25^{\circ}\text{C}$  (unless otherwise noted) (1)

|                                     |                      |                   |                                         | FRE | QUENCY (f <sub>m</sub>                  | <sub>CLK</sub> = f <sub>SN</sub> | ICLK)                                   |     |      |
|-------------------------------------|----------------------|-------------------|-----------------------------------------|-----|-----------------------------------------|----------------------------------|-----------------------------------------|-----|------|
| PARAMETER                           | EXECUTION MEMORY     | TEST<br>CONDITION | 1 MHz<br>0 WAIT STATES<br>(NWAITSx = 0) |     | 8 MHz<br>0 WAIT STATES<br>(NWAITSx = 0) |                                  | 16 MHz<br>1 WAIT STATE<br>(NWAITSx = 1) |     | UNIT |
|                                     |                      |                   | TYP                                     | MAX | TYP                                     | MAX                              | TYP                                     | MAX |      |
| 1 ==                                | FRAM                 | 3.0 V, 25°C       | 460                                     |     | 2670                                    |                                  | 2940                                    |     | μA   |
| AM, FRAM (0%)                       | 0% cache hit ratio   | 3.0 V, 85°C       | 475                                     |     | 2730                                    |                                  | 2980                                    |     | μΑ   |
|                                     | FRAM                 | 3.0 V, 25°C       | 191                                     |     | 570                                     |                                  | 942                                     |     | _    |
| I <sub>AM,</sub> FRAM (100%)        | 100% cache hit ratio | 3.0 V, 85°C       | 199                                     | ·   | 585                                     |                                  | 960                                     |     | μA   |
| I <sub>AM, RAM</sub> <sup>(2)</sup> | RAM                  | 3.0 V, 25°C       | 213                                     |     | 739                                     |                                  | 1244                                    |     | μΑ   |

All inputs are tied to 0 V or to V<sub>CC</sub>. Outputs do not source or sink any current. Characterized with program executing typical data processing.

## 8.5 Active Mode Supply Current Per MHz

 $V_{CC}$  = 3.0 V,  $T_A$  = 25°C (unless otherwise noted)

|                           | PARAMETER | TEST CONDITIONS                                                                                            | TYP | UNIT   |
|---------------------------|-----------|------------------------------------------------------------------------------------------------------------|-----|--------|
| dl <sub>AM,FRAM</sub> /df |           | [(I <sub>AM</sub> 75% cache hit rate at 8 MHz) –<br>(I <sub>AM</sub> 75% cache hit rate at 1 MHz)] / 7 MHz | 120 | μΑ/MHz |

<sup>(1)</sup> All peripherals are turned on in default settings.

## 8.6 Low-Power Mode LPM0 Supply Currents Into V<sub>CC</sub> Excluding External Current

 $V_{CC} = 3.0 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (unless otherwise noted)}^{(1)}$  (2)

|           |                 | FREQUENCY (f <sub>SMCLK</sub> ) |     |       |     |        |     |      |
|-----------|-----------------|---------------------------------|-----|-------|-----|--------|-----|------|
| PARAMETER | V <sub>cc</sub> | 1 MHz                           |     | 8 MHz |     | 16 MHz |     | UNIT |
|           |                 | TYP N                           | ИАХ | TYP   | MAX | TYP    | MAX |      |
|           | 2.0 V           | 148                             |     | 295   |     | 398    |     |      |
| ILPM0     | 3.0 V           | 157                             |     | 304   |     | 402    |     | μA   |

All inputs are tied to 0 V or to V<sub>CC</sub>. Outputs do not source or sink any current.

f<sub>ACLK</sub> = 32768 Hz, f<sub>MCLK</sub> = f<sub>SMCLK</sub> = f<sub>DCO</sub> at specified frequency Program and data entirely reside in FRAM. All execution is from FRAM.

<sup>(2)</sup> Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM.

Current for watchdog timer clocked by SMCLK included. f<sub>ACLK</sub> = 32768 Hz, f<sub>MCLK</sub> = 0 MHz, f<sub>SMCLK</sub> at specified frequency.

## 8.7 Low-Power Mode LPM3, LPM4 Supply Currents (Into V<sub>CC</sub>) Excluding External Current

|                             |                                                       |                 |      | TEMPERATURE |      |     |      |      |      |
|-----------------------------|-------------------------------------------------------|-----------------|------|-------------|------|-----|------|------|------|
|                             | PARAMETER                                             | V <sub>cc</sub> | -40° | °C          | 25°  | С   | 85°  | С    | UNIT |
|                             |                                                       |                 | TYP  | MAX         | TYP  | MAX | TYP  | MAX  |      |
|                             | Low-power mode 3, includes SVS <sup>(2)</sup> (3) (4) | 3.0 V           | 0.95 |             | 1.07 |     | 2.13 | 6.00 | μΑ   |
| LPM3,XT1                    | Low-power mode 3, includes 3 v3 ( 17 v )              | 2.0 V           | 0.92 |             | 1.03 |     | 2.09 |      |      |
| ı                           | Low-power mode 3, VLO, excludes SVS <sup>(5)</sup>    | 3.0 V           | 0.76 |             | 0.87 |     | 1.94 | 5.70 |      |
| I <sub>LPM3,VLO</sub>       |                                                       | 2.0 V           | 0.74 |             | 0.85 |     | 1.90 |      | μA   |
|                             | Low-power mode 3, RTC, excludes SVS <sup>(6)</sup>    | 3.0 V           | 0.88 |             | 1.00 |     | 2.06 |      | μА   |
| I <sub>LPM3</sub> , RTC     |                                                       | 2.0 V           | 0.86 |             | 0.98 |     | 2.02 |      |      |
|                             |                                                       | 3.0 V           | 0.49 |             | 0.58 |     | 1.60 |      | μА   |
| I <sub>LPM4</sub> , SVS     | Low-power mode 4, includes SVS                        | 2.0 V           | 0.46 |             | 0.56 |     | 1.57 |      |      |
|                             | Law ray and A avaluate CVC                            | 3.0 V           | 0.33 |             | 0.42 |     | 1.44 |      |      |
| I <sub>LPM4</sub>           | Low-power mode 4, excludes SVS                        | 2.0 V           | 0.32 |             | 0.41 |     | 1.42 |      | μA   |
|                             | Low-power mode 4, RTC is soured from VLO,             | 3.0 V           | 0.48 |             | 0.59 |     | 1.91 |      |      |
| I <sub>LPM4, RTC, VLO</sub> | excludes SVS                                          | 2.0 V           | 0.48 |             | 0.58 |     | 1.89 |      | μA   |
|                             | Low-power mode 4, RTC is soured from XT1,             | 3.0 V           | 0.89 |             | 1.04 |     | 2.41 |      |      |
| LPM4, RTC, XT1              | excludes SVS                                          | 2.0 V           | 0.88 |             | 1.02 |     | 2.38 |      | μA   |

- (1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current
- (2) Not applicable for devices with HF crystal oscillator only.
- (3) Characterized with a Seiko Crystal SC-32S MS1V-T1K crystal with a load capacitance chosen to closely match the required load.
- (4) Low-power mode 3, includes SVS test conditions:

  Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).

  CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),

  f. = 32768 Hz, f. = 4.5 f. = 1.5 f. = 1.5
- f<sub>XT1</sub> = 32768 Hz, f<sub>ACLK</sub> = f<sub>XT1</sub>, f<sub>MCLK</sub> = f<sub>SMCLK</sub> = 0 MHz

  (5) Low-power mode 3, VLO, excludes SVS test conditions:

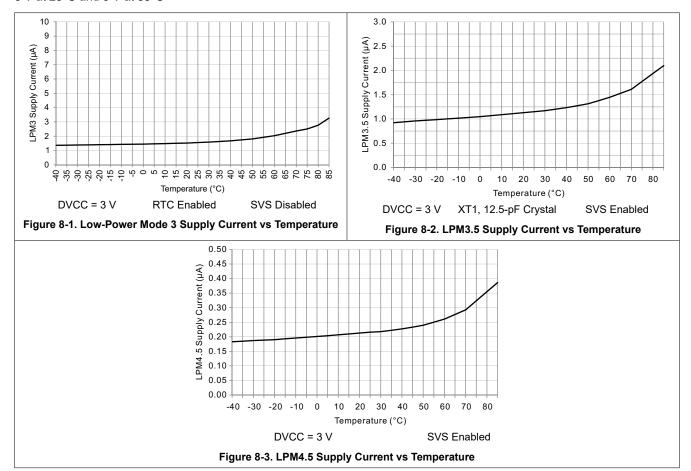
  Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).

  CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),

  f<sub>XT1</sub> = 32768 Hz, f<sub>MCLK</sub> = f<sub>SMCLK</sub> = 0 MHz
- (6) RTC periodically wakes every second with external 32768-Hz as source.



## 8.8 Low-Power Mode LPMx.5 Supply Currents (Into V<sub>CC</sub>) Excluding External Current


| PARAMETER                |                                                                       |                 | TEMPERATURE |     |       |     |       |       |      |
|--------------------------|-----------------------------------------------------------------------|-----------------|-------------|-----|-------|-----|-------|-------|------|
|                          |                                                                       | V <sub>cc</sub> | -40°C       |     | 25°C  |     | 85°C  |       | UNIT |
|                          |                                                                       |                 | TYP         | MAX | TYP   | MAX | TYP   | MAX   |      |
| Low-power mode 3.5, incl | Low-power mode 3.5, includes SVS <sup>(1)</sup> (2) (3)               | 3.0 V           | 0.60        |     | 0.66  |     | 0.80  | 2.17  | μA   |
| ILPM3.5, XT1             | (also see Figure 8-2)                                                 | 2.0 V           | 0.57        |     | 0.64  |     | 0.75  |       | μΛ   |
|                          | Low-power mode 4.5, includes SVS <sup>(4)</sup>                       | 3.0 V           | 0.23        |     | 0.25  |     | 0.32  | 0.43  |      |
| ILPM4.5, SVS             |                                                                       | 2.0 V           | 0.20        |     | 0.23  |     | 0.27  |       | μA   |
|                          | Low-power mode 4.5, excludes SVS <sup>(5)</sup> (also see Figure 8-3) | 3.0 V           | 0.025       |     | 0.034 |     | 0.064 | 0.130 | μA   |
| ILPM4.5                  |                                                                       | 2.0 V           | 0.021       |     | 0.029 |     | 0.055 |       | μΑ   |

- (1) Not applicable for devices with HF crystal oscillator only.
- (2) Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.
- (3) Low-power mode 3.5, includes SVS test conditions: Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), f<sub>XT1</sub> = 32768 Hz, f<sub>ACLK</sub> = f<sub>XT1</sub>, f<sub>MCLK</sub> = f<sub>SMCLK</sub> = 0 MHz
- (4) Low-power mode 4.5, includes SVS test conditions: Current for brownout and SVS included (SVSHE = 1). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), f<sub>XT1</sub> = 0 Hz, f<sub>ACLK</sub> = f<sub>MCLK</sub> = f<sub>SMCLK</sub> = 0 MHz
- (5) Low-power mode 4.5, excludes SVS test conditions: Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), f<sub>XT1</sub> = 0 Hz, f<sub>ACLK</sub> = f<sub>MCLK</sub> = f<sub>SMCLK</sub> = 0 MHz



## 8.9 Typical Characteristics – LPM Supply Currents

3 V at 25°C and 3 V at 85°C





## 8.10 Current Consumption Per Module

| MODULE  | TEST CONDITIONS                | REFERENCE CLOCK    | TYP | UNIT   |
|---------|--------------------------------|--------------------|-----|--------|
| Timer_B | SMCLK = 8 Hz, MC = 10          | Module input clock | 5   | μA/MHz |
| eUSCI_A | UART mode                      | Module input clock | 7   | µA/MHz |
| eUSCI_A | SPI mode                       | Module input clock | 5   | µA/MHz |
| RTC     |                                | 32 kHz             | 85  | nA     |
| CRC     | From start to end of operation | MCLK               | 8.5 | µA/MHz |

#### 8.11 Thermal Resistance Characteristics

|                  | THERMAL METRIC <sup>(1)</sup> (2)                 | VALUE               | UNIT  |      |
|------------------|---------------------------------------------------|---------------------|-------|------|
| DΔ               | Junction-to-ambient thermal resistance, still air | VQFN 24 pin (RLL)   | 38.7  | °C/W |
| Rθ <sub>JA</sub> | Junction-to-ambient thermal resistance, suit all  | TSSOP 16 pin (PW16) | 106.5 | C/VV |
| <b>D</b> 0       | lunchion to accordant the amount mariatement      | VQFN 24 pin (RLL)   | 39.5  | °C/W |
| Rθ <sub>JC</sub> | Junction-to-case (top) thermal resistance         | TSSOP 16 pin (PW16) | 41.2  | C/VV |
| DO.              | Junction-to-board thermal resistance              | VQFN 24 pin (RLL)   | 8.6   | °C/W |
| $R\theta_{JB}$   |                                                   | TSSOP 16 pin (PW16) | 51.5  | C/VV |

- (1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
- (2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [Rθ<sub>JC</sub>] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC standards:
  - · JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air)
  - JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  - JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  - JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements

#### 8.12 Timing and Switching Characteristics

#### 8.12.1 Power Supply Sequencing

Figure 8-4 shows the power cycle, SVS, and BOR reset conditions.

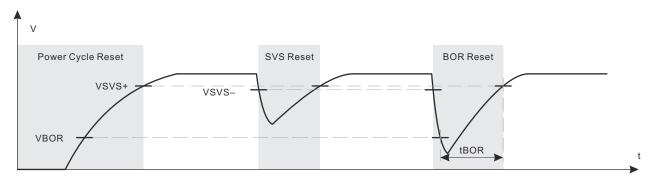



Figure 8-4. Power Cycle, SVS, and BOR Reset Conditions



#### 8.12.1.1 PMM, SVS and BOR

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                           | PARAMETER                                             | TEST CONDITIONS         | MIN  | TYP  | MAX  | UNIT |
|---------------------------|-------------------------------------------------------|-------------------------|------|------|------|------|
| V <sub>BOR, safe</sub>    | Safe BOR power-down level <sup>(1)</sup>              |                         | 0.1  |      |      | V    |
| t <sub>BOR, safe</sub>    | Safe BOR reset delay <sup>(2)</sup>                   |                         | 10   |      |      | ms   |
| I <sub>SVSH,AM</sub>      | SVS <sub>H</sub> current consumption, active mode     | V <sub>CC</sub> = 3.6 V |      |      | 1.5  | μA   |
| I <sub>SVSH,LPM</sub>     | SVS <sub>H</sub> current consumption, low-power modes | V <sub>CC</sub> = 3.6 V |      | 240  |      | nA   |
| V <sub>SVSH-</sub>        | SVS <sub>H</sub> power-down level <sup>(3)</sup>      |                         | 1.71 | 1.81 | 1.86 | V    |
| V <sub>SVSH+</sub>        | SVS <sub>H</sub> power-up level <sup>(3)</sup>        |                         | 1.74 | 1.88 | 1.99 | V    |
| V <sub>SVSH_hys</sub>     | SVS <sub>H</sub> hysteresis                           |                         |      | 80   |      | mV   |
| t <sub>PD,SVSH, AM</sub>  | SVS <sub>H</sub> propagation delay, active mode       |                         |      |      | 10   | μs   |
| t <sub>PD,SVSH, LPM</sub> | SVS <sub>H</sub> propagation delay, low-power modes   |                         |      |      | 100  | μs   |

- (1) A safe BOR can be correctly generated only if DVCC drops below this voltage before it rises.
- (2) When an BOR occurs, a safe BOR can be correctly generated only if DVCC is kept low longer than this period before it reaches V<sub>SVSH+</sub>.
- (3) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference Design.

#### 8.12.2 Reset Timing

## 8.12.2.1 Wake-up Times From Low-Power Modes and Reset

|                             | PARAMETER                                                                                                                                                                            | TEST<br>CONDITIONS | V <sub>cc</sub> | MIN TYP | MAX                             | UNIT |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|---------|---------------------------------|------|
| twake-up fram               | (Additional) wake-up time to activate the FRAM in AM if previously disabled through the FRAM controller or from an LPM if immediate activation is selected for wakeup <sup>(1)</sup> |                    | 3 V             | 10      |                                 | μs   |
| t <sub>WAKE-UP LPM0</sub>   | Wake-up time from LPM0 to active mode (1)                                                                                                                                            |                    | 3 V             |         | 200 +<br>2.5 / f <sub>DCO</sub> | ns   |
| t <sub>WAKE-UP</sub> LPM3   | Wake-up time from LPM3 to active mode (1)                                                                                                                                            |                    | 3 V             | 10      |                                 | μs   |
| t <sub>WAKE-UP</sub> LPM4   | Wake-up time from LPM4 to active mode (2)                                                                                                                                            |                    | 3 V             | 10      |                                 | μs   |
| t <sub>WAKE-UP LPM3.5</sub> | Wake-up time from LPM3.5 to active mode (2)                                                                                                                                          |                    | 3 V             | 350     |                                 | μs   |
|                             | Wake-up time from LPM4.5 to active mode (2)                                                                                                                                          | SVSHE = 1          | 3 V             | 350     |                                 | μs   |
| twake-up lpm4.5             | wake-up time from Er W4.5 to active mode V                                                                                                                                           | SVSHE = 0          | J 5 V           | 1       |                                 | ms   |
| t <sub>WAKE-UP-RESET</sub>  | Wake-up time from $\overline{\text{RST}}$ or BOR event to active mode $^{(2)}$                                                                                                       |                    | 3 V             | 1       |                                 | ms   |
| t <sub>RESET</sub>          | Pulse duration required at RST/NMI pin to accept a reset                                                                                                                             |                    |                 | 2       |                                 | μs   |

<sup>(1)</sup> The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first externally observable MCLK clock edge.

<sup>(2)</sup> The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed.



#### 8.12.3 Clock Specifications

#### 8.12.3.1 XT1 Crystal Oscillator (Low Frequency)

|                         | PARAMETER                                                  | TEST CONDITIONS                                                                                 | V <sub>cc</sub> | MIN | TYP   | MAX  | UNIT |
|-------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|-----|-------|------|------|
| f <sub>XT1, LF</sub>    | XT1 oscillator crystal, low frequency                      | LFXTBYPASS = 0                                                                                  |                 |     | 32768 |      | Hz   |
| DC <sub>XT1, LF</sub>   | XT1 oscillator LF duty cycle                               | Measured at MCLK,<br>f <sub>LFXT</sub> = 32768 Hz                                               |                 | 30% |       | 70%  |      |
| f <sub>XT1,SW</sub>     | XT1 oscillator logic-level square-<br>wave input frequency | LFXTBYPASS = 1 (3) (4)                                                                          |                 |     | 32768 |      | Hz   |
| DC <sub>XT1, SW</sub>   | LFXT oscillator logic-level square-wave input duty cycle   | LFXTBYPASS = 1                                                                                  |                 | 40% |       | 60%  |      |
| OA <sub>LFXT</sub>      | Oscillation allowance for LF crystals <sup>(5)</sup>       |                                                                                                 |                 |     | 200   |      | kΩ   |
| C <sub>L,eff</sub>      | Integrated effective load capacitance <sup>(6)</sup>       | See <sup>(7)</sup>                                                                              |                 |     | 1     |      | pF   |
| t <sub>START,LFXT</sub> | Start-up time <sup>(9)</sup>                               | $f_{OSC}$ = 32768 Hz<br>LFXTBYPASS = 0, LFXTDRIVE = {3},<br>$T_A$ = 25°C, $C_{L,eff}$ = 12.5 pF |                 |     | 1000  |      | ms   |
| f <sub>Fault,LFXT</sub> | Oscillator fault frequency (10)                            | XTS = 0 <sup>(8)</sup>                                                                          |                 | 0   |       | 3500 | Hz   |

- (1) To improve EMI on the LFXT oscillator, observe the following guidelines:
  - · Keep the trace between the device and the crystal as short as possible.
  - · Design a good ground plane around the oscillator pins.
  - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
  - · Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
  - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
  - · If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- (2) See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing.
- (3) When LFXTBYPASS is set, LFXT circuits are automatically powered down. The input signal is a digital square wave with parametrics defined in Section 8.12.4.1. Duty cycle requirements are defined by DC<sub>LFXT, SW</sub>.
- (4) Maximum frequency of operation of the entire device cannot be exceeded.
- (5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:
  - For LFXTDRIVE = {0}, C<sub>I eff</sub> = 3.7 pF
  - For LFXTDRIVE = {1}, 6 pF ≤ C<sub>L.eff</sub> ≤ 9 pF
  - For LFXTDRIVE =  $\{2\}$ , 6 pF  $\leq$  C<sub>L.eff</sub>  $\leq$  10 pF
  - For LFXTDRIVE = {3}, 6 pF  $\leq$  C<sub>L,eff</sub>  $\leq$  12 pF
- (6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
- (7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met.
- (8) Measured with logic-level input frequency but also applies to operation with crystals.
- (9) Includes start-up counter of 1024 clock cycles.
- (10) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications may set the flag. A static condition or stuck at fault condition sets the flag.



#### 8.12.3.2 DCO FLL, Frequency

over recommended operating free-air temperature (unless otherwise noted)

|                        | PARAMETER                                 | TEST CONDITIONS                            | V <sub>CC</sub> | MIN   | TYP    | MAX  | UNIT |
|------------------------|-------------------------------------------|--------------------------------------------|-----------------|-------|--------|------|------|
|                        | FLL lock frequency, 16 MHz, 25°C          | Measured at MCLK, internal                 | 3.0 V           | -1.0% |        | 1.0% |      |
| f <sub>DCO, FLL</sub>  | FLL lock frequency, 16 MHz, -40°C to 85°C | trimmed REFO as reference                  | 3.0 V           | -2.0% |        | 2.0% |      |
| DCO, FLL               | FLL lock frequency, 16 MHz, -40°C to 85°C | Measured at MCLK, XT1 crystal as reference | 3.0 V           | -0.5% |        | 0.5% |      |
| f <sub>DUTY</sub>      | Duty cycle                                |                                            | 3.0 V           | 40%   | 50%    | 60%  |      |
| Jitter <sub>cc</sub>   | Cycle-to-cycle jitter, 16 MHz             | Measured at MCLK, XT1                      | 3.0 V           |       | 0.25%  |      |      |
| Jitter <sub>long</sub> | Long term Jitter, 16 MHz                  | crystal as reference                       | 3.0 V           |       | 0.022% |      |      |
| t <sub>FLL, lock</sub> | FLL lock time                             |                                            | 3.0 V           |       | 245    |      | ms   |

## 8.12.3.3 DCO Frequency

over recommended operating free-air temperature (unless otherwise noted) (see Figure 8-5)

|                                         | PARAMETER             | TEST CONDITIONS                                            | V <sub>CC</sub> | MIN TYP | MAX | UNIT    |
|-----------------------------------------|-----------------------|------------------------------------------------------------|-----------------|---------|-----|---------|
|                                         |                       | DCORSEL = 101b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 0   |                 | 7.8     |     |         |
| f <sub>DCO, 16 MHz</sub> (1)            | DCO frequency, 16 MHz | DCORSEL = 101b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 511 | 3.0 V           | 12.5    |     | MHz     |
| DCO, 16 MHz                             | DOO frequency, 10 MHz | DCORSEL = 101b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 0   | 3.0 V           | 18.0    |     |         |
|                                         |                       | DCORSEL = 101b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 511 |                 | 30.0    |     |         |
|                                         |                       | DCORSEL = 100b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 0   | 3.0 V           | 6.0     |     |         |
| f <sub>DCO, 12 MHz</sub> <sup>(1)</sup> | DCO frequency, 12 MHz | DCORSEL = 100b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 511 |                 | 9.5     |     | MHz     |
|                                         |                       | DCORSEL = 100b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 0   |                 | 13.5    |     | IVII IZ |
|                                         |                       | DCORSEL = 100b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 511 |                 | 22.0    |     |         |
|                                         |                       | DCORSEL = 011b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 0   |                 | 3.8     |     | - MHz   |
| £ (1)                                   |                       | DCORSEL = 011b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 511 |                 | 6.5     |     |         |
| f <sub>DCO, 8 MHz</sub> <sup>(1)</sup>  | DCO frequency, 8 MHz  | DCORSEL = 011b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 0   | 3.0 V           | 9.5     |     |         |
|                                         |                       | DCORSEL = 011b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 511 |                 | 16.0    |     |         |
|                                         |                       | DCORSEL = 010b,, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 0  |                 | 2.0     |     |         |
| f <sub>DCO, 4 MHz</sub> <sup>(1)</sup>  | DCO frequency, 4 MHz  | DCORSEL = 010b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 511 | 3.0 V           | 3.2     |     | MHz     |
|                                         |                       | DCORSEL = 010b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 0   |                 | 4.8     |     |         |
|                                         |                       | DCORSEL = 010b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 511 |                 | 8.0     |     |         |



## 8.12.3.3 DCO Frequency (continued)

over recommended operating free-air temperature (unless otherwise noted) (see Figure 8-5)

|                                        | PARAMETER            | TEST CONDITIONS                                            | V <sub>cc</sub> | MIN TYP | MAX | UNIT    |  |
|----------------------------------------|----------------------|------------------------------------------------------------|-----------------|---------|-----|---------|--|
|                                        |                      | DCORSEL = 001b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 0   |                 | 1.0     |     |         |  |
| f <sub>DCO, 2 MHz</sub> <sup>(1)</sup> | DCO fraguency 2 MHz  | DCORSEL = 001b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 511 | 3.0 V           | 1.7     |     | MHz     |  |
|                                        | DCO frequency, 2 MHz | DCORSEL = 001b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 0   | 3.0 V           | 2.5     |     | IVII IZ |  |
|                                        |                      | DCORSEL = 001b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 511 |                 | 4.2     |     |         |  |
|                                        | DCO frequency, 1 MHz | DCORSEL = 000b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 0   | 3.0 V           | 0.5     |     |         |  |
| f (1)                                  |                      | DCORSEL = 000b, DISMOD = 1b,<br>DCOFTRIM = 000b, DCO = 511 |                 | 0.85    |     | MHz     |  |
| f <sub>DCO, 1 MHz</sub> <sup>(1)</sup> |                      | DCORSEL = 000b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 0   | 3.0 V           | 1.2     |     |         |  |
|                                        |                      | DCORSEL = 000b, DISMOD = 1b,<br>DCOFTRIM = 111b, DCO = 511 |                 | 2.1     |     |         |  |

(1) This frequency reflects the achievable frequency range when FLL is either enabled or disabled.

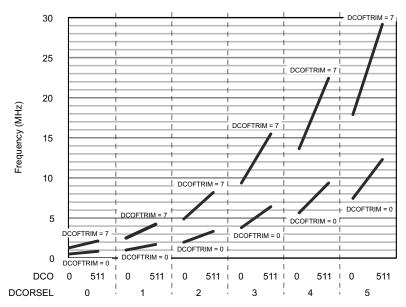



Figure 8-5. Typical DCO Frequency



#### 8.12.3.4 REFO

over recommended operating free-air temperature (unless otherwise noted)

|                                          | PARAMETER                           | TEST CONDITIONS                         | V <sub>CC</sub> | MIN   | TYP   | MAX   | UNIT |
|------------------------------------------|-------------------------------------|-----------------------------------------|-----------------|-------|-------|-------|------|
| I <sub>REFO</sub>                        | REFO oscillator current consumption | T <sub>A</sub> = 25°C                   | 3.0 V           |       | 15    |       | μΑ   |
| f <sub>REFO</sub>                        | REFO calibrated frequency           | Measured at MCLK                        | 3.0 V           |       | 32768 |       | Hz   |
|                                          | REFO absolute calibrated tolerance  | -40°C to 85°C                           | 1.8 V to 3.6 V  | -3.5% |       | +3.5% |      |
| df <sub>REFO</sub> /d <sub>T</sub>       | REFO frequency temperature drift    | Measured at MCLK <sup>(1)</sup>         | 3.0 V           |       | 0.01  |       | %/°C |
| df <sub>REFO</sub> /<br>d <sub>VCC</sub> | REFO frequency supply voltage drift | Measured at MCLK at 25°C <sup>(2)</sup> | 1.8 V to 3.6 V  |       | 1     |       | %/V  |
| $f_{DC}$                                 | REFO duty cycle                     | Measured at MCLK                        | 1.8V to 3.6 V   | 40%   | 50%   | 60%   |      |
| t <sub>START</sub>                       | REFO start-up time                  | 40% to 60% duty cycle                   |                 |       | 50    |       | μs   |

- (1) Calculated using the box method:  $(MAX(-40^{\circ}C \text{ to } 85^{\circ}C) MIN(-40^{\circ}C \text{ to } 85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } 85^{\circ}C) / (85^{\circ}C (-40^{\circ}C))$
- (2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)

#### 8.12.3.5 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                                     | PARAMETER                          | TEST CONDITIONS                 | V <sub>CC</sub> | MIN TYP MAX | UNIT |
|-------------------------------------|------------------------------------|---------------------------------|-----------------|-------------|------|
| f <sub>VLO</sub>                    | VLO frequency                      | Measured at MCLK                | 3.0 V           | 10          | kHz  |
| df <sub>VLO</sub> /d <sub>T</sub>   | VLO frequency temperature drift    | Measured at MCLK <sup>(1)</sup> | 3.0 V           | 0.5         | %/°C |
| df <sub>VLO</sub> /dV <sub>CC</sub> | VLO frequency supply voltage drift | Measured at MCLK(2)             | 1.8 V to 3.6 V  | 4           | %/V  |
| f                                   | Duty cycle                         | Measured at MCLK                | 3.0 V           | 50%         |      |

- (1) Calculated using the box method:  $(MAX(-40^{\circ}C \text{ to } 85^{\circ}C) MIN(-40^{\circ}C \text{ to } 85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } 85^{\circ}C) / (85^{\circ}C (-40^{\circ}C))$
- (2) Calculated using the box method: (MAX(1.8 V to 3.6 V) MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V 1.8 V)

#### Note

The VLO clock frequency is reduced by 15% (typical) when the device switches from active mode to LPM3 or LPM4, because the reference changes. This lower frequency is not a violation of the VLO specifications (see Section 8.12.3.5).

#### 8.12.3.6 Module Oscillator (MODOSC)

|                                       | PARAMETER                             | V <sub>cc</sub> | MIN | TYP   | MAX | UNIT |
|---------------------------------------|---------------------------------------|-----------------|-----|-------|-----|------|
| f <sub>MODOSC</sub>                   | MODOSC frequency                      | 3.0 V           | 3.8 | 4.8   | 5.8 | MHz  |
| f <sub>MODOSC</sub> /dT               | MODOSC frequency temperature drift    | 3.0 V           |     | 0.102 |     | %/°C |
| f <sub>MODOSC</sub> /dV <sub>CC</sub> | MODOSC frequency supply voltage drift | 1.8 V to 3.6 V  |     | 2.29  |     | %/V  |
| f <sub>MODOSC,DC</sub>                | Duty cycle                            | 3.0 V           | 40% | 50%   | 60% |      |



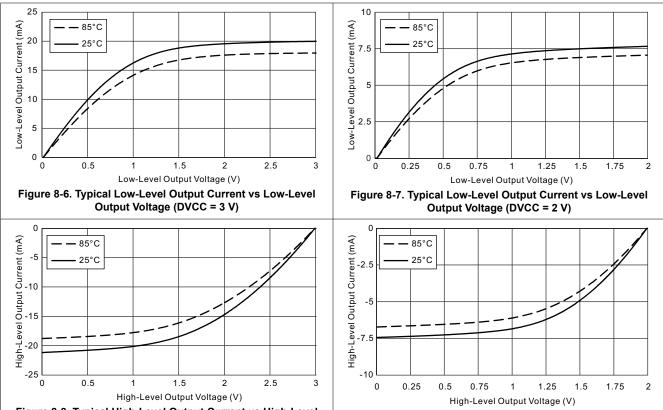
## 8.12.4 Digital I/Os

#### 8.12.4.1 Digital Inputs

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                        | PARAMETER                                                                                        | TEST CONDITIONS                                                                                  | V <sub>CC</sub> | MIN  | TYP | MAX  | UNIT       |
|------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|------|-----|------|------------|
| V                      | Positive-going input threshold voltage                                                           |                                                                                                  | 2 V             | 0.90 |     | 1.50 | V          |
| V <sub>IT+</sub>       | Positive-going input the shold voltage                                                           |                                                                                                  | 3 V             | 1.35 |     | 2.25 | , <b>v</b> |
| V <sub>IT</sub> _      | Negative-going input threshold voltage                                                           |                                                                                                  | 2 V             | 0.50 |     | 1.10 | V          |
| VIT-                   | Negative-going input tilleshold voltage                                                          |                                                                                                  | 3 V             | 0.75 |     | 1.65 | ·          |
| V                      | Input voltage hysteresis (V <sub>IT+</sub> – V <sub>IT-</sub> )                                  |                                                                                                  | 2 V             | 0.3  |     | 0.8  | V          |
| V <sub>hys</sub>       |                                                                                                  |                                                                                                  | 3 V             | 0.4  |     | 1.2  | , <b>v</b> |
| R <sub>Pull</sub>      | Pullup or pulldown resistor                                                                      | For pullup: V <sub>IN</sub> = V <sub>SS</sub><br>For pulldown: V <sub>IN</sub> = V <sub>CC</sub> |                 | 20   | 35  | 50   | kΩ         |
| C <sub>I,dig</sub>     | Input capacitance, digital only port pins                                                        | V <sub>IN</sub> = V <sub>SS</sub> or V <sub>CC</sub>                                             |                 |      | 3   |      | pF         |
| C <sub>I,ana</sub>     | Input capacitance, port pins with shared analog functions                                        | V <sub>IN</sub> = V <sub>SS</sub> or V <sub>CC</sub>                                             |                 |      | 5   |      | pF         |
| I <sub>lkg(Px.y)</sub> | High-impedance leakage current <sup>(1)</sup> (2)                                                |                                                                                                  | 2 V, 3 V        | -20  |     | +20  | nA         |
| t <sub>(int)</sub>     | External interrupt timing (external trigger pulse duration to set interrupt flag) <sup>(3)</sup> | Ports with interrupt capability<br>(see block diagram<br>and terminal function<br>descriptions)  | 2 V, 3 V        | 50   |     |      | ns         |

- (1) The leakage current is measured with  $V_{SS}$  or  $V_{CC}$  applied to the corresponding pins, unless otherwise noted.
- (2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.
- (3) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t<sub>(int)</sub> is met. It may be set by trigger signals shorter than t<sub>(int)</sub>.


#### 8.12.4.2 Digital Outputs

|                       | PARAMETER                                                           | TEST CONDITIONS                       | V <sub>CC</sub> | MIN | TYP | MAX  | UNIT    |  |
|-----------------------|---------------------------------------------------------------------|---------------------------------------|-----------------|-----|-----|------|---------|--|
| V <sub>OH</sub>       | High-level output voltage (also see Figure 8-8 and                  | $I_{(OHmax)} = -3 \text{ mA}^{(1)}$   | 2.0 V           | 1.4 |     | 2.0  | V       |  |
| VOH                   | Figure 8-9)                                                         | $I_{(OHmax)} = -5 \text{ mA}^{(1)}$   | 3.0 V           | 2.4 |     | 3.0  | V       |  |
| V <sub>OL</sub>       | Low-level output voltage (also see Figure 8-6 and                   | $I_{(OLmax)} = 3 \text{ mA}^{(1)}$    | 2.0 V           | 0.0 |     | 0.60 | V       |  |
|                       | Figure 8-7)                                                         | $I_{(OLmax)} = 5 \text{ mA}^{(1)}$    | 3.0 V           | 0.0 |     | 0.60 | V       |  |
| f                     | Clock output frequency                                              | C <sub>L</sub> = 20 pF <sup>(2)</sup> | 2.0 V           | 16  |     |      | MHz     |  |
| f <sub>Port_CLK</sub> |                                                                     |                                       | 3.0 V           | 16  |     |      | IVII IZ |  |
| +                     | Port output rise time, digital only port pine                       | 0 00 F                                | 2.0 V           |     | 10  |      | no      |  |
| t <sub>rise,dig</sub> | Port output rise time, digital only port pins $C_L = 20 \text{ pF}$ | C <sub>L</sub> = 20 μF                | 3.0 V           |     | 7   |      | ns      |  |
| t                     | Port output fall time, digital only port pins                       | 0 00 5                                | 2.0 V           |     | 10  |      | ne      |  |
| t <sub>fall,dig</sub> | For output fair time, digital only port plins                       | C <sub>L</sub> = 20 pF                | 3.0 V           |     | 5   |      | ns      |  |

<sup>(1)</sup> The maximum total current, I<sub>(OHmax)</sub> and I<sub>(OLmax)</sub>, for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

<sup>(2)</sup> The port can output frequencies at least up to the specified limit and might support higher frequencies.

## 8.12.4.3 Digital I/O Typical Characteristics





#### 8.12.5 VREF+ Built-in Reference

#### Note

The 1.2-V reference that is available for external use is specified below. The 1.5-V reference is available only for internal use by analog modules. Therefore, the accuracy of the 1.5-V reference is included in the ADC specifications.

#### 8.12.5.1 VREF+ Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                    | PARAMETER                                             | TEST CONDITIONS                     | V <sub>CC</sub> | MIN   | TYP | MAX   | UNIT  |
|--------------------|-------------------------------------------------------|-------------------------------------|-----------------|-------|-----|-------|-------|
| V <sub>REF+</sub>  | Positive built-in reference voltage                   | EXTREFEN = 1 with 1-mA load current | 2.0 V,<br>3.0 V | 1.158 | 1.2 | 1.242 | V     |
| TC <sub>REF+</sub> | Temperature coefficient of built-in reference voltage | EXTREFEN = 1 with 1-mA load current |                 |       | 30  |       | μV/°C |

## 8.12.6 Timer\_B

## 8.12.6.1 Timer\_B

|                     | PARAMETER                     | TEST CONDITIONS                                                       | V <sub>cc</sub> | MIN | MAX | UNIT |
|---------------------|-------------------------------|-----------------------------------------------------------------------|-----------------|-----|-----|------|
| f <sub>TB</sub>     | Timer_B input clock frequency | Internal: SMCLK or ACLK,<br>External: TBCLK,<br>duty cycle = 50% ±10% | 2.0 V, 3.0 V    |     | 16  | MHz  |
| t <sub>TB,cap</sub> | Timer_B capture timing        | All capture inputs, minimum pulse duration required for capture       | 2.0 V, 3.0 V    | 20  |     | ns   |



#### 8.12.7 eUSCI

#### 8.12.7.1 eUSCI (UART Mode) Clock Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                     | PARAMETER                                          | TEST CONDITIONS                                                        | V <sub>CC</sub> | MIN MAX | UNIT |
|---------------------|----------------------------------------------------|------------------------------------------------------------------------|-----------------|---------|------|
| f <sub>eUSCI</sub>  | eUSCI input clock frequency                        | Internal: SMCLK or MODCLK,<br>External: UCLK,<br>duty cycle = 50% ±10% | 2.0 V, 3.0 V    | 16      | MHz  |
| f <sub>BITCLK</sub> | BITCLK clock frequency (equals baud rate in Mbaud) |                                                                        | 2.0 V, 3.0 V    | 5       | MHz  |

#### 8.12.7.2 eUSCI (UART Mode) Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|    | PARAMETER                       | TEST CONDITIONS | V <sub>cc</sub> | MIN | TYP | MAX | UNIT |  |
|----|---------------------------------|-----------------|-----------------|-----|-----|-----|------|--|
|    |                                 | UCGLITx = 0     |                 |     | 12  |     | _    |  |
| ١. | LIADT receive declitch time (1) | UCGLITx = 1     | 201/201/        |     | 40  |     |      |  |
| ľ  | UART receive deglitch time (1)  | UCGLITx = 2     | 2.0 V, 3.0 V    |     | ns  |     |      |  |
|    |                                 | UCGLITx = 3     |                 |     | 110 |     |      |  |

<sup>(1)</sup> Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time.

#### 8.12.7.3 eUSCI (SPI Master Mode) Clock Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                    | PARAMETER                    | TEST CONDITIONS                                     | MIN | MAX | UNIT |
|--------------------|------------------------------|-----------------------------------------------------|-----|-----|------|
| f <sub>eUSCI</sub> | eLISCI input clock frequency | Internal: SMCLK or MODCLK,<br>duty cycle = 50% ±10% |     | 8   | MHz  |

#### 8.12.7.4 eUSCI (SPI Master Mode) Switching Characteristics

|                       | PARAMETER                                  | TEST CONDITIONS                   | V <sub>cc</sub> | MIN | MAX | UNIT          |
|-----------------------|--------------------------------------------|-----------------------------------|-----------------|-----|-----|---------------|
| t <sub>STE,LEAD</sub> | STE lead time, STE active to clock         | UCSTEM = 1,<br>UCMODEx = 01 or 10 | 3.0 V           | 1   |     | UCxCLK cycles |
| t <sub>STE,LAG</sub>  | STE lag time, Last clock to STE inactive   | UCSTEM = 1,<br>UCMODEx = 01 or 10 | 3.0 V           | 1   |     | UCxCLK cycles |
| t <sub>SU,MI</sub>    | COMI input data actus time                 |                                   | 2.0 V           | 53  |     | 20            |
|                       | SOMI input data setup time                 |                                   | 3.0 V           | 35  |     | ns            |
|                       | COM in root data hald time                 |                                   | 2.0 V           | 0   |     | no            |
| t <sub>HD,MI</sub>    | SOMI input data hold time                  |                                   | 3.0 V           | 0   |     | ns            |
|                       | CIMO output data valid time(2)             | UCLK edge to SIMO valid,          | 2.0 V           |     | 20  |               |
| t <sub>VALID,MO</sub> | SIMO output data valid time <sup>(2)</sup> | C <sub>L</sub> = 20 pF            | 3.0 V           |     | 20  | ns            |
| t <sub>HD,MO</sub>    | SIMO output data hold time <sup>(3)</sup>  | C = 20 »F                         | 2.0 V           | 0   |     | no            |
|                       |                                            | $C_L = 20 \text{ pF}$             | 3.0 V           | 0   |     | ns            |

<sup>(1)</sup>  $f_{UCxCLK} = 1/2t_{LO/HI}$  with  $t_{LO/HI} = max(t_{VALID,MO(eUSCI)} + t_{SU,SI(Slave)}, t_{SU,MI(eUSCI)} + t_{VALID,SO(Slave)})$ 

For the slave parameters  $t_{SU,SI(Slave)}$  and  $t_{VALID,SO(Slave)}$ , see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 8-10 and Figure 8-11.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 8-10 and Figure 8-11.



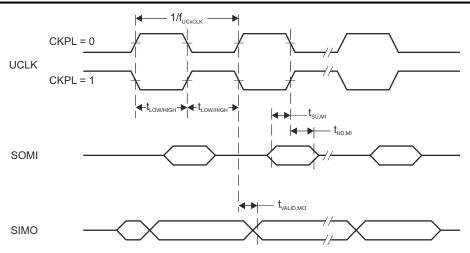



Figure 8-10. SPI Master Mode, CKPH = 0

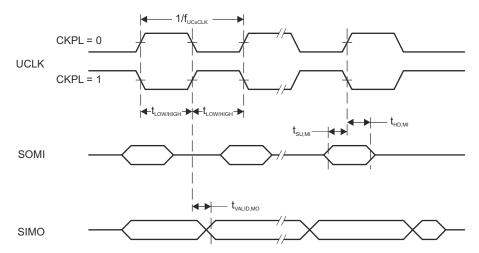



Figure 8-11. SPI Master Mode, CKPH = 1

#### 8.12.7.5 eUSCI (SPI Slave Mode) Switching Characteristics

|                        | PARAMETER                                             | TEST CONDITIONS          | V <sub>cc</sub> | MIN | MAX | UNIT |
|------------------------|-------------------------------------------------------|--------------------------|-----------------|-----|-----|------|
| 4                      | CTT lead time CTT active to cleak                     |                          | 2.0 V           | 55  |     |      |
| t <sub>STE,LEAD</sub>  | STE lead time, STE active to clock                    |                          | 3.0 V           | 45  |     | ns   |
| +                      | STE log time lost clock to STE inactive               |                          | 2.0 V           | 20  |     | no   |
| t <sub>STE,LAG</sub>   | STE lag time, last clock to STE inactive              |                          | 3.0 V           | 20  |     | ns   |
| 4                      | STE access time, STE active to SOMI data out          |                          | 2.0 V           |     | 65  |      |
| t <sub>STE,ACC</sub>   | STE access time, STE active to SOMI data out          |                          | 3.0 V           |     | 40  | ns   |
| t <sub>STE,DIS</sub>   | STE disable time, STE inactive to SOMI high impedance |                          | 2.0 V           |     | 50  | no   |
|                        |                                                       |                          | 3.0 V           |     | 35  | ns   |
| 4                      | CIMO insult data action times                         |                          | 2.0 V           | 10  |     |      |
| t <sub>SU,SI</sub>     | SIMO input data setup time                            |                          | 3.0 V           | 8   |     | ns   |
| 4                      | CIMO input data hald time                             |                          | 2.0 V           | 12  |     |      |
| t <sub>HD,SI</sub>     | SIMO input data hold time                             |                          | 3.0 V           | 12  |     | ns   |
| 4                      | COM output data valid time(2)                         | UCLK edge to SOMI valid, | 2.0 V           |     | 68  |      |
| t <sub>VALID,</sub> SO | SOMI output data valid time <sup>(2)</sup>            | C <sub>L</sub> = 20 pF   | 3.0 V           |     | 42  | ns   |
| t <sub>HD,SO</sub>     | SOMI output data hold time <sup>(3)</sup>             | C <sub>L</sub> = 20 pF   | 2.0 V           | 5   |     | ns   |
|                        |                                                       |                          | 3.0 V           | 5   |     |      |

<sup>(1)</sup>  $f_{UCXCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \geq \max(t_{VALID,MO(Master)} + t_{SU,SI(eUSCI)}, t_{SU,MI(Master)} + t_{VALID,SO(eUSCI)})$  For the master parameters  $t_{SU,MI(Master)}$  and  $t_{VALID,MO(Master)}$ , see the SPI parameters of the attached master.

<sup>(2)</sup> Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 8-12 and Figure 8-13.

<sup>(3)</sup> Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 8-12 and Figure 8-13.



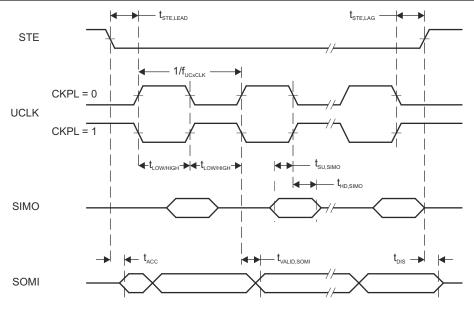



Figure 8-12. SPI Slave Mode, CKPH = 0

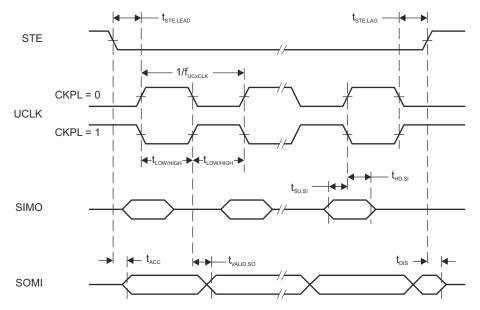



Figure 8-13. SPI Slave Mode, CKPH = 1



#### 8.12.8 ADC

Note

The ADC is not available on the MSP430FR2000 device.

## 8.12.8.1 ADC, Power Supply and Input Range Conditions

over operating free-air temperature range (unless otherwise noted)

|                     | PARAMETER                                                            | TEST CONDITIONS                                                                                                    | Vcc   | MIN | TYP | MAX              | UNIT |
|---------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------|-----|-----|------------------|------|
| DV <sub>CC</sub>    | ADC supply voltage                                                   |                                                                                                                    |       | 2.0 |     | 3.6              | V    |
| V <sub>(Ax)</sub>   | Analog input voltage range                                           | All ADC pins                                                                                                       |       | 0   |     | DV <sub>CC</sub> | V    |
|                     | Operating supply current into DVCC                                   | f <sub>ADCCLK</sub> = 5 MHz, ADCON = 1,                                                                            | 2 V   |     | 185 |                  | μА   |
| I <sub>ADC</sub>    | terminal, reference current not included, repeat-single-channel mode | REFON = 0, SHT0 = 0, SHT1 = 0,<br>ADCDIV = 0, ADCCONSEQx = 10b                                                     | 3 V   |     | 207 |                  |      |
| Cı                  | Input capacitance                                                    | Only one terminal Ax can be selected at one time from the pad to the ADC capacitor array, including wiring and pad | 2.2 V |     | 2.5 | 3.5              | pF   |
| R <sub>I,MUX</sub>  | Input MUX ON resistance                                              | $DV_{CC} = 2 \text{ V}, 0 \text{ V} \leq V_{Ax} \leq DV_{CC}$                                                      |       |     |     | 2                | kΩ   |
| R <sub>I,Misc</sub> | Input miscellaneous resistance                                       |                                                                                                                    |       |     | 34  |                  | kΩ   |

## 8.12.8.2 ADC, 10-Bit Timing Parameters

over operating free-air temperature range (unless otherwise noted)

|                      | PARAMETER                        | TEST CONDITIONS                                                                                                                   | V <sub>cc</sub> | MIN  | TYP                   | MAX  | UNIT |
|----------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-----------------------|------|------|
| f <sub>ADCCLK</sub>  |                                  | For specified performance of ADC linearity parameters                                                                             | 2 V to 3.6 V    | 0.45 | 5                     | 5.5  | MHz  |
| f <sub>ADCOSC</sub>  | Internal ADC oscillator (MODOSC) | ADCDIV = 0, f <sub>ADCCLK</sub> = f <sub>ADCOSC</sub>                                                                             | 2 V to 3.6 V    | 3.8  | 4.8                   | 5.8  | MHz  |
| t <sub>CONVERT</sub> | Conversion time                  | REFON = 0, Internal oscillator,<br>10 ADCCLK cycles, 10-bit mode,<br>f <sub>ADCOSC</sub> = 4.5 MHz to 5.5 MHz                     | 2 V to 3.6 V    | 2.18 |                       | 2.67 | μs   |
|                      |                                  | External f <sub>ADCCLK</sub> from ACLK, MCLK or SMCLK, ADCSSEL ≠ 0                                                                | 2V to 3.6V      | f    | 12 ×<br>1 /<br>ADCCLK |      |      |
| t <sub>ADCON</sub>   | Turn-on settling time of the ADC | The error in a conversion started after t <sub>ADCON</sub> is less than ±0.5 LSB. Reference and input signal are already settled. |                 |      |                       | 100  | ns   |
| t <sub>Sample</sub>  | Sampling time                    | $R_S = 1000 \Omega$ , $R_I$ (1) = 36000 $\Omega$ , $C_I = 3.5 pF$ ,                                                               | 2 V             | 1.5  |                       |      |      |
|                      |                                  | Approximately 8 Tau (t) are required for an error of less than ±0.5 LSB <sup>(2)</sup>                                            | 3 V             | 2.0  |                       |      | μs   |

 $<sup>\</sup>begin{aligned} R_{I} &= R_{I,MUX} + R_{I,Misc} \\ t_{Sample} &= In(2^{n+1}) \times \tau, \text{ where } n = ADC \text{ resolution, } \tau = (R_{I} + R_{S}) \times C_{I} \end{aligned}$ 



#### 8.12.8.3 ADC, 10-Bit Linearity Parameters

over operating free-air temperature range (unless otherwise noted)

|                              | PARAMETER                                  | TEST CONDITIONS                                                                               | V <sub>CC</sub> | MIN   | TYP  | MAX  | UNIT  |
|------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|-------|------|------|-------|
| Е                            | Integral linearity error (10-bit mode)     | Veref+ reference                                                                              | 2.4 V to 3.6 V  | -2    |      | 2    | LSB   |
| Eı                           | Integral linearity error (8-bit mode)      | Vereit reference                                                                              | 2.0 V to 3.6 V  | -2    |      | 2    | LOD   |
| _                            | Differential linearity error (10-bit mode) | Veref+ reference                                                                              | 2.4 V to 3.6 V  | -1    |      | 1    | LSB   |
| E <sub>D</sub>               | Differential linearity error (8-bit mode)  | Verei+ reference                                                                              | 2.0 V to 3.6 V  | -1    |      | 1    | LOD   |
| F                            | Offset error (10-bit mode)                 | 2.4 V to                                                                                      |                 | -6.5  |      | 6.5  | mV    |
| Eo                           | Offset error (8-bit mode)                  | Veref+ reference                                                                              | 2.0 V to 3.6 V  | -6.5  |      | 6.5  | mv    |
|                              | Gain error (10-bit mode)                   | Veref+ as reference                                                                           | 2.4 V to 3.6 V  | -2.0  |      | 2.0  | LSB   |
| _                            |                                            | Internal 1.5-V reference                                                                      | 2.4 V tO 3.6 V  | -3.0% |      | 3.0% |       |
| E <sub>G</sub>               | Gain error (8-bit mode)                    | Veref+ as reference                                                                           | 2.0 V to 3.6 V  | -2.0  |      | 2.0  | LSB   |
|                              | Gain error (o-bit mode)                    | Internal 1.5-V reference                                                                      | 2.0 V to 3.0 V  | -3.0% |      | 3.0% |       |
|                              | Total unadjusted error (10-bit mode)       | Veref+ as reference                                                                           | 2.4 V to 3.6 V  | -2.0  |      | 2.0  | LSB   |
| _                            |                                            | Internal 1.5-V reference                                                                      |                 | -3.0% |      | 3.0% |       |
| E <sub>T</sub>               | Total aditad a (O bit                      | Veref+ as reference                                                                           | 2.0 V to 3.6 V  | -2.0  |      | 2.0  | LSB   |
|                              | Total unadjusted error (8-bit mode)        | Internal 1.5-V reference                                                                      | 2.0 V to 3.0 V  | -3.0% |      | 3.0% |       |
| V <sub>SENSOR</sub>          | See <sup>(1)</sup>                         | ADCON = 1, INCH = 0Ch,<br>T <sub>A</sub> = 0°C                                                | 3.0 V           |       | 913  |      | mV    |
| TC <sub>SENSOR</sub>         | See <sup>(2)</sup>                         | ADCON = 1, INCH = 0Ch                                                                         | 3.0 V           |       | 3.35 |      | mV/°C |
| t <sub>SENSOR</sub> (sample) | Sample time required if channel 12 is      | ADCON = 1, INCH = 0Ch,<br>Error of conversion result<br>≤1 LSB, AM and all LPMs<br>above LPM3 | 3.0 V           | 30    |      |      | μs    |
|                              | selected                                   | ADCON = 1, INCH = 0Ch,<br>Error of conversion result<br>≤1 LSB, LPM3                          | 3.0 V           | 100   |      |      | -     |

<sup>(1)</sup> The temperature sensor offset can vary significantly. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor.

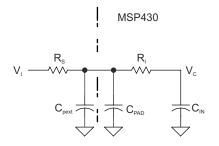
<sup>(2)</sup> The device descriptor structure contains calibration values for 30°C and 85°C for each available reference voltage level. The sensor voltage can be computed as V<sub>SENSOR</sub> × (Temperature, °C) + V<sub>SENSOR</sub>, where TC<sub>SENSOR</sub> and V<sub>SENSOR</sub> can be computed from the calibration values for higher accuracy.



## 8.12.9 Enhanced Comparator (eCOMP)

## 8.12.9.1 eCOMP Characteristics

|                     | PARAMETER                                   | TEST CONDITIONS                                                                                            | V <sub>CC</sub>  | MIN TYP         | MAX  | UNIT |  |
|---------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------|-----------------|------|------|--|
| V <sub>CC</sub>     | Supply voltage                              |                                                                                                            |                  | 2.0             | 3.6  | V    |  |
| V <sub>IC</sub>     | Common-mode input range                     |                                                                                                            |                  | 0               | VCC  | V    |  |
|                     |                                             | CPEN = 1, CPHSEL = 00                                                                                      |                  | 0               |      |      |  |
|                     |                                             | CPEN = 1, CPHSEL = 01                                                                                      |                  | 10              |      |      |  |
| V <sub>HYS</sub>    | DC input hysteresis                         | CPEN = 1, CPHSEL = 10                                                                                      | 2.0 V to 3.6 V   | 20              |      | mV   |  |
|                     |                                             | CPEN = 1, CPHSEL = 11                                                                                      |                  | 30              |      |      |  |
|                     |                                             | CPEN = 1, CPMSEL = 0, CPHSEL = 00                                                                          |                  | -40 ±5          | +40  |      |  |
| V <sub>OFFSET</sub> | Input offset voltage                        | CPEN = 1, CPMSEL = 1, CPHSEL = 00                                                                          | 2.0 V to 3.6 V   | ±10             |      | mV   |  |
|                     | Quiescent current draw                      | V <sub>IC</sub> = V <sub>CC</sub> /2, CPEN = 1, CPMSEL = 0                                                 |                  | 22              | 35   |      |  |
| I <sub>COMP</sub>   | from VCC, only comparator                   | V <sub>IC</sub> = V <sub>CC</sub> /2, CPEN = 1, CPMSEL = 1                                                 | 2.0 V to 3.6 V   | 1.3             | 3.5  | μA   |  |
| I <sub>DAC</sub>    | Quiescent current draw from VCC, only DAC   | CPDACREFS = 0, CPEN = 0                                                                                    | 2.0 V to 3.6 V   | 0.5             |      | μΑ   |  |
| C <sub>IN</sub>     | Input channel capacitance <sup>(1)</sup>    |                                                                                                            | 2.0 V to 3.6 V   | 1               |      | pF   |  |
| В                   | Input channel series                        | On (switch closed)                                                                                         | 2.0.\/ to 2.6.\/ | 10              | 20   | kΩ   |  |
| R <sub>IN</sub>     | resistance                                  | Off (switch open)                                                                                          | 2.0 V to 3.6 V   | 50              |      | МΩ   |  |
|                     | Propagation delay,                          | CPMSEL = 0, CPFLT = 0,<br>Overdrive = 20 mV <sup>(2)</sup>                                                 | 0.01/1.001/      |                 | 1    |      |  |
| t <sub>PD</sub>     | response time                               | CPMSEL = 1, CPFLT = 0,<br>Overdrive = 20 mV <sup>(2)</sup>                                                 | 2.0 V to 3.6 V   | 2.4             |      | μs   |  |
| t <sub>EN_CP</sub>  | Comparator enable                           | CPEN = 0→1, CPMSEL = 0,<br>V+ and V- from pads, Overdrive = 20 mV <sup>(2)</sup>                           |                  | 9.3             |      | μs   |  |
|                     | time                                        | CPEN = 0→1, CPMSEL = 1,<br>V+ and V- from pads, Overdrive = 20 mV <sup>(2)</sup>                           | 2.0 V to 3.6 V   | 12              |      |      |  |
|                     | Comparator with                             | CPEN = 0→1, CPDACEN=0→1,<br>CPMSEL = 0, CPDACREFS = 1,<br>CPDACBUF1 = 0F, Overdrive = 20 mV <sup>(2)</sup> | 201/4-201/       | 9.3             |      |      |  |
| ten_cp_dac          | reference DAC enable time                   | CPEN = 0→1, CPDACEN=0→1,<br>CPMSEL = 1, CPDACREFS = 1,<br>CPDACBUF1 = 0F, Overdrive = 20 mV (2)            | 2.0 V to 3.6 V   | 113             |      | μs   |  |
|                     |                                             | CPMSEL = 0, CPFLTDY = 00,<br>Overdrive = 20 mV, <sup>(2)</sup><br>CPFLT = 1                                |                  | 0.7             |      |      |  |
| t <sub>FDLY</sub>   | Propagation delay with analog filter active | CPMSEL = 0, CPFLTDY = 01,<br>Overdrive = 20 mV, <sup>(2)</sup><br>CPFLT = 1                                | 2.0 V to 3.6 V   | 1.1             |      | μs   |  |
|                     |                                             | CPMSEL = 0, CPFLTDY = 10,<br>Overdrive = 20 mV, <sup>(2)</sup> CPFLT = 1                                   |                  | 1.9             |      |      |  |
|                     |                                             | CPMSEL = 0, CPFLTDY = 11,<br>Overdrive = 20 mV, <sup>(2)</sup> CPFLT = 1                                   |                  | 3.7             |      |      |  |
| .,                  | Reference voltage for                       | VIN = reference into 6-bit DAC,<br>DAC uses internal REF, n = 0 to 63                                      | 0.074+ 0.074     | VIN ×<br>n / 64 |      |      |  |
| V <sub>CP_DAC</sub> | built-in 6-bit DAC                          | VIN = reference into 6-bit DAC,<br>DAC uses VCC as REF, n = 0 to 63                                        | 2.0 V to 3.6 V   | VIN ×<br>n / 64 |      | V    |  |
| INL                 | Integral nonlinearity                       |                                                                                                            | 2.0 V to 3.6 V   | -0.5            | +0.5 | LSB  |  |
| DNL                 | Differential nonlinearity                   |                                                                                                            | 2.0 V to 3.6 V   | -0.5            | +0.5 | LSB  |  |
|                     | Zero scale                                  |                                                                                                            | 2.0 V to 3.6 V   | 0               |      | LSB  |  |




#### 8.12.9.1 eCOMP Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

| PARAMETER                           | TEST CONDITIONS | V <sub>CC</sub> | MIN | TYP | MAX | UNIT |
|-------------------------------------|-----------------|-----------------|-----|-----|-----|------|
| I <sub>DACOFF</sub> Leakage current |                 | 2.0 V to 3.6 V  |     | 5   |     | nA   |

- For the eCOMP C<sub>IN</sub> model, see Figure 8-14.
- This is measured over the input offset.



V<sub>1</sub> = External source voltage R<sub>s</sub> = External source resistance R<sub>1</sub> = Internal MUX-on input resistance

C<sub>IN</sub> = Input capacitance

 $C_{PAD} = PAD$  capacitance  $C_{Pext} = Parasitic capacitance, external$  $V_c$  = Capacitance-charging voltage

Figure 8-14. eCOMP Input Circuit

#### 8.12.10 FRAM

#### 8.12.10.1 FRAM Characteristics

|                        | PARAMETER                  | TEST CONDITIONS       | MIN              | TYP N                                  | IAX | UNIT   |
|------------------------|----------------------------|-----------------------|------------------|----------------------------------------|-----|--------|
|                        | Read and write endurance   |                       | 10 <sup>15</sup> |                                        |     | cycles |
|                        |                            | T <sub>J</sub> = 25°C | 100              |                                        |     |        |
| t <sub>Retention</sub> | Data retention duration    | T <sub>J</sub> = 70°C | 40               |                                        |     | years  |
|                        |                            | T <sub>J</sub> = 85°C | 10               |                                        |     |        |
| I <sub>WRITE</sub>     | Current to write into FRAM |                       |                  | I <sub>READ</sub> (1)                  |     | nA     |
| I <sub>ERASE</sub>     | Erase current              |                       | ,                | n/a <sup>(2)</sup>                     |     |        |
| t <sub>WRITE</sub>     | Write time                 |                       | ,                | t <sub>READ</sub> (3)                  |     | ns     |
| 1                      | Read time, NWAITSx = 0     |                       |                  | 1 / f <sub>SYSTEM</sub> <sup>(4)</sup> |     | ns     |
| IREAD                  | Read time, NWAITSx = 1     |                       |                  | 2 / f <sub>SYSTEM</sub> <sup>(4)</sup> |     | ns     |

- (1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read current I<sub>READ</sub> is included in the active mode current consumption I<sub>AM, FRAM</sub>.
- (2) n/a = not applicable. FRAM does not require a special erase sequence.
- (3) Writing to FRAM is as fast as reading.
- The maximum read (and write) speed is specified by f<sub>SYSTEM</sub> using the appropriate wait state settings (NWAITSx). (4)

#### 8.12.11 Emulation and Debug

#### 8.12.11.1 JTAG, Spy-Bi-Wire Interface

|                            | PARAMETER                                                                           | V <sub>CC</sub> | MIN   | TYP MAX | UNIT |
|----------------------------|-------------------------------------------------------------------------------------|-----------------|-------|---------|------|
| f <sub>SBW</sub>           | Spy-Bi-Wire input frequency                                                         | 2.0 V, 3.0 V    | 0     | 8       | MHz  |
| t <sub>SBW,Low</sub>       | Spy-Bi-Wire low clock pulse duration                                                | 2.0 V, 3.0 V    | 0.028 | 15      | μs   |
| t <sub>SU,SBWTDIO</sub>    | SBWTDIO setup time (before falling edge of SBWTCK in TMS and TDI slot Spy-Bi-Wire ) | 2.0 V, 3.0 V    | 4     |         | ns   |
| t <sub>HD,SBWTDIO</sub>    | SBWTDIO hold time (after rising edge of SBWTCK in TMS and TDI slot Spy-Bi-Wire )    | 2.0 V, 3.0 V    | 19    |         | ns   |
| t <sub>Valid,SBWTDIO</sub> | SBWTDIO data valid time (after falling edge of SBWTCK in TDO slot Spy-Bi-Wire )     | 2.0 V, 3.0 V    |       | 31      | ns   |
| t <sub>SBW, En</sub>       | Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)               | 2.0 V, 3.0 V    |       | 110     | μs   |
| t <sub>SBW,Ret</sub>       | Spy-Bi-Wire return to normal operation time <sup>(2)</sup>                          | 2.0 V, 3.0 V    | 15    | 100     | μs   |

- (1) Tools that access the Spy-Bi-Wire interface must wait for the t<sub>SBW,En</sub> time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.
- (2) Maximum t<sub>SBW,Rst</sub> time after pulling or releasing the TEST/SBWTCK pin low, the Spy-Bi-Wire pins revert from their Spy-Bi-Wire function to their application function. This time applies only if the Spy-Bi-Wire mode was selected.

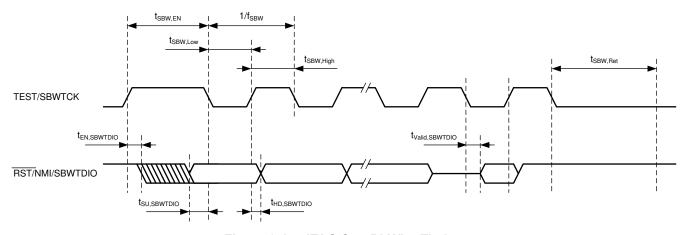



Figure 8-15. JTAG Spy-Bi-Wire Timing



# 8.12.11.2 JTAG, 4-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-16)

|                          | PARAMETER                                                           | V <sub>cc</sub> | MIN | TYP | MAX | UNIT |
|--------------------------|---------------------------------------------------------------------|-----------------|-----|-----|-----|------|
| f <sub>TCK</sub>         | TCK input frequency <sup>(1)</sup>                                  | 2.0 V, 3.0 V    | 0   |     | 10  | MHz  |
| t <sub>TCK,Low</sub>     | TCK low clock pulse duration                                        | 2.0 V, 3.0 V    | 15  |     |     | ns   |
| t <sub>TCK,high</sub>    | TCK high clock pulse duration                                       | 2.0 V, 3.0 V    | 15  |     |     | ns   |
| t <sub>SU,TMS</sub>      | TMS setup time (before rising edge of TCK)                          | 2.0 V, 3.0 V    | 11  |     |     | ns   |
| t <sub>HD,TMS</sub>      | TMS hold time (after rising edge of TCK)                            | 2.0 V, 3.0 V    | 3   |     |     | ns   |
| t <sub>SU,TDI</sub>      | TDI setup time (before rising edge of TCK)                          | 2.0 V, 3.0 V    | 13  |     |     | ns   |
| t <sub>HD,TDI</sub>      | TDI hold time (after rising edge of TCK)                            | 2.0 V, 3.0 V    | 5   |     |     | ns   |
| t <sub>z-Valid,TDO</sub> | TDO high impedance to valid output time (after falling edge of TCK) | 2.0 V, 3.0 V    |     |     | 26  | ns   |
| t <sub>Valid,TDO</sub>   | TDO to new valid output time (after falling edge of TCK)            | 2.0 V, 3.0 V    |     |     | 26  | ns   |
| t <sub>Valid-Z,TDO</sub> | TDO valid to high-impedance output time (after falling edge of TCK) | 2.0 V, 3.0 V    |     | ,   | 26  | ns   |
| t <sub>JTAG,Ret</sub>    | JTAG return to normal operation time                                |                 | 15  |     | 100 | μs   |
| R <sub>internal</sub>    | Internal pulldown resistance on TEST                                | 2.0 V, 3.0 V    | 20  | 35  | 50  | kΩ   |

(1) f<sub>TCK</sub> may be restricted to meet the timing requirements of the module selected.

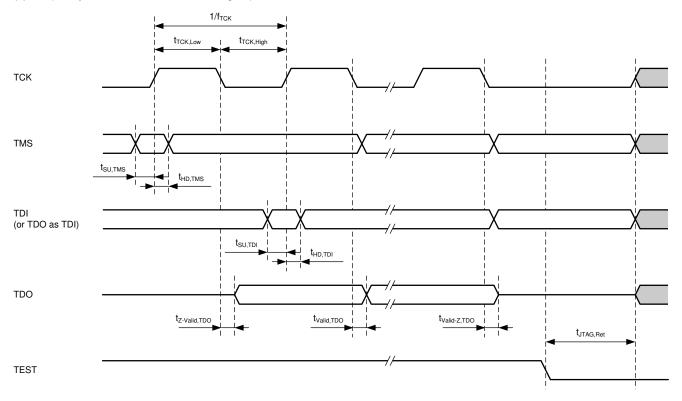



Figure 8-16. JTAG 4-Wire Timing

# 9 Detailed Description

#### 9.1 Overview

The Texas Instruments MSP430FR211x family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals. The architecture, combined with five low-power modes, is optimized to achieve extended battery life (for example, in portable measurement applications). The devices feature a powerful 16-bit RISC CPU, 16-bit register, and constant generators that contribute to maximum code efficiency.

The MSP430FR211x devices are microcontroller configurations with one Timer\_B, eCOMP with built-in 6-bit DAC as an internal reference voltage, a high-performance 10-bit ADC, an eUSCI that supports UART and SPI, an RTC module with alarm capabilities, and up to 12 I/O pins.

#### 9.2 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register (SR), and constant generator (CG), respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with all instructions.

# 9.3 Operating Modes

The MSP430 has one active mode and several software selectable low-power modes of operation (see Table 9-1). An interrupt event can wake up the device from low-power mode LPM0, LPM3 or LPM4, service the request, and restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.

#### Note

XT1CLK and VLOCLK can be active during LPM4 if requested by low-frequency peripherals.



**Table 9-1. Operating Modes** 

|                      |                              | AM                 | LPM0               | LPM3                  | LPM4                   | LPM3.5                | LPM4.5               |
|----------------------|------------------------------|--------------------|--------------------|-----------------------|------------------------|-----------------------|----------------------|
|                      | MODE                         | ACTIVE<br>MODE     | CPU OFF            | STANDBY               | OFF                    | ONLY RTC<br>COUNTER   | SHUTDOWN             |
| Maximum sys          | stem clock                   | 16 MHz             | 16 MHz             | 40 kHz                | 0                      | 40 kHz                | 0                    |
| Power consu          | mption at 25°C, 3 V          | 120 μA/MHz         | 40 μA/MHz          | 1.5 μΑ                | 0.42 μA<br>without SVS | 0.66 μΑ               | 34 nA<br>without SVS |
| Wake-up time         | е                            | N/A                | instant            | 10 µs                 | 10 µs                  | 150 µs                | 150 µs               |
| Wake-up eve          | ents                         | N/A                | All                | All                   | I/O                    | RTC Counter I/O       | I/O                  |
|                      | Regulator                    | Full<br>Regulation | Full<br>Regulation | Partial Power<br>Down | Partial Power<br>Down  | Partial Power<br>Down | Power Down           |
| Power                | SVS                          | On                 | On                 | Optional              | Optional               | Optional              | Optional             |
|                      | Brownout                     | On                 | On                 | On                    | On                     | On                    | On                   |
|                      | MCLK                         | Active             | Off                | Off                   | Off                    | Off                   | Off                  |
|                      | SMCLK                        | Optional           | Optional           | Off                   | Off                    | Off                   | Off                  |
|                      | FLL                          | Optional           | Optional           | Off                   | Off                    | Off                   | Off                  |
|                      | DCO                          | Optional           | Optional           | Off                   | Off                    | Off                   | Off                  |
| Clock <sup>(2)</sup> | MODCLK                       | Optional           | Optional           | Off                   | Off                    | Off                   | Off                  |
|                      | REFO                         | Optional           | Optional           | Optional              | Off                    | Off                   | Off                  |
|                      | ACLK                         | Optional           | Optional           | Optional              | Off                    | Off                   | Off                  |
|                      | XT1LFCLK                     | Optional           | Optional           | Optional              | Off                    | Optional              | Off                  |
|                      | VLOCLK                       | Optional           | Optional           | Optional              | Off                    | Optional              | Off                  |
|                      | CPU                          | On                 | Off                | Off                   | Off                    | Off                   | Off                  |
| Core                 | FRAM                         | On                 | On                 | Off                   | Off                    | Off                   | Off                  |
| Core                 | RAM                          | On                 | On                 | On                    | On                     | Off                   | Off                  |
|                      | Backup Memory <sup>(1)</sup> | On                 | On                 | On                    | On                     | On                    | Off                  |
|                      | Timer_B3                     | Optional           | Optional           | Optional              | Off                    | Off                   | Off                  |
|                      | WDT                          | Optional           | Optional           | Optional              | Off                    | Off                   | Off                  |
|                      | eUSCI_A                      | Optional           | Optional           | Optional              | Off                    | Off                   | Off                  |
| Peripherals          | CRC                          | Optional           | Optional           | Off                   | Off                    | Off                   | Off                  |
|                      | ADC <sup>(3)</sup>           | Optional           | Optional           | Optional              | Off                    | Off                   | Off                  |
|                      | eCOMP                        | Optional           | Optional           | Optional              | Optional               | Off                   | Off                  |
|                      | RTC Counter                  | Optional           | Optional           | Optional              | Off                    | Optional              | Off                  |
| I/O                  | General Digital Input/Output | On                 | Optional           | State Held            | State Held             | State Held            | State Held           |
|                      | Capacitive Touch I/O         | Optional           | Optional           | Optional              | Off                    | Off                   | Off                  |

<sup>(1)</sup> Backup memory contains 32 bytes of register space in the peripheral memory. See Table 9-18 and Table 9-31 for its memory allocation.

<sup>(2)</sup> The status shown for LPM4 applies to internal clocks only.

<sup>(3)</sup> The ADC is not available on the MSP430FR2000 device.

# 9.4 Interrupt Vector Addresses

The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 9-2 summarizes the interrupts sources, flags, and vectors.

Table 9-2. Interrupt Sources, Flags, and Vectors

| INTERRUPT SOURCE                                                                                                                                                                 | INTERRUPT FLAG                                                                                       | SYSTEM<br>INTERRUPT | WORD<br>ADDRESS   | PRIORITY    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------|-------------------|-------------|
| System Reset Power up, brownout, supply supervisor External reset RST Watchdog time-out, key violation FRAM uncorrectable bit error detection Software POR, BOR FLL unlock error | SVSHIFG PMMRSTIFG WDTIFG PMMPORIFG, PMMBORIFG SYSRSTIV FLLULPUC                                      | Reset               | FFFEh             | 63, Highest |
| System NMI Vacant memory access JTAG mailbox FRAM access time error FRAM bit error detection                                                                                     | VMAIFG<br>JMBINIFG, JMBOUTIFG<br>CBDIFG, UBDIFG                                                      | (Non)maskable       | FFFCh             | 62          |
| <b>User NMI</b><br>External NMI<br>Oscillator fault                                                                                                                              | NMIIFG<br>OFIFG                                                                                      | (Non)maskable       | FFFAh             | 61          |
| Timer0_B3                                                                                                                                                                        | TB0CCR0 CCIFG0                                                                                       | Maskable            | FFF8h             | 60          |
| Timer0_B3                                                                                                                                                                        | TB0CCR1 CCIFG1, TB0CCR2<br>CCIFG2, TB0IFG (TB0IV)                                                    | Maskable            | FFF6h             | 59          |
| RTC counter                                                                                                                                                                      | RTCIFG                                                                                               | Maskable            | FFF4h             | 58          |
| Watchdog timer interval mode                                                                                                                                                     | WDTIFG                                                                                               | Maskable            | FFF2h             | 57          |
| eUSCI_A0 receive or transmit                                                                                                                                                     | UCTXCPTIFG, UCSTTIFG,<br>UCRXIFG, UCTXIFG (UART<br>mode)<br>UCRXIFG, UCTXIFG (SPI mode)<br>(UCA0IV)) | Maskable            | FFF0h             | 56          |
| ADC                                                                                                                                                                              | ADCIFG0, ADCINIFG,<br>ADCLOIFG, ADCHIIFG,<br>ADCTOVIFG, ADCOVIFG<br>(ADCIV)                          | Maskable            | FFEEh             | 55          |
| P1                                                                                                                                                                               | P1IFG.0 to P1IFG.3 (P1IV)                                                                            | Maskable            | FFECh             | 54          |
| P2                                                                                                                                                                               | P2IFG.0, P2IFG.1, P2IFG.6 and P2IFG.7 (P2IV)                                                         | Maskable            | FFEAh             | 53          |
| eCOMP0                                                                                                                                                                           | CPIIFG, CPIFG (CPIV)                                                                                 | Maskable            | FFE8h             | 52          |
| Reserved                                                                                                                                                                         | Reserved                                                                                             | Maskable            | FFE6h to<br>FF88h |             |
|                                                                                                                                                                                  | BSL Signature 2                                                                                      |                     | 0FF86h            |             |
| Signatures                                                                                                                                                                       | BSL Signature 1                                                                                      |                     | 0FF84h            |             |
| Signatures                                                                                                                                                                       | JTAG Signature 2                                                                                     |                     | 0FF82h            |             |
|                                                                                                                                                                                  | JTAG Signature 1                                                                                     |                     | 0FF80h            |             |



# 9.5 Memory Organization

Table 9-3 summarizes the memory map of the MSP430FR211x and MSP430FR210x devices.

**Table 9-3. Memory Organization** 

| MEMORY TYPE                                                            | ACCESS                                                   | MSP430FR2111                               | MSP430FR2110                            | MSP430FR2100                            | MSP430FR2000                              |  |
|------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|--|
| Memory (FRAM) Main: interrupt vectors and signatures Main: code memory | Read/write<br>(optional write<br>protect) <sup>(1)</sup> | 3.75KB<br>FFFFh to FF80h<br>FFFFh to F100h | 2KB<br>FFFFh to FF80h<br>FFFFh to F800h | 1KB<br>FFFFh to FF80h<br>FFFFh to FC00h | 0.5KB<br>FFFFh to FF80h<br>FFFFh to FE00h |  |
| RAM                                                                    | Read/write                                               | 1KB<br>23FFh to 2000h                      | 1KB<br>23FFh to 2000h                   | 512 bytes<br>21FFh to 2000h             | 512 bytes<br>21FFh to 2000h               |  |
| Bootloader (BSL) memory (ROM) (TI internal use)                        | Read only                                                | 1KB<br>13FFh to 1000h                      | 1KB<br>13FFh to 1000h                   | 1KB<br>13FFh to 1000h                   | 1KB<br>13FFh to 1000h                     |  |
| Peripherals                                                            | Read/write                                               | 4KB<br>0FFFh to 0000h                      | 4KB<br>0FFFh to 0000h                   | 4KB<br>0FFFh to 0000h                   | 4KB<br>0FFFh to 0000h                     |  |

<sup>(1)</sup> The Program FRAM can be write protected by setting the PFWP bit in the SYSCFG0 register. See the SYS chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide for more details.

# 9.6 Bootloader (BSL)

The BSL lets users program the FRAM or RAM using a UART interface. Access to the device memory through the BSL is protected by an user-defined password. Table 9-4 lists the BSL pin requirements. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the features of the BSL and its implementation, see the MSP430 FRAM Device Bootloader (BSL) User's Guide.

Table 9-4. UART BSL Pin Requirements and Functions

| DEVICE SIGNAL   | BSL FUNCTION          |
|-----------------|-----------------------|
| RST/NMI/SBWTDIO | Entry sequence signal |
| TEST/SBWTCK     | Entry sequence signal |
| P1.7            | Data transmit         |
| P1.6            | Data receive          |
| DVCC            | Power supply          |
| DVSS            | Ground supply         |

### 9.7 JTAG Standard Interface

The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/Os. The TEST/SBWTCK pin is used to enable the JTAG signals. The RST/NMI/SBWTDIO pin is also is required to interface with MSP430 development tools and device programmers. Table 9-5 lists the JTAG pin requirements. For details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.

Table 9-5. JTAG Pin Requirements and Function

| DEVICE SIGNAL                            | DIRECTION | JTAG FUNCTION               |
|------------------------------------------|-----------|-----------------------------|
| P1.4/UCA0STE/TCK/A4                      | IN        | JTAG clock input            |
| P1.5/UCA0CLK/TMS/A5                      | IN        | JTAG state control          |
| P1.6/UCA0RXD/UCA0SOMI/TB0.1/TDI/TCLK/A6  | IN        | JTAG data input, TCLK input |
| P1.7/UCA0TXD/UCA0SIMO/TB0.2/TDO/A7/VREF+ | OUT       | JTAG data output            |
| TEST/SBWTCK                              | IN        | Enable JTAG pins            |
| RST/NMI/SBWTDIO                          | IN        | External reset              |
| DVCC                                     | -         | Power supply                |
| DVSS                                     | _         | Ground supply               |

# 9.8 Spy-Bi-Wire Interface (SBW)

The MSP430 family supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 9-6 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide*.

Table 9-6. Spy-Bi-Wire Pin Requirements and Functions

| DEVICE SIGNAL   | DIRECTION | SBW FUNCTION                      |
|-----------------|-----------|-----------------------------------|
| TEST/SBWTCK     | IN        | Spy-Bi-Wire clock input           |
| RST/NMI/SBWTDIO | IN, OUT   | Spy-Bi-Wire data input and output |
| VCC             |           | Power supply                      |
| VSS             |           | Ground supply                     |

#### **9.9 FRAM**

The FRAM can be programmed using the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. Features of the FRAM include:

- · Byte and word access capability
- Programmable wait state generation
- Error correction coding (ECC)

# 9.10 Memory Protection

The device features memory protection of user access authority and write protection include:

- Securing the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing JTAG
  and BSL signatures using the JTAG port, SBW, the BSL, or in-system by the CPU.
- Write protection enabled to prevent unwanted write operation to FRAM contents by setting the control bits with accordingly password in System Configuration register 0. For more detailed information, see the SYS chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide.

## 9.11 Peripherals

Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be handled by using all instructions in the memory map. For complete module description, see the MSP430FR4xx and MSP430FR2xx Family User's Guide.

# 9.11.1 Power-Management Module (PMM) and On-Chip Reference Voltages

The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR) is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary supply.

The device contains two on-chip references: 1.5 V for internal reference and 1.2 V for external reference.

The 1.5-V reference is internally connected to ADC channel 13. DVCC is internally connected to ADC channel 15. When DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily represent as Equation 1 by using the ADC sampling the 1.5-V reference without any external components support.

$$DVCC = (1023 \times 1.5 \text{ V}) / 1.5 \text{-V Reference ADC result}$$
 (1)

The 1.5-V reference is also internally connected to the comparator built-in DAC as reference voltage. DVCC is internally connected to another source of the DAC reference, and both are controlled by the CPDACREFS bit. For more detailed information, see the Comparator chapter of the MSP430FR4xx and MSP430FR2xx Family User's Guide.



A 1.2-V reference voltage can be buffered and output to P1.7/TDO/A7/VREF+, when EXTREFEN = 1 in the PMMCTL2 register, ADC channel 7 can also be selected to monitor this voltage. For more detailed information. see the MSP430FR4xx and MSP430FR2xx Family User's Guide.

The ADC is not available on the MSP430FR2000 device.

### 9.11.2 Clock System (CS) and Clock Distribution

The clock system includes a 32-kHz low-frequency oscillator (XT1), an internal very-low-power low-frequency oscillator (VLO), an integrated 32-kHz RC oscillator (REFO), an integrated internal digitally controlled oscillator (DCO) that may use frequency-locked loop (FLL) locking with an internal or external 32-kHz reference clock, and on-chip asynchronous high-speed clock (MODOSC). The clock system is designed to target cost-effective designs with minimal external components. A fail-safe mechanism is designed for XT1. The clock system module offers the following clock signals.

- Main Clock (MCLK): the system clock used by the CPU and all relevant peripherals accessed by the bus. All clock sources except MODOSC can be selected as the source with a predivider of 1, 2, 4, 8, 16, 32, 64, or
- Sub-Main Clock (SMCLK): the subsystem clock used by the peripheral modules. SMCLK derives from the MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK.
- Auxiliary Clock (ACLK): this clock is derived from the external XT1 clock or internal REFO clock up to 40 kHz.

All peripherals may have one or several clock sources depending on specific functionality. Table 9-7 and Table 9-8 summarize the clock distribution used in this device.

| Table of Trefook Blothbatton |                                |              |                    |                    |        |        |                   |
|------------------------------|--------------------------------|--------------|--------------------|--------------------|--------|--------|-------------------|
|                              | CLOCK<br>SOURCE<br>SELECT BITS | MCLK         | SMCLK              | ACLK               | MODCLK | VLOCLK | EXTERNAL PIN      |
| Frequency<br>Range           |                                | DC to 16 MHz | DC to 16 MHz       | DC to 40 kHz       | 4 MHz  | 10 kHz |                   |
| CPU                          | N/A                            | Default      |                    |                    |        |        |                   |
| FRAM                         | N/A                            | Default      |                    |                    |        |        |                   |
| RAM                          | N/A                            | Default      |                    |                    |        |        |                   |
| CRC                          | N/A                            | Default      |                    |                    |        |        |                   |
| I/O                          | N/A                            | Default      |                    |                    |        |        |                   |
| ТВ0                          | TBSSEL                         |              | 10b                | 01b                |        |        | 00b (TB0CLK pin)  |
| eUSCI_A0                     | UCSSEL                         |              | 10b or 11b         | 01b                |        |        | 00b (UCA0CLK pin) |
| WDT                          | WDTSSEL                        |              | 00b                | 01b                |        | 10b    |                   |
| ADC <sup>(1)</sup>           | ADCSSEL                        |              | 10b or 11b         | 01b                | 00b    |        |                   |
| RTC                          | RTCSS                          |              | 01b <sup>(2)</sup> | 01b <sup>(2)</sup> |        | 11b    |                   |

Table 9-7. Clock Distribution

The ADC is not available on the MSP430FR2000 device.

Controlled by the RTCCKSEL bit in the SYSCFG2 register.



#### Table 9-8. XTCLK Distribution

| OPERATION MODE | CLOCK SOURCE | XTLFCLK                     |
|----------------|--------------|-----------------------------|
| OPERATION MODE | SELECT BITS  | AM TO LPM3.5 (DC to 40 kHz) |
| MCLK           | SELMS        | 10b                         |
| SMCLK          | SELMS        | 10b                         |
| REFO           | SELREF       | 0b                          |
| ACLK           | SELA         | 0b                          |
| RTC            | RTCSS        | 10b                         |

### 9.11.3 General-Purpose Input/Output Port (I/O)

Up to 12 I/O ports are implemented.

- P1 has 8 bits implemented, and P2 has 4 bits implemented.
- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible to P1 and P2.
- Programmable pullup or pulldown on all ports.
- Edge-selectable interrupt, LPM4, LPM3.5 and LPM4.5 wake-up input capability is available for P1.0 to P1.3, P2.0, P2.1, P2.6, and P2.7.
- Read and write access to port-control registers is supported by all instructions.
- · Ports can be accessed byte-wise or word-wise in pairs.
- Capacitive Touch I/O functionality is supported on all pins.

#### Note

# Configuration of digital I/Os after BOR reset

To prevent any cross currents during start-up of the device, all port pins are high-impedance with Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, see the Configuration After Reset section in the Digital I/O chapter of the MSP430FR4xx and MSP430FR2xx Family User's Guide.

## 9.11.4 Watchdog Timer (WDT)

The primary function of the WDT module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as interval timer and can generate interrupts at selected time intervals.

Table 9-9. WDT Clocks

| WDTSSEL | NORMAL OPERATION<br>(WATCHDOG AND INTERVAL TIMER<br>MODE) |
|---------|-----------------------------------------------------------|
| 00      | SMCLK                                                     |
| 01      | ACLK                                                      |
| 10      | VLOCLK                                                    |
| 11      | Reserved                                                  |



# 9.11.5 System Module (SYS)

The SYS module handles many of the system functions within the device. These system functions include power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism through SBW called a JTAG mailbox that can be used in the application. Table 9-10 lists the SYS module interrupt vector registers.

**Table 9-10. System Module Interrupt Vector Registers** 

| INTERRUPT VECTOR<br>REGISTER | ADDRESS | INTERRUPT EVENT                          | VALUE      | PRIORITY |
|------------------------------|---------|------------------------------------------|------------|----------|
|                              |         | No interrupt pending                     | 00h        |          |
|                              |         | Brownout (BOR)                           | 02h        | Highest  |
|                              |         | RSTIFG RST/NMI (BOR)                     | 04h        |          |
|                              |         | PMMSWBOR software BOR (BOR)              | 06h        |          |
|                              |         | LPMx.5 wakeup (BOR)                      | 08h        |          |
|                              |         | Security violation (BOR)                 | 0Ah        |          |
|                              |         | Reserved                                 | 0Ch        |          |
|                              |         | SVSHIFG SVSH event (BOR)                 | 0Eh        |          |
|                              |         | Reserved                                 | 10h        |          |
| CVCDCTIV Custom Decet        | 04556   | Reserved                                 | 12h        |          |
| SYSRSTIV, System Reset       | 015Eh   | PMMSWPOR software POR (POR)              | 14h        |          |
|                              |         | WDTIFG watchdog time-out (PUC)           | 16h        |          |
|                              |         | WDTPW password violation (PUC)           | 18h        |          |
|                              |         | FRCTLPW password violation (PUC)         | 1Ah        |          |
|                              |         | Uncorrectable FRAM bit error detection   | 1Ch        |          |
|                              |         | Peripheral area fetch (PUC)              | 1Eh        |          |
|                              |         | PMMPW PMM password violation (PUC)       | 20h        |          |
|                              |         | Reserved                                 | 22h        |          |
|                              |         | FLL unlock (PUC)                         | 24h        |          |
|                              |         | Reserved                                 | 26h to 3Eh | Lowest   |
|                              |         | No interrupt pending                     | 00h        |          |
|                              |         | SVS low-power reset entry                | 02h        | Highest  |
|                              |         | Uncorrectable FRAM bit error detection   | 04h        |          |
|                              |         | Reserved                                 | 06h        |          |
|                              |         | Reserved                                 | 08h        |          |
|                              |         | Reserved                                 | 0Ah        |          |
| 0)(00)(1)(0)(1)(1)(1)        | 0.4501  | Reserved                                 | 0Ch        |          |
| SYSSNIV, System NMI          | 015Ch   | Reserved                                 | 0Eh        |          |
|                              |         | Reserved                                 | 10h        |          |
|                              |         | VMAIFG Vacant memory access              | 12h        |          |
|                              |         | JMBINIFG JTAG mailbox input              | 14h        |          |
|                              |         | JMBOUTIFG JTAG mailbox output            | 16h        |          |
|                              |         | Correctable FRAM bit error detection     | 18h        |          |
|                              |         | Reserved                                 | 1Ah to 1Eh | Lowest   |
|                              |         | No interrupt pending                     | 00h        |          |
| 0)(0)                        | 0.45.1  | NMIIFG NMI pin or SVS <sub>H</sub> event | 02h        | Highest  |
| SYSUNIV, User NMI            | 015Ah   | OFIFG oscillator fault                   | 04h        |          |
|                              |         | Reserved                                 | 06h to 1Eh | Lowest   |

# 9.11.6 Cyclic Redundancy Check (CRC)

The 16-bit CRC module produces a signature based on a sequence of data values and can be used for data checking purposes. The CRC generation polynomial is compliant with CRC-16-CCITT standard of  $x^{16} + x^{12} + x^5 + 1$ .

# 9.11.7 Enhanced Universal Serial Communication Interface (eUSCI\_A0)

The eUSCI modules are used for serial data communications. The eUSCI\_A module supports either UART or SPI communications. Additionally, eUSCI\_A supports automatic baud-rate detection and IrDA.

Table 9-11. eUSCI Pin Configurations

|           | PIN (USCIARMP = 0)  | UART | SPI  |
|-----------|---------------------|------|------|
|           | P1.7                | TXD  | SIMO |
|           | P1.6                | RXD  | SOMI |
|           | P1.5                |      | SCLK |
| 011801 40 | P1.4                |      | STE  |
| eUSCI_A0  | PIN (USCIARMP = 1)  | UART | SPI  |
|           | P1.3 <sup>(1)</sup> | TXD  | SIMO |
|           | P1.2 <sup>(1)</sup> | RXD  | SOMI |
|           | P1.1 <sup>(1)</sup> |      | SCLK |
|           | P1.0 <sup>(1)</sup> |      | STE  |

<sup>(1)</sup> This is the remapped functionality controlled by the USCIARMP bit in the SYSCFG3 register. Only one selected port is valid at the same time.



# 9.11.8 Timers (Timer0\_B3)

The Timer0\_B3 module is 16-bit timer and counter with three capture/compare registers. The timer can support multiple captures or compares, PWM outputs, and interval timing (see Table 9-12). Timer0\_B3 has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. The CCR0 register on Timer0\_B3 is not externally connected and can be used only for hardware period timing and interrupt generation. In Up Mode, it can be used to set the overflow value of the counter.

Table 9-12. Timer0 B3 Signal Connections

| PORT PIN                        | DEVICE INPUT<br>SIGNAL                  | MODULE INPUT<br>NAME | MODULE BLOCK | MODULE OUTPUT<br>SIGNAL | DEVICE OUTPUT<br>SIGNAL       |
|---------------------------------|-----------------------------------------|----------------------|--------------|-------------------------|-------------------------------|
| P2.7                            | TB0CLK                                  | TBCLK                |              |                         |                               |
|                                 | ACLK (internal)                         | ACLK                 |              |                         |                               |
|                                 | SMCLK (internal)                        | SMCLK                | Timer        | N/A                     |                               |
|                                 | From Capacitive<br>Touch I/O (internal) | INCLK                |              |                         |                               |
|                                 | From RTC (internal)                     | CCI0A                |              |                         |                               |
|                                 | ACLK (internal)                         | CCI0B                | CCR0         | TB0                     |                               |
|                                 | DVSS                                    | GND                  | CCRU         | 160                     |                               |
|                                 | DVCC                                    | VCC                  |              |                         |                               |
| P1.6 (TBRMP = 0)                | TB0.1                                   | CCI1A                |              |                         | TB0.1                         |
| P2.0 (TBRMP = 1) <sup>(1)</sup> | 160.1                                   | CCITA                |              |                         | 1 00.1                        |
|                                 | From eCOMP<br>(internal)                | CCI1B                | CCR1         | TB1                     | To ADC trigger <sup>(2)</sup> |
|                                 | DVSS                                    | GND                  |              |                         |                               |
|                                 | DVCC                                    | VCC                  |              |                         |                               |
| P1.7 (TBRMP = 0)                | TB0.2                                   | CCI2A                |              |                         | TB0.2                         |
| P2.1 (TBRMP = 1) <sup>(1)</sup> | 160.2                                   | CCIZA                |              |                         | 160.2                         |
|                                 | From Capacitive<br>Touch I/O (internal) | CCI2B                | CCR2         | TB2                     |                               |
|                                 | DVSS                                    | GND                  |              |                         |                               |
|                                 | DVCC                                    | VCC                  |              |                         |                               |

<sup>(1)</sup> This is the remapped functionality controlled by the TBRMP bit in the SYSCFG3 register. Only one selected port is valid at the same time when TB0 acts as capture input functionality. TB0 PWM outputs regardless of the setting on this remap bit.

The interconnection of Timer0\_B3 can be used to modulate the eUSCI\_A pin of UCA0TXD/UCA0SIMO in either ASK or part of FSK mode, with which a user can easily acquire a modulated infrared command for directly driving an external IR diode. The IR functions are fully controlled by SYSCFG1 including IREN (enable), IRPSEL (polarity select), IRMSEL (mode select), IRDSSEL (data select), and IRDATA (data) bits. For more information, see the SYS chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide.

The Timer\_B module can put all Timer\_B outputs into a high-impedance state when the selected source is triggered. The source can be selected from external pin or internal of the device, which is controlled by TB0TRG in SYS. For more information, see the SYS chapter in the MSP430FR4xx and MSP430FR2xx Family User's Guide.

<sup>(2)</sup> The ADC is not available on the MSP430FR2000 device.

Table 9-13 summarizes the selection of the Timer\_B high-impedance trigger.

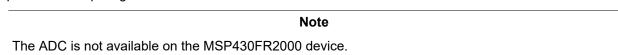
#### Table 9-13. TBxOUTH

| TB0TRGSEL     | TB0OUTH TRIGGER SOURCE<br>SELECTION | Timer_B PAD OUTPUT HIGH IMPEDANCE     |
|---------------|-------------------------------------|---------------------------------------|
| TB0TRGSEL = 0 | eCOMP0 output (internal)            | P1.6, P1.7, P2.0, P2.1 <sup>(1)</sup> |
| TB0TRGSEL= 1  | P1.2                                | F1.0, F1.7, F2.0, F2.1\**             |

<sup>(1)</sup> When TB0 is set to PWM output function, both port groups can receive the output, and the output is controlled by only the PxSEL.y bits.

## 9.11.9 Backup Memory (BAKMEM)

The BAKMEM supports data retention functionality during LPM3.5 mode. This device provides up to 32 bytes that are retained during LPM3.5.


## 9.11.10 Real-Time Clock (RTC) Counter

The RTC counter is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, LPM4, and LPM3.5. This module may periodically wake up the CPU from LPM0, LPM3, LPM4, or LPM3.5 based on timing from a low-power clock source such as XT1, ACLK, or VLO. In AM, RTC can be driven by SMCLK to generate high-frequency timing events and interrupts. ACLK and SMCLK both can source to the RTC; however, only one of them can be selected at any given time. The RTC overflow events trigger:

- Timer0 B3 CCR0A
- ADC conversion trigger when ADCSHSx bits are set as 01b

### 9.11.11 10-Bit Analog-to-Digital Converter (ADC)

The 10-bit ADC module supports fast 10-bit analog-to-digital conversions with single-ended input. The module implements a 10-bit SAR core, sample select control, reference generator, and a conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result monitoring with three window comparator interrupt flags.





The ADC supports 10 external inputs and 4 internal inputs (see Table 9-14).

**Table 9-14. ADC Channel Connections** 

| ADCINCHX | ADC CHANNELS               | EXTERNAL PIN OUT |
|----------|----------------------------|------------------|
| 0        | A0/Veref+                  | P1.0             |
| 1        | A1/                        | P1.1             |
| 2        | A2/Veref-                  | P1.2             |
| 3        | A3                         | P1.3             |
| 4        | A4                         | P1.4             |
| 5        | A5                         | P1.5             |
| 6        | A6                         | P1.6             |
| 7        | A7 <sup>(1)</sup>          | P1.7             |
| 8        | Not used                   | N/A              |
| 9        | Not used                   | N/A              |
| 10       | Not used                   | N/A              |
| 11       | Not used                   | N/A              |
| 12       | On-chip temperature sensor | N/A              |
| 13       | Reference voltage (1.5 V)  | N/A              |
| 14       | DVSS                       | N/A              |
| 15       | DVCC                       | N/A              |

<sup>(1)</sup> When A7 is used, the PMM 1.2-V reference voltage can be output to this pin by setting the PMM control register. The 1.2-V voltage can be directly measured by A7 channel.

The conversion can be started by software or a hardware trigger. Table 9-15 lists the trigger sources that are available.

**Table 9-15. ADC Trigger Signal Connections** 

| ADCSHSx |         | TRIGGER SOURCE               |  |
|---------|---------|------------------------------|--|
| BINARY  | DECIMAL | I RIGGER SOURCE              |  |
| 00      | 0       | ADCSC bit (software trigger) |  |
| 01      | 1       | RTC event                    |  |
| 10      | 2       | TB0.1B                       |  |
| 11      | 3       | eCOMP0 COUT                  |  |

#### 9.11.12 eCOMP0

The enhanced comparator is an analog voltage comparator with built-in 6-bit DAC as an internal voltage reference. The integrated 6-bit DAC can be set up to 64 steps for comparator reference voltage. This module has 4-level programmable hysteresis and a configurable power mode: high-power or low-power mode.

The eCOMP0 supports external inputs and internal inputs (see Table 9-16) and outputs (see Table 9-17)

Table 9-16. eCOMP0 Input Channel Connections

| CPPSEL, CPNSEL | eCOMP0 CHANNELS | EXTERNAL OR INTERNAL CONNECTION |  |  |  |
|----------------|-----------------|---------------------------------|--|--|--|
| BINARY         |                 |                                 |  |  |  |
| 000            | C0              | P1.0                            |  |  |  |
| 001            | C1              | P1.1                            |  |  |  |
| 010            | C2              | P1.2                            |  |  |  |
| 011            | C3              | P1.3                            |  |  |  |
| 100            | C4              | Not used                        |  |  |  |
| 101            | C5              | Not used                        |  |  |  |
| 110            | C6              | Built-in 6-bit DAC              |  |  |  |

Table 9-17. eCOMP0 Output Channel Connections

| eCOMP0 Out | EXTERNAL PIN OUT, MODULE   |  |
|------------|----------------------------|--|
| 1          | P2.0                       |  |
| 2          | TB0.1B; TB0 (TB0OUTH); ADC |  |

### 9.11.13 Embedded Emulation Module (EEM)

The EEM supports real-time in-system debugging. The EEM on these devices has the following features:

- · Three hardware triggers or breakpoints on memory access
- One hardware trigger or breakpoint on CPU register write access
- · Up to four hardware triggers that can be combined to form complex triggers or breakpoints
- One cycle counter
- · Clock control on module level



# 9.11.14 Peripheral File Map

Table 9-18 lists the base address and the memory size of the registers for each peripheral.

# **Table 9-18. Peripherals Summary**

| MODULE NAME                           | BASE ADDRESS | SIZE  |
|---------------------------------------|--------------|-------|
| Special Functions (see Table 9-19)    | 0100h        | 0010h |
| PMM (see Table 9-20)                  | 0120h        | 0020h |
| SYS (see Table 9-21)                  | 0140h        | 0040h |
| CS (see Table 9-22)                   | 0180h        | 0020h |
| FRAM (see Table 9-23)                 | 01A0h        | 0010h |
| CRC (see Table 9-24)                  | 01C0h        | 0008h |
| WDT (see Table 9-25)                  | 01CCh        | 0002h |
| Port P1, P2 (see Table 9-26)          | 0200h        | 0020h |
| Capacitive Touch I/O (see Table 9-27) | 02E0h        | 0010h |
| RTC (see Table 9-28)                  | 0300h        | 0010h |
| Timer0_B3 (see Table 9-29)            | 0380h        | 0030h |
| eUSCI_A0 (see Table 9-30)             | 0500h        | 0020h |
| Backup Memory (see Table 9-31)        | 0660h        | 0020h |
| ADC <sup>(1)</sup> (see Table 9-32)   | 0700h        | 0040h |
| eCOMP0 (see Table 9-33)               | 08E0h        | 0020h |

<sup>(1)</sup> The ADC is not available on the MSP430FR2000 device.

# Table 9-19. Special Function Registers (Base Address: 0100h)

| REGISTER DESCRIPTION  | REGISTER | OFFSET |  |  |
|-----------------------|----------|--------|--|--|
| SFR interrupt enable  | SFRIE1   | 00h    |  |  |
| SFR interrupt flag    | SFRIFG1  | 02h    |  |  |
| SFR reset pin control | SFRRPCR  | 04h    |  |  |

# Table 9-20. PMM Registers (Base Address: 0120h)

| REGISTER DESCRIPTION | REGISTER | OFFSET |
|----------------------|----------|--------|
| PMM control 0        | PMMCTL0  | 00h    |
| PMM control 1        | PMMCTL1  | 02h    |
| PMM control 2        | PMMCTL2  | 04h    |
| PMM interrupt flags  | PMMIFG   | 0Ah    |
| PM5 control 0        | PM5CTL0  | 10h    |



Table 9-21. SYS Registers (Base Address: 0140h)

| REGISTER DESCRIPTION          | REGISTER | OFFSET |
|-------------------------------|----------|--------|
| System control                | SYSCTL   | 00h    |
| Bootloader configuration area | SYSBSLC  | 02h    |
| JTAG mailbox control          | SYSJMBC  | 06h    |
| JTAG mailbox input 0          | SYSJMBI0 | 08h    |
| JTAG mailbox input 1          | SYSJMBI1 | 0Ah    |
| JTAG mailbox output 0         | SYSJMBO0 | 0Ch    |
| JTAG mailbox output 1         | SYSJMBO1 | 0Eh    |
| User NMI vector generator     | SYSUNIV  | 1Ah    |
| System NMI vector generator   | SYSSNIV  | 1Ch    |
| Reset vector generator        | SYSRSTIV | 1Eh    |
| System configuration 0        | SYSCFG0  | 20h    |
| System configuration 1        | SYSCFG1  | 22h    |
| System configuration 2        | SYSCFG2  | 24h    |
| System configuration 3        | SYSCFG3  | 26h    |

Table 9-22. CS Registers (Base Address: 0180h)

| Table of ZZI of Registers (Ease Madiese: 616611) |          |        |  |  |
|--------------------------------------------------|----------|--------|--|--|
| REGISTER DESCRIPTION                             | REGISTER | OFFSET |  |  |
| CS control 0                                     | CSCTL0   | 00h    |  |  |
| CS control 1                                     | CSCTL1   | 02h    |  |  |
| CS control 2                                     | CSCTL2   | 04h    |  |  |
| CS control 3                                     | CSCTL3   | 06h    |  |  |
| CS control 4                                     | CSCTL4   | 08h    |  |  |
| CS control 5                                     | CSCTL5   | 0Ah    |  |  |
| CS control 6                                     | CSCTL6   | 0Ch    |  |  |
| CS control 7                                     | CSCTL7   | 0Eh    |  |  |
| CS control 8                                     | CSCTL8   | 10h    |  |  |

Table 9-23. FRAM Registers (Base Address: 01A0h)

| <u> </u>             |          |        |  |  |
|----------------------|----------|--------|--|--|
| REGISTER DESCRIPTION | REGISTER | OFFSET |  |  |
| FRAM control 0       | FRCTL0   | 00h    |  |  |
| General control 0    | GCCTL0   | 04h    |  |  |
| General control 1    | GCCTL1   | 06h    |  |  |

Table 9-24. CRC Registers (Base Address: 01C0h)

| REGISTER DESCRIPTION          | REGISTER  | OFFSET |  |  |  |
|-------------------------------|-----------|--------|--|--|--|
| CRC data input                | CRC16DI   | 00h    |  |  |  |
| CRC data input reverse byte   | CRCDIRB   | 02h    |  |  |  |
| CRC initialization and result | CRCINIRES | 04h    |  |  |  |
| CRC result reverse byte       | CRCRESR   | 06h    |  |  |  |



Table 9-25. WDT Registers (Base Address: 01CCh)

|                        | REGISTER DESCRIPTION | REGISTER | OFFSET |
|------------------------|----------------------|----------|--------|
| Watchdog timer control |                      | WDTCTL   | 00h    |

Table 9-26. Port P1, P2 Registers (Base Address: 0200h)

| REGISTER DESCRIPTION          | REGISTER | OFFSET |  |
|-------------------------------|----------|--------|--|
| Port P1 input                 | P1IN     | 00h    |  |
| Port P1 output                | P1OUT    | 02h    |  |
| Port P1 direction             | P1DIR    | 04h    |  |
| Port P1 pulling enable        | P1REN    | 06h    |  |
| Port P1 selection 0           | P1SEL0   | 0Ah    |  |
| Port P1 selection 1           | P1SEL1   | 0Ch    |  |
| Port P1 interrupt vector word | P1IV     | 0Eh    |  |
| Port P1 complement selection  | P1SELC   | 16h    |  |
| Port P1 interrupt edge select | P1IES    | 18h    |  |
| Port P1 interrupt enable      | P1IE     | 1Ah    |  |
| Port P1 interrupt flag        | P1IFG    | 1Ch    |  |
| Port P2 input                 | P2IN     | 01h    |  |
| Port P2 output                | P2OUT    | 03h    |  |
| Port P2 direction             | P2DIR    | 05h    |  |
| Port P2 pulling enable        | P2REN    | 07h    |  |
| Port P2 selection 0           | P2SEL0   | 0Bh    |  |
| Port P2 selection 1           | P2SEL1   | 0Dh    |  |
| Port P2 complement selection  | P2SELC   | 17h    |  |
| Port P2 interrupt vector word | P2IV     | 1Eh    |  |
| Port P2 interrupt edge select | P2IES    | 19h    |  |
| Port P2 interrupt enable      | P2IE     | 1Bh    |  |
| Port P2 interrupt flag        | P2IFG    | 1Dh    |  |

# Table 9-27. Capacitive Touch I/O Registers (Base Address: 02E0h)

| REGISTER DESCRIPTION           | REGISTER  | OFFSET |
|--------------------------------|-----------|--------|
| Capacitive Touch I/O 0 control | CAPIO0CTL | 0Eh    |

## Table 9-28. RTC Registers (Base Address: 0300h)

|                      | •        |        |
|----------------------|----------|--------|
| REGISTER DESCRIPTION | REGISTER | OFFSET |
| RTC control          | RTCCTL   | 00h    |
| RTC interrupt vector | RTCIV    | 04h    |
| RTC modulo           | RTCMOD   | 08h    |
| RTC counter          | RTCCNT   | 0Ch    |



Table 9-29. Timer0\_B3 Registers (Base Address: 0380h)

| REGISTER DESCRIPTION      | REGISTER | OFFSET |
|---------------------------|----------|--------|
| TB0 control               | TB0CTL   | 00h    |
| Capture/compare control 0 | TB0CCTL0 | 02h    |
| Capture/compare control 1 | TB0CCTL1 | 04h    |
| Capture/compare control 2 | TB0CCTL2 | 06h    |
| TB0 counter               | TB0R     | 10h    |
| Capture/compare 0         | TB0CCR0  | 12h    |
| Capture/compare 1         | TB0CCR1  | 14h    |
| Capture/compare 2         | TB0CCR2  | 16h    |
| TB0 expansion 0           | TB0EX0   | 20h    |
| TB0 interrupt vector      | TB0IV    | 2Eh    |

# Table 9-30. eUSCI\_A0 Registers (Base Address: 0500h)

| REGISTER DESCRIPTION          | REGISTER    | OFFSET |
|-------------------------------|-------------|--------|
| eUSCI_A control word 0        | UCA0CTLW0   | 00h    |
| eUSCI_A control word 1        | UCA0CTLW1   | 02h    |
| eUSCI_A control rate 0        | UCA0BR0     | 06h    |
| eUSCI_A control rate 1        | UCA0BR1     | 07h    |
| eUSCI_A modulation control    | UCA0MCTLW   | 08h    |
| eUSCI_A status                | UCA0STAT    | 0Ah    |
| eUSCI_A receive buffer        | UCA0RXBUF   | 0Ch    |
| eUSCI_A transmit buffer       | UCA0TXBUF   | 0Eh    |
| eUSCI_A LIN control           | UCA0ABCTL   | 10h    |
| eUSCI_A IrDA transmit control | IUCA0IRTCTL | 12h    |
| eUSCI_A IrDA receive control  | IUCA0IRRCTL | 13h    |
| eUSCI_A interrupt enable      | UCA0IE      | 1Ah    |
| eUSCI_A interrupt flags       | UCA0IFG     | 1Ch    |
| eUSCI_A interrupt vector word | UCA0IV      | 1Eh    |

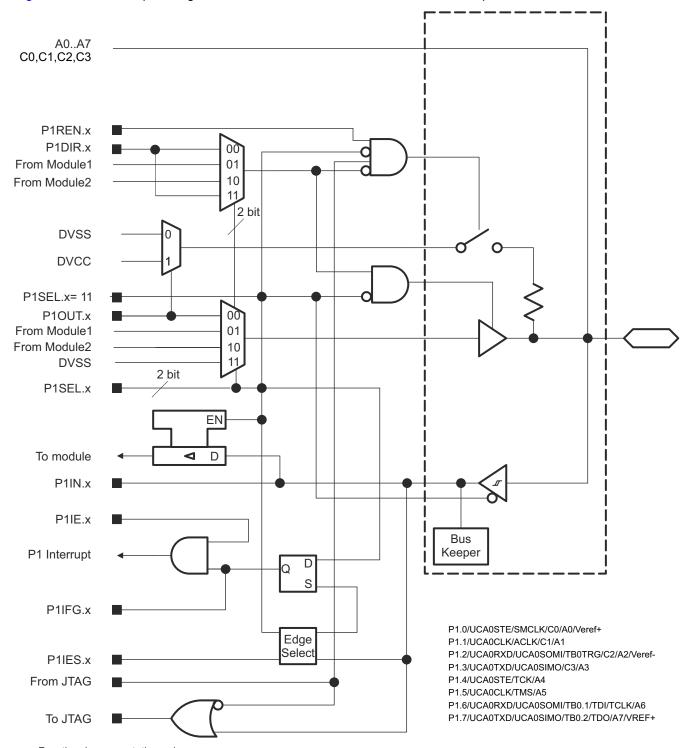


Table 9-31. Backup Memory Registers (Base Address: 0660h)

| REGISTER DESCRIPTION | REGISTER | OFFSET |
|----------------------|----------|--------|
| Backup memory 0      | BAKMEM0  | 00h    |
| Backup memory 1      | BAKMEM1  | 02h    |
| Backup memory 2      | BAKMEM2  | 04h    |
| Backup memory 3      | BAKMEM3  | 06h    |
| Backup memory 4      | BAKMEM4  | 08h    |
| Backup memory 5      | BAKMEM5  | 0Ah    |
| Backup memory 6      | BAKMEM6  | 0Ch    |
| Backup memory 7      | BAKMEM7  | 0Eh    |
| Backup memory 8      | BAKMEM8  | 10h    |
| Backup memory 9      | BAKMEM9  | 12h    |
| Backup memory 10     | BAKMEM10 | 14h    |
| Backup memory 11     | BAKMEM11 | 16h    |
| Backup memory 12     | BAKMEM12 | 18h    |
| Backup memory 13     | BAKMEM13 | 1Ah    |
| Backup memory 14     | BAKMEM14 | 1Ch    |
| Backup memory 15     | BAKMEM15 | 1Eh    |

Table 9-32. ADC Registers (Base Address: 0700h)

| REGISTER DESCRIPTION                 | REGISTER | OFFSET |
|--------------------------------------|----------|--------|
| ADC control 0                        | ADCCTL0  | 00h    |
| ADC control 1                        | ADCCTL1  | 02h    |
| ADC control 2                        | ADCCTL2  | 04h    |
| ADC window comparator low threshold  | ADCLO    | 06h    |
| ADC window comparator high threshold | ADCHI    | 08h    |
| ADC memory control 0                 | ADCMCTL0 | 0Ah    |
| ADC conversion memory                | ADCMEM0  | 12h    |
| ADC interrupt enable                 | ADCIE    | 1Ah    |
| ADC interrupt flags                  | ADCIFG   | 1Ch    |
| ADC interrupt vector word            | ADCIV    | 1Eh    |


## Table 9-33. eCOMP0 Registers (Base Address: 08E0h)

| · · · · · · · · · · · · · · · · · · · |           |        |  |  |  |
|---------------------------------------|-----------|--------|--|--|--|
| REGISTER DESCRIPTION                  | REGISTER  | OFFSET |  |  |  |
| Comparator control 0                  | CPCTL0    | 00h    |  |  |  |
| Comparator control 1                  | CPCTL1    | 02h    |  |  |  |
| Comparator interrupt                  | CPINT     | 06h    |  |  |  |
| Comparator interrupt vector           | CPIV      | 08h    |  |  |  |
| Comparator built-in DAC control       | CPDACCTL  | 10h    |  |  |  |
| Comparator built-in DAC data          | CPDACDATA | 12h    |  |  |  |

# 9.11.15 Input/Output Diagrams

# 9.11.15.1 Port P1 Input/Output With Schmitt Trigger

Figure 9-1 shows the port diagram. Table 9-34 summarizes the selection of the pin functions.



Functional representation only.

The ADC (signals A0 to A7, Veref+, and Veref-) is not available on the MSP430FR2000 device.

Figure 9-1. Port P1 Input/Output With Schmitt Trigger



# Table 9-34. Port P1 Pin Functions

| DIN NAME (D4)                         |   | CONTROL BITS AND SIG         |            |        | GNALS <sup>(1)</sup> |  |
|---------------------------------------|---|------------------------------|------------|--------|----------------------|--|
| PIN NAME (P1.x)                       | X | FUNCTION                     | P1DIR.x    | P1SELx | JTAG                 |  |
|                                       |   | P1.0 (I/O)                   | I: 0; O: 1 | 00     | N/A                  |  |
|                                       |   | UCA0STE                      | X          | 01     | N/A                  |  |
| P1.0/UCA0STE/SMCLK/<br>C0/A0/Veref+   | 0 | SMCLK                        | 1          | 10     | N/A                  |  |
| 30/7 to/ voici ·                      |   | VSS                          | 0          |        | IN/A                 |  |
|                                       |   | C0, A0/Veref+ <sup>(2)</sup> | X          | 11     | N/A                  |  |
|                                       |   | P1.1 (I/O)                   | I: 0; O: 1 | 0      | N/A                  |  |
|                                       |   | UCA0CLK                      | X          | 01     | N/A                  |  |
| P1.1/UCA0CLK/ACLK/<br>C1/A1           | 1 | ACLK                         | 1          | 10     | NI/A                 |  |
| <i>5 117</i> (1                       |   | VSS                          | 0          | 10     | N/A                  |  |
|                                       |   | C1, A1 <sup>(2)</sup>        | X          | 11     | N/A                  |  |
|                                       |   | P1.2 (I/O)                   | I: 0; O: 1 | 00     | N/A                  |  |
| P1.2/UCA0RXD/<br>JCA0SOMI/TB0TRG/     | 2 | UCA0RXD/UCA0SOMI             | X          | 01     | N/A                  |  |
| C2/A2/Veref-                          | _ | TB0TRG                       | 0          | 10     | N/A                  |  |
|                                       |   | C2, A2/Veref- <sup>(2)</sup> | X          | 11     | N/A                  |  |
|                                       |   | P1.3 (I/O)                   | I: 0; O: 1 | 00     | N/A                  |  |
| P1.3/UCA0TXD/<br>JCA0SIMO/C3/A3       | 3 | UCA0TXD/UCA0SIMO             | X          | 01     | N/A                  |  |
| 0 07 10 0 1111 0 7 0 0 77 10          |   | C3, A3 <sup>(2)</sup>        | X          | 11     | N/A                  |  |
|                                       |   | P1.4 (I/O)                   | I: 0; O: 1 | 00     | Disabled             |  |
| P1.4/UCA0STE/TCK/A4                   | 4 | UCA0STE                      | X          | 01     | N/A                  |  |
| P1.4/UCAUSTE/TCK/A4                   | 4 | A4 <sup>(2)</sup>            | X          | 11     | Disabled             |  |
|                                       |   | JTAG TCK                     | X          | X      | TCK                  |  |
|                                       |   | P1.5 (I/O)                   | I: 0; O: 1 | 00     | Disabled             |  |
| 04 E/UCAOCI V/TMC/AE                  | 5 | UCA0CLK                      | X          | 01     | N/A                  |  |
| P1.5/UCA0CLK/TMS/A5                   | 5 | A5 <sup>(2)</sup>            | X          | 11     | Disabled             |  |
|                                       |   | JTAG TMS                     | X          | X      | TMS                  |  |
|                                       |   | P1.6 (I/O)                   | I: 0; O: 1 | 00     | Disabled             |  |
|                                       |   | UCA0RXD/UCA0SOMI             | X          | 01     | N/A                  |  |
| P1.6/UCA0RXD/<br>JCA0SOMI/TB0.1/ TDI/ | 6 | TB0.CCI1A                    | 0          | 10     | N/A                  |  |
| CLK/A6                                | 6 | TB0.1                        | 1          | - 10   | IN/A                 |  |
|                                       |   | A6 <sup>(2)</sup>            | X          | 11     | Disabled             |  |
|                                       |   | JTAG TDI/TCLK                | X          | X      | TDI/TCLK             |  |
|                                       |   | P1.7 (I/O)                   | I: 0; O: 1 | 00     | Disabled             |  |
|                                       |   | UCA0TXD/UCA0SIMO             | X          | 01     | N/A                  |  |
| P1.7/UCA0TXD/                         |   | TB0.CCI2A                    | 0          | 10     | NI/A                 |  |
| UCA0SIMO/TB0.2/<br>TDO/A7/VREF+       | 7 | TB0.2                        | 1          | 10     | N/A                  |  |
|                                       |   | A7 <sup>(2)</sup> , VREF+    | X          | 11     | Disabled             |  |
|                                       |   | JTAG TDO                     | X          | Х      | TDO                  |  |

X = don't care (1)

<sup>(2)</sup> The ADC is not available on the MSP430FR2000 device.



# 9.11.15.2 Port P2 Input/Output With Schmitt Trigger

Figure 9-2 shows the port diagram. Table 9-35 summarizes the selection of the pin functions.

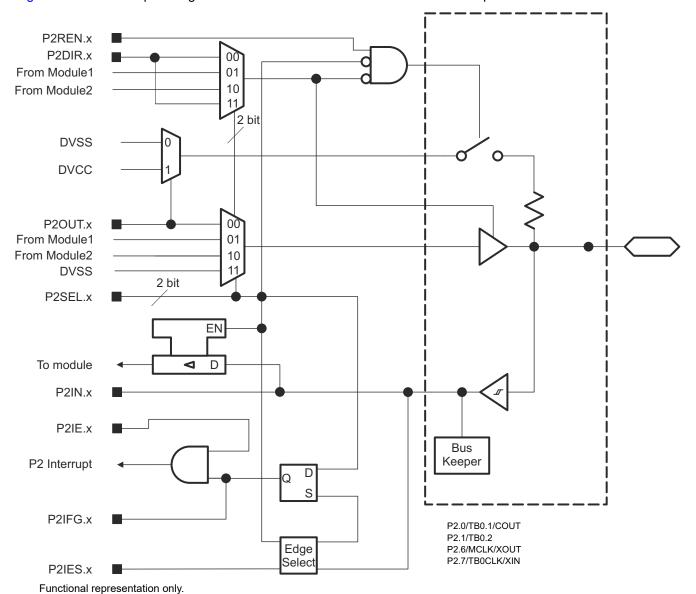



Figure 9-2. Port P2 Input/Output With Schmitt Trigger



# Table 9-35. Port P2 Pin Functions

| DIN NAME (D2 v)   | x FUNCTION |             | CONTROL BITS | AND SIGNALS <sup>(1)</sup> |
|-------------------|------------|-------------|--------------|----------------------------|
| PIN NAME (P2.x)   | X          | FUNCTION    | P2DIR.x      | P2SELx                     |
|                   |            | P2.0 (I/O)  | I: 0; O: 1   | 00                         |
| P2.0/TB0.1/COUT   | 0          | TB0.CCI1A   | 0            | - 01                       |
| P2.0/160.1/COUT   | 0          | TB0.1       | 1            |                            |
|                   |            | COUT        | 1            | 10                         |
|                   |            | P2.1 (I/O)0 | I: 0; O: 1   | 00                         |
| P2.1/TB0.2        | 1          | TB0.CCI2A   | 0            | 01                         |
|                   |            | TB0.2       | 1            |                            |
| DO ON ACULANCULT  |            | P2.6 (I/O)  | I: 0; O: 1   | 00                         |
|                   | 6          | MCLK        | 1            | 01                         |
| P2.6/MCLK/XOUT    | 0          | VSS         | 0            | UI                         |
|                   |            | XOUT        | X            | 10                         |
| P2.7/TB0CLK/XIN 7 |            | P2.7 (I/O)  | I: 0; O: 1   | 00                         |
|                   | 7          | TB0CLK      | 0            | 01                         |
|                   | '          | VSS         | 1            | UI                         |
|                   | XIN        | X           | 10           |                            |



# 9.12 Device Descriptors (TLV)

Table 9-36 lists the Device IDs of the MSP430FR211x MCUs. Table 9-37 lists the contents of the device descriptor tag-length-value (TLV) structure for MSP430FR211x MCUs.

Table 9-36. Device IDs

| DEVICE       | DEVICE ID |       |  |  |  |
|--------------|-----------|-------|--|--|--|
| DEVICE       | 1A04h     | 1A05h |  |  |  |
| MSP430FR2111 | FA        | 82    |  |  |  |
| MSP430FR2110 | FB        | 82    |  |  |  |
| MSP430FR2100 | 20        | 83    |  |  |  |
| MSP430FR2000 | 21        | 83    |  |  |  |

**Table 9-37. Device Descriptors** 

|                                | DESCRIPTION                          | MSP430FR211x |                |  |
|--------------------------------|--------------------------------------|--------------|----------------|--|
|                                | DESCRIPTION                          | ADDRESS      | VALUE          |  |
| Info Block                     | Info length                          | 1A00h        | 06h            |  |
|                                | CRC length                           | 1A01h        | 06h            |  |
|                                | CRC value <sup>(1)</sup>             | 1A02h        | Per unit       |  |
|                                | CRC value***                         | 1A03h        | Per unit       |  |
|                                | Pavisa ID                            | 1A04h        | See Table 9-36 |  |
|                                | Device ID                            | 1A05h        |                |  |
|                                | Hardware revision                    | 1A06h        | Per unit       |  |
|                                | Firmware revision                    | 1A07h        | Per unit       |  |
|                                | Die record tag                       | 1A08h        | 08h            |  |
|                                | Die record length                    | 1A09h        | 0Ah            |  |
|                                |                                      | 1A0Ah        | Per unit       |  |
| Die Record                     | Lot wafer ID                         | 1A0Bh        | Per unit       |  |
|                                | Lot water 1D                         | 1A0Ch        | Per unit       |  |
|                                |                                      | 1A0Dh        | Per unit       |  |
|                                | Die X position                       | 1A0Eh        | Per unit       |  |
|                                | Die A position                       | 1A0Fh        | Per unit       |  |
|                                | Die Y position                       | 1A10h        | Per unit       |  |
|                                | Die i position                       | 1A11h        | Per unit       |  |
|                                | Test result                          | 1A12h        | Per unit       |  |
|                                | restresuit                           | 1A13h        | Per unit       |  |
|                                | ADC calibration tag                  | 1A14h        | Per unit       |  |
|                                | ADC calibration length               | 1A15h        | Per unit       |  |
|                                | ADC gain factor                      | 1A16h        | Per unit       |  |
|                                | ADO Gairi factor                     | 1A17h        | Per unit       |  |
| ADC Calibration <sup>(3)</sup> | ADC offset                           | 1A18h        | Per unit       |  |
| ADC Calibration(3)             | ADO Oliser                           | 1A19h        | Per unit       |  |
|                                | ADC 1.5-V reference temperature 30°C | 1A1Ah        | Per unit       |  |
|                                | 7.5-V Telefelice telliperature 50 C  | 1A1Bh        | Per unit       |  |
|                                | ADC 1.5-V reference temperature 85°C | 1A1Ch        | Per unit       |  |
|                                | 750 1.5-V reference temperature 05 C | 1A1Dh        | Per unit       |  |



### **Table 9-37. Device Descriptors (continued)**

|                   | Calibration tag  Calibration length               | MSP430FR211x |          |  |
|-------------------|---------------------------------------------------|--------------|----------|--|
|                   | DESCRIPTION                                       | ADDRESS      | VALUE    |  |
|                   | Calibration tag                                   | 1A1Eh        | 12h      |  |
|                   | Calibration length                                | 1A1Fh        | 04h      |  |
| Reference and DCO | 1.5-V reference factor                            | 1A20h        | Per unit |  |
| Calibration       | 1.5-V Teleferice factor                           | 1A21h        | Per unit |  |
|                   | DCO tap settings for 16 MHz, temperature 30°C (2) | 1A22h        | Per unit |  |
|                   | boo tap settings for to MHz, temperature 30 C (4) | 1A23h        | Per unit |  |

- (1) The CRC value includes the checksum from 0x1A04h to 0x1A77h, calculated by applying the CRC-CCITT-16 polynomial:  $X^{16} + X^{12} + X^5 + 1$
- (2) This value can be directly loaded into the DCO bits in the CSCTL0 register to get accurate 16-MHz frequence at room temperature, especially when the MCU exits from LPM3 and below. TI suggests using a predivider to decrease the frequency if the temperature drift might result an overshoot >16 MHz.
- (3) The ADC is not available on the MSP430FR2000 device.

#### 9.13 Identification

#### 9.13.1 Revision Identification

The device revision information is shown as part of the top-side marking on the device package. The device-specific errata describes these markings. For links to the errata for the devices in this data sheet, see Section 11.4.

The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Hardware Revision" entries in Section 9.12.

#### 9.13.2 Device Identification

The device type can be identified from the top-side marking on the device package. The device-specific errata describes these markings. For links to the errata for the devices in this data sheet, see Section 11.4.

A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Device ID" entries in Section 9.12.

#### 9.13.3 JTAG Identification

Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in MSP430 Programming With the JTAG Interface.

# 10 Applications, Implementation, and Layout

#### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

## 10.1 Device Connection and Layout Fundamentals

This section describes the recommended guidelines when designing with the MSP430 MCU. These guidelines are to make sure that the device has proper connections for powering, programming, debugging, and optimum analog performance.

### 10.1.1 Power Supply Decoupling and Bulk Capacitors

TI recommends connecting a combination of a 10-µF capacitor and a 100-nF low-ESR ceramic decoupling capacitor to the DVCC pin. Higher-value capacitors may be used but can affect supply rail ramp-up time. Place decoupling capacitors as close as possible to the pins that they decouple (within a few millimeters).

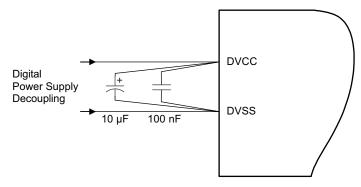



Figure 10-1. Power Supply Decoupling

#### 10.1.2 External Oscillator

Depending on the device variant (see Table 6-1), the device supports only a low-frequency crystal (32 kHz) on the LFXT pins. External bypass capacitors for the crystal oscillator pins are required.

It is also possible to apply digital clock signals to the LFXIN input pins that meet the specifications of the respective oscillator if the appropriate LFXTBYPASS mode is selected. In this case, the associated LFXOUT pins can be used for other purposes. If the LFXOUT pins are left unused, they must be terminated according to Section 7.5.

Figure 10-2 shows a typical connection diagram. See *MSP430 32-kHz Crystal Oscillators* for information on selecting, testing, and designing a crystal oscillator with the MSP430 devices.

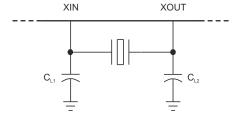
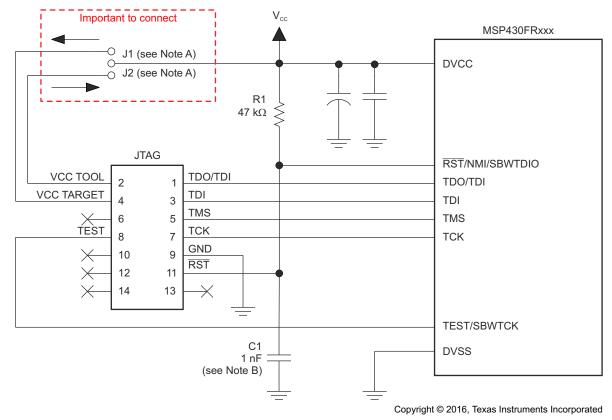


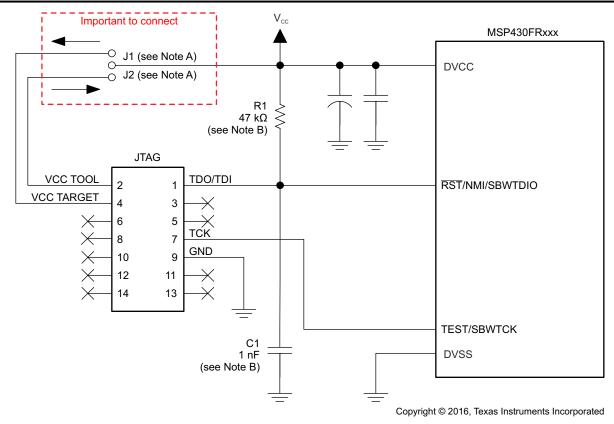

Figure 10-2. Typical Crystal Connection




#### 10.1.3 JTAG

With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the connections also support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if desired. Figure 10-3 shows the connections between the 14-pin JTAG connector and the target device required to support in-system programming and debugging for 4-wire JTAG communication. Figure 10-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).

The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical. Both can supply  $V_{CC}$  to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF interface modules and MSP-GANG have a  $V_{CC}$ -sense feature that, if used, requires an alternate connection (pin 4 instead of pin 2). The  $V_{CC}$ -sense feature senses the local  $V_{CC}$  present on the target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. Figure 10-3 and Figure 10-4 show a jumper block that supports both scenarios of supplying  $V_{CC}$  to the target board. If this flexibility is not required, the desired  $V_{CC}$  connections may be hardwired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same time.


For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's Guide.



- A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection J2.
- B. The upper limit for C1 is 1.1 nF when using current TI tools.

Figure 10-3. Signal Connections for 4-Wire JTAG Communication





- A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or programming adapter.
- B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 1.1 nF when using current TI tools.

Figure 10-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)

#### 10.1.4 Reset

The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function Register (SFR), SFRRPCR.

In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing specifications generates a BOR-type device reset.

Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI. When an external NMI event occurs, the NMIIFG is set.

The  $\overline{RST}/NMI$  pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the  $\overline{RST}/NMI$  pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-k $\Omega$  pullup resistor to the  $\overline{RST}/NMI$  pin with a 10-nF pulldown capacitor. The pulldown capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.

See the MSP430FR4xx and MSP430FR2xx Family User's Guide for more information on the referenced control registers and bits.

#### 10.1.5 Unused Pins

For details on the connection of unused pins, see Section 7.5.



## 10.1.6 General Layout Recommendations

- Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430 32-kHz
   Crystal Oscillators for recommended layout guidelines.
- Proper bypass capacitors on DVCC, AVCC, and reference pins if used.
- Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching signals such as PWM or JTAG signals away from the oscillator circuit and ADC signals.
- Proper ESD level protection should be considered to protect the device from unintended high-voltage electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.

#### 10.1.7 Do's and Don'ts

During power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Section 8.1. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.

# 10.2 Peripheral- and Interface-Specific Design Information

## 10.2.1 ADC Peripheral

#### Note

The ADC is not available on the MSP430FR2000 device.

# 10.2.1.1 Partial Schematic

Figure 10-5 shows the recommended decoupling circuit with either an internal or an external voltage reference.

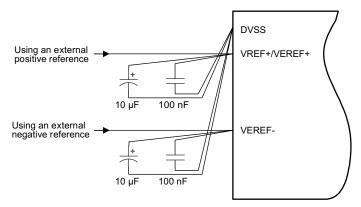



Figure 10-5. ADC Grounding and Noise Considerations

#### 10.2.1.2 Design Requirements

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. The general guidelines in Section 10.1.1 combined with the connections shown in Section 10.2.1.1 prevent this.

In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free design using separate analog and digital ground planes with a single-point connection to achieve high accuracy.

Figure 10-5 shows the recommended decoupling circuit when an external voltage reference is used. The internal reference module has a maximum drive current as described in the sections ADC Pin Enable and 1.2-V Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.

The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters low-frequency ripple. A 100-nF bypass capacitor filters out high-frequency noise.

### 10.2.1.3 Layout Guidelines

Components that are shown in the partial schematic (see Figure 10-5) should be placed as close as possible to the respective device pins to avoid long traces, because they add additional parasitic capacitance, inductance, and resistance on the signal.

Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because the high-frequency switching can be coupled into the analog signal.

# 10.3 Typical Applications

Table 10-1 lists reference designs that reflect the use of the MSP430FR211x family of devices in different real-world application scenarios. Consult these designs for additional guidance regarding schematic, layout, and software implementation. For the most up-to-date list of available reference designs, see the device-specific product folders or visit TI reference designs.

Table 10-1. Reference Designs

| •                                                                    |                               |  |  |
|----------------------------------------------------------------------|-------------------------------|--|--|
| DESIGN NAME                                                          | LINK                          |  |  |
| Thermostat Implementation With MSP430FR4xx                           | TIDM-FRAM-THERMOSTAT          |  |  |
| Water Meter Implementation With MSP430FR4xx                          | TIDM-FRAM-WATERMETER          |  |  |
| Remote Controller of Air Conditioner Using Low-Power Microcontroller | TIDM-REMOTE-CONTROLLER-FOR-AC |  |  |



# 11 Device and Documentation Support

# 11.1 Getting Started

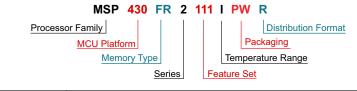
For more information on the MSP430<sup>™</sup> family of devices and the tools and libraries that are available to help with your development, visit the MSP430 ultra-low-power sensing & measurement MCUs overview.

#### 11.2 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP).

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP - Fully qualified production device


XMS devices are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. Figure 11-1 provides a legend for reading the complete device name.



| Processor Family    | MSP = Mixed-Signal Processor<br>XMS = Experimental Silicon                       |  |  |  |
|---------------------|----------------------------------------------------------------------------------|--|--|--|
| MCU Platform        | 430 = TI's 16-bit MSP430 Low-Power Microcontroller Platform                      |  |  |  |
| Memory Type         | FR = FRAM                                                                        |  |  |  |
| Series              | 2 = FRAM 2 Series up to 16 MHz without LCD                                       |  |  |  |
| Feature Set         | Variations of the device features; see the Device Comparison section for details |  |  |  |
| Temperature Range   | I = -40°C to 85°C                                                                |  |  |  |
| Packaging           | www.ti.com/packaging                                                             |  |  |  |
| Distribution Format | T = Small reel R = Large reel No marking = Tube or tray                          |  |  |  |

Figure 11-1. Device Nomenclature

#### 11.3 Tools and Software

All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at Development Kits and Software for Low-Power MCUs.

Table 11-1 lists the debug features of the MSP430FR211x microcontrollers. See the *Code Composer Studio IDE* for MSP430 MCUs User's Guide for details on the available features.

Table 11-1. Hardware Debug Features

| <b>U</b>               |                |                |                         |                           |                  |                    |                 |                                |                |
|------------------------|----------------|----------------|-------------------------|---------------------------|------------------|--------------------|-----------------|--------------------------------|----------------|
| MSP430<br>ARCHITECTURE | 4-WIRE<br>JTAG | 2-WIRE<br>JTAG | BREAK-<br>POINTS<br>(N) | RANGE<br>BREAK-<br>POINTS | CLOCK<br>CONTROL | STATE<br>SEQUENCER | TRACE<br>BUFFER | LPMx.5<br>DEBUGGING<br>SUPPORT | EEM<br>VERSION |
| MSP430Xv2              | Yes            | Yes            | 3                       | Yes                       | Yes              | No                 | No              | No                             | S              |

### **Design Kits and Evaluation Modules**

#### 20-pin Target Socket Development Board for MSP430FR23x/21x MCUs

The MSP-TS430PW20 is a stand-alone ZIF socket target board used to program and debug the MSP430 MCU in system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. The development board supports all MSP430FR2000, MSP430FR21x, and MSP430FR23x FRAM MCUs in a 20-pin or 16-pin TSSOP package (TI package code: PW).

### MSP430FR2311 LaunchPad Development Kit

The MSP-EXP430FR2311 LaunchPad development kit is a microcontroller development board for the MSP430FR2000, MSP430FR21x, and MSP430FR23x MCU families. This kit contains everything needed to evaluate the platform, including onboard emulation for programming, debugging, and energy measurements. The onboard buttons and LEDs allow for integration of simple user interaction.

#### MSP430FR4133 LaunchPad Development Kit

The MSP-EXP430FR4133 LaunchPad development kit is a microcontroller development board for the MSP430FR2xx and MSP430FR4xx MCU family. This kit contains everything needed to evaluate the MSP430FR2xx and MSP430FR4xx FRAM platform, including onboard emulation for programming, debugging, and energy measurements. The onboard buttons and LEDs allow for integration of simple user interaction, while the 20-pin header for BoosterPack™ plug-in modules allows for the use of BoosterPack modules for quick user experimentation.

#### MSP-FET and MSP-TS430PW20 FRAM Microcontroller Development Kit Bundle

The MSP-FET430U20 bundle combines two debugging tools that support the 20-pin PW package for the MSP430FR2000, MSP430FR21xx and MSP430FR23xx MCUs (for example, MSP430FR2311IPW20). The included tools are MSP-TS430PW20 and MSP-FET.

## Software

#### MSP430Ware<sup>™</sup> Software

MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices, delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a stand-alone package.

# MSP430FR21xx Code Examples

C code examples are available for every MSP device that configures each of the integrated peripherals for various application needs.



### MSP Driver Library

The abstracted API of MSP Driver Library provides easy-to-use function calls that free you from directly manipulating the bits and bytes of the MSP430 hardware. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead.

#### ULP (Ultra-Low Power) Advisor

ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully use the unique ultralow-power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to help minimize the energy consumption of your application. At build time, ULP Advisor provides notifications and remarks to highlight areas of your code that can be further optimized for lower power.

#### IEC60730 Software Package

The IEC60730 MSP430 software package was developed to help customers comply with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer applications running on MSP430s to help simplify the customer's certification efforts of functional safety-compliant consumer devices to IEC 60730-1:2010 Class B.

### Fixed Point Math Library for MSP

The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math.

# Floating Point Math Library for MSP430

Continuing to innovate in the low-power and low-cost microcontroller space, TI provides MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating-point math library of scalar functions that are up to 26 times faster than the standard MSP430 math functions. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio IDE and IAR Embedded Workbench IDE.

### **Development Tools**

# Code Composer Studio<sup>™</sup> Integrated Development Environment for MSP Microcontrollers

Code Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features.

## MSP EnergyTrace<sup>™</sup> Technology

EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and displays the energy profile of the application and helps to optimize it for ultra-low-power consumption.

# Command-Line Programmer

MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) directly to the MSP microcontroller without an IDE.

## MSP MCU Programmer and Debugger

The MSP-FET is a powerful emulation development tool – often called a debug probe – which lets users quickly begin application development on MSP low-power MCUs. Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging.

### **MSP-GANG Production Programmer**

The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the user fully customize the process.

## 11.4 Documentation Support

The following documents describe the MSP430FR211x microcontrollers. Copies of these documents are available on the Internet at www.ti.com.

### **Receiving Notification of Document Updates**

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for example https://www.ti.com/product/MSP430FR2111). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

#### **Errata**

#### MSP430FR2111 Microcontroller Errata

Describes the known exceptions to the functional specifications.

#### MSP430FR2110 Microcontroller Errata

Describes the known exceptions to the functional specifications.

#### MSP430FR2100 Microcontroller Errata

Describes the known exceptions to the functional specifications.

### MSP430FR2000 Microcontroller Errata

Describes the known exceptions to the functional specifications.

#### **User's Guides**

#### MSP430FR4xx and MSP430FR2xx Family User's Guide

Detailed information on the modules and peripherals available in this device family.

### MSP430 FRAM Device Bootloader (BSL) User's Guide

The bootloader (BSL) on MSP430 MCUs lets users communicate with embedded memory in the MSP430 MCU during the prototyping phase, final production, and in service. Both the programmable memory (FRAM) and the data memory (RAM) can be modified as required.

#### MSP430 Programming With the JTAG Interface

This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).

#### MSP430 Hardware Tools User's Guide

This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-low-power microcontroller.



# **Application Reports**

## MSP430 FRAM Technology - How To and Best Practices

FRAM is a nonvolatile memory technology that behaves similar to SRAM while enabling a whole host of new applications, but also changing the way firmware should be designed. This application report outlines the how to and best practices of using FRAM technology in MSP430 from an embedded software development perspective. It discusses how to implement a memory layout according to application-specific code, constant, data space requirements, and the use of FRAM to optimize application energy consumption.

# VLO Calibration on the MSP430FR4xx and MSP430FR2xx Family

MSP430FR4xx and MSP430FR2xx (FR4xx/FR2xx) family microcontrollers (MCUs) provide various clock sources, including some high-speed high-accuracy clocks and some low-power low-system-cost clocks. Users can select the best balance of performance, power consumption, and system cost. The on-chip very low-frequency oscillator (VLO) is a clock source with 10-kHz typical frequency included in FR4xx/FR2xx family MCUs. The VLO is widely used in a range of applications because of its ultra-low power consumption.

#### MSP430 32-kHz Crystal Oscillators

Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production.

### MSP430 System-Level ESD Considerations

System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses different ESD topics to help board designers and OEMs understand and design robust system-level designs.

# 11.5 Support Resources

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

#### 11.6 Trademarks

MSP430<sup>™</sup>, LaunchPad<sup>™</sup>, MSP430Ware<sup>™</sup>, Code Composer Studio<sup>™</sup>, TI E2E<sup>™</sup>, BoosterPack<sup>™</sup>, ULP Advisor<sup>™</sup>, EnergyTrace<sup>™</sup>, and are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

### 11.7 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 11.8 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.



# 12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 28-Sep-2021

### **PACKAGING INFORMATION**

| Orderable Device   | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp       | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|--------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------|
| MSP430FR2000IPW16  | ACTIVE     | TSSOP        | PW                 | 16   | 90             | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2000                  | Samples |
| MSP430FR2000IPW16R | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2000                  | Samples |
| MSP430FR2000IRLLR  | ACTIVE     | VQFN         | RLL                | 24   | 3000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM  | -40 to 85    | FR2000                  | Samples |
| MSP430FR2000IRLLT  | ACTIVE     | VQFN         | RLL                | 24   | 250            | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM  | -40 to 85    | FR2000                  | Samples |
| MSP430FR2100IPW16  | ACTIVE     | TSSOP        | PW                 | 16   | 90             | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2100                  | Samples |
| MSP430FR2100IPW16R | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2100                  | Samples |
| MSP430FR2100IRLLR  | ACTIVE     | VQFN         | RLL                | 24   | 3000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM  | -40 to 85    | FR2100                  | Samples |
| MSP430FR2100IRLLT  | ACTIVE     | VQFN         | RLL                | 24   | 250            | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM  | -40 to 85    | FR2100                  | Samples |
| MSP430FR2110IPW16  | ACTIVE     | TSSOP        | PW                 | 16   | 90             | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2110                  | Samples |
| MSP430FR2110IPW16R | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2110                  | Samples |
| MSP430FR2110IRLLR  | ACTIVE     | VQFN         | RLL                | 24   | 3000           | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2110                  | Samples |
| MSP430FR2110IRLLT  | ACTIVE     | VQFN         | RLL                | 24   | 250            | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2110                  | Samples |
| MSP430FR2111IPW16  | ACTIVE     | TSSOP        | PW                 | 16   | 90             | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2111                  | Samples |
| MSP430FR2111IPW16R | ACTIVE     | TSSOP        | PW                 | 16   | 2000           | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2111                  | Samples |
| MSP430FR2111IRLLR  | ACTIVE     | VQFN         | RLL                | 24   | 3000           | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2111                  | Samples |
| MSP430FR2111IRLLT  | ACTIVE     | VQFN         | RLL                | 24   | 250            | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | FR2111                  | Samples |

<sup>&</sup>lt;sup>(1)</sup> The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.



## PACKAGE OPTION ADDENDUM

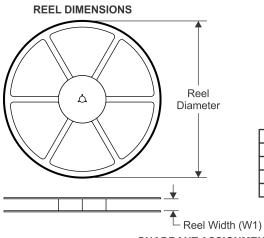
www.ti.com 28-Sep-2021

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

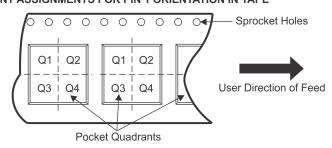
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



www.ti.com 4-Jan-2022

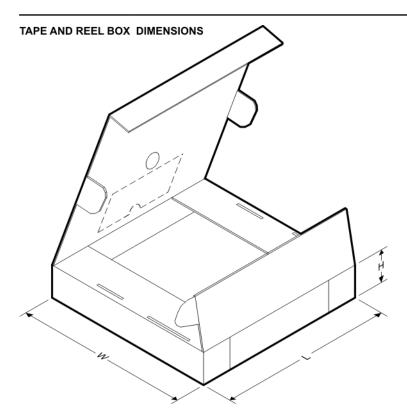

## TAPE AND REEL INFORMATION



# TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



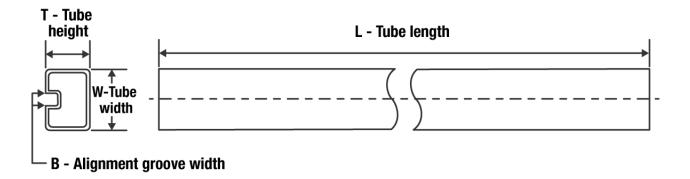

#### \*All dimensions are nominal

| 'All dimensions are nominal |                 |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| MSP430FR2000IPW16R          | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| MSP430FR2000IRLLR           | VQFN            | RLL                | 24 | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| MSP430FR2000IRLLT           | VQFN            | RLL                | 24 | 250  | 180.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| MSP430FR2100IPW16R          | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| MSP430FR2100IRLLR           | VQFN            | RLL                | 24 | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| MSP430FR2100IRLLT           | VQFN            | RLL                | 24 | 250  | 180.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| MSP430FR2110IPW16R          | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| MSP430FR2110IRLLR           | VQFN            | RLL                | 24 | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| MSP430FR2110IRLLT           | VQFN            | RLL                | 24 | 250  | 180.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| MSP430FR2111IPW16R          | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| MSP430FR2111IRLLR           | VQFN            | RLL                | 24 | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| MSP430FR2111IRLLT           | VQFN            | RLL                | 24 | 250  | 180.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |



www.ti.com 4-Jan-2022



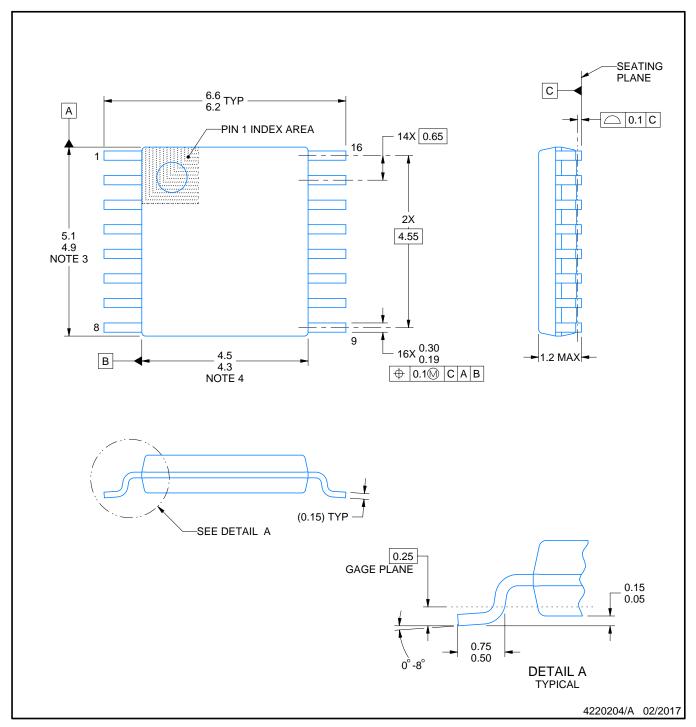

\*All dimensions are nominal

| Device             | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| MSP430FR2000IPW16R | TSSOP        | PW              | 16   | 2000 | 350.0       | 350.0      | 43.0        |
| MSP430FR2000IRLLR  | VQFN         | RLL             | 24   | 3000 | 367.0       | 367.0      | 35.0        |
| MSP430FR2000IRLLT  | VQFN         | RLL             | 24   | 250  | 210.0       | 185.0      | 35.0        |
| MSP430FR2100IPW16R | TSSOP        | PW              | 16   | 2000 | 350.0       | 350.0      | 43.0        |
| MSP430FR2100IRLLR  | VQFN         | RLL             | 24   | 3000 | 367.0       | 367.0      | 35.0        |
| MSP430FR2100IRLLT  | VQFN         | RLL             | 24   | 250  | 210.0       | 185.0      | 35.0        |
| MSP430FR2110IPW16R | TSSOP        | PW              | 16   | 2000 | 350.0       | 350.0      | 43.0        |
| MSP430FR2110IRLLR  | VQFN         | RLL             | 24   | 3000 | 367.0       | 367.0      | 35.0        |
| MSP430FR2110IRLLT  | VQFN         | RLL             | 24   | 250  | 210.0       | 185.0      | 35.0        |
| MSP430FR2111IPW16R | TSSOP        | PW              | 16   | 2000 | 350.0       | 350.0      | 43.0        |
| MSP430FR2111IRLLR  | VQFN         | RLL             | 24   | 3000 | 367.0       | 367.0      | 35.0        |
| MSP430FR2111IRLLT  | VQFN         | RLL             | 24   | 250  | 210.0       | 185.0      | 35.0        |

# PACKAGE MATERIALS INFORMATION

www.ti.com 4-Jan-2022

## **TUBE**




\*All dimensions are nominal

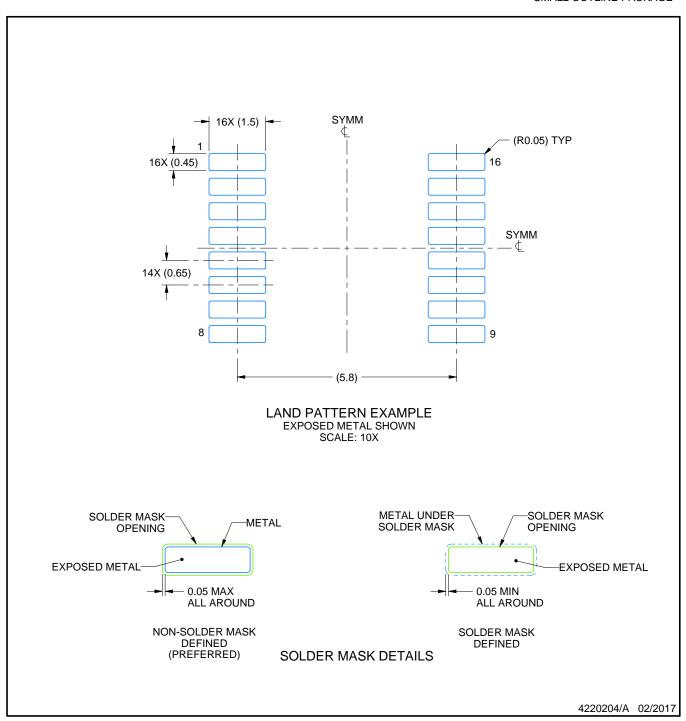
| Device            | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) |
|-------------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| MSP430FR2000IPW16 | PW           | TSSOP        | 16   | 90  | 530    | 10.2   | 3600   | 3.5    |
| MSP430FR2100IPW16 | PW           | TSSOP        | 16   | 90  | 530    | 10.2   | 3600   | 3.5    |
| MSP430FR2110IPW16 | PW           | TSSOP        | 16   | 90  | 530    | 10.2   | 3600   | 3.5    |
| MSP430FR2111IPW16 | PW           | TSSOP        | 16   | 90  | 530    | 10.2   | 3600   | 3.5    |



SMALL OUTLINE PACKAGE



#### NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

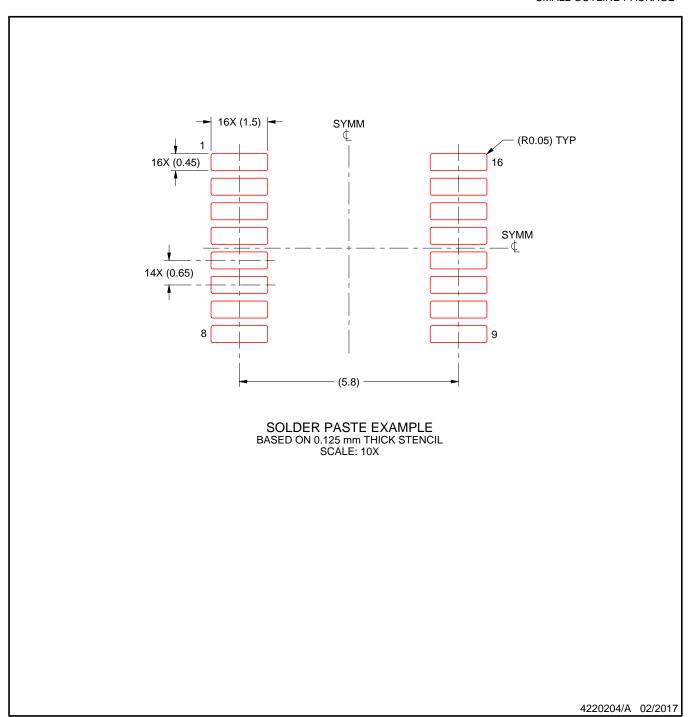
  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



SMALL OUTLINE PACKAGE




NOTES: (continued)

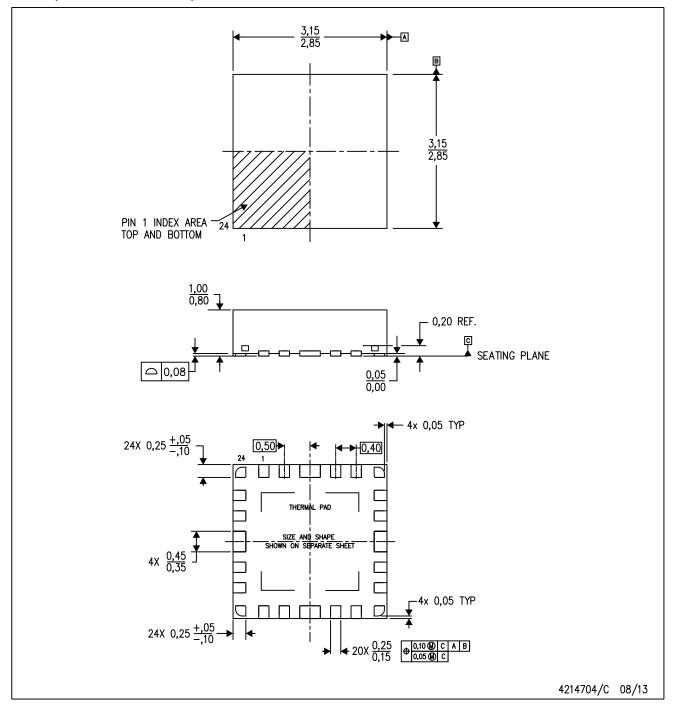
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



SMALL OUTLINE PACKAGE



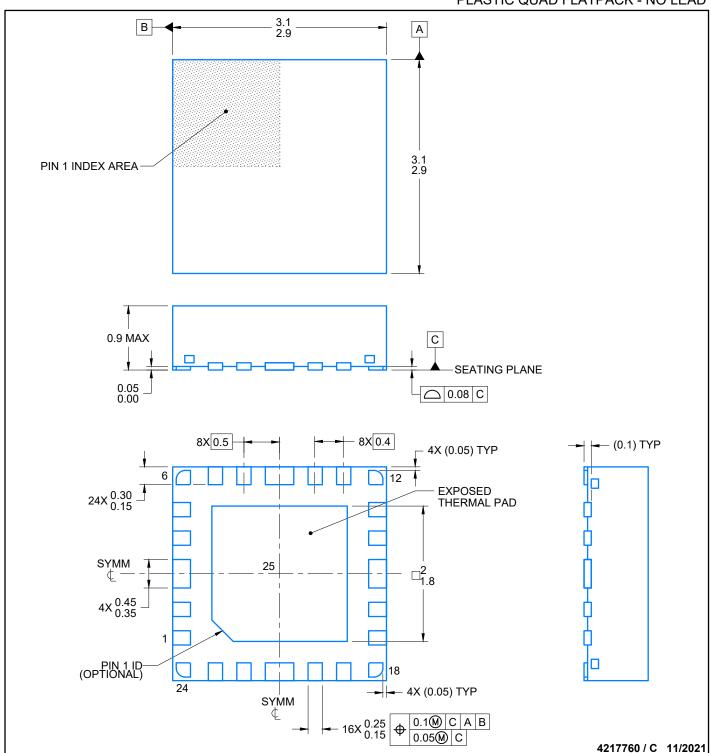

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



# RLL (S-PVQFN-N24)

# PLASTIC QUAD FLATPACK NO-LEAD

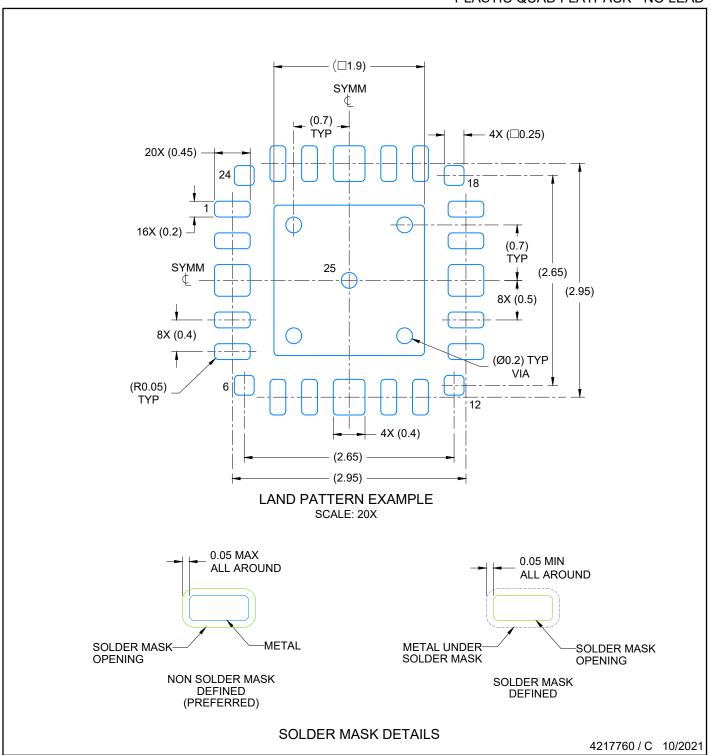



NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.



PLASTIC QUAD FLATPACK - NO LEAD

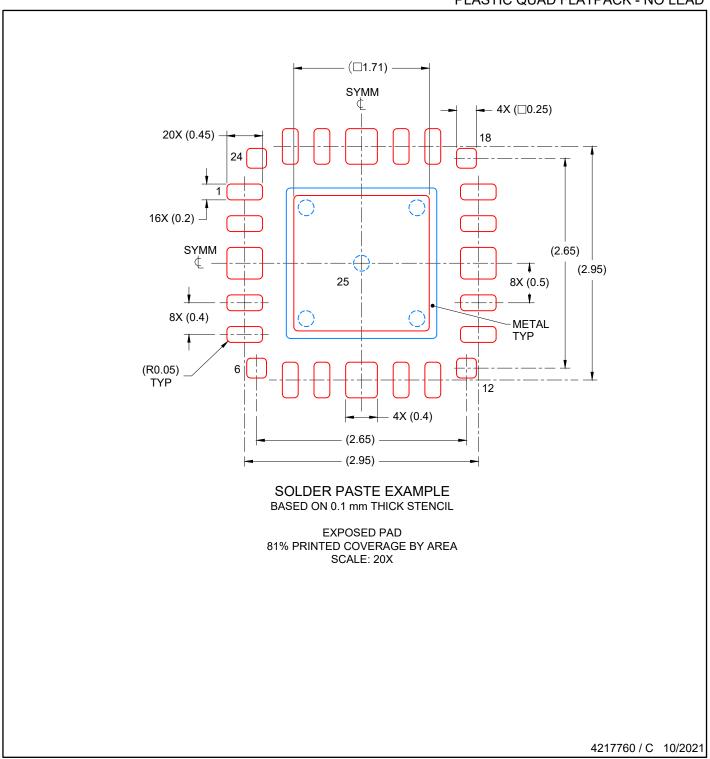



### NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



PLASTIC QUAD FLATPACK - NO LEAD




NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations..



## **IMPORTANT NOTICE AND DISCLAIMER**

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated