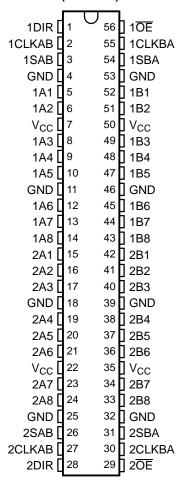
SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

SCES032F-JULY 1995-REVISED SEPTEMBER 2004

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages


DESCRIPTION

This 16-bit bus transceiver and register is designed for 1.65-V to 3.6-V $V_{\rm CC}$ operation.

The SN74ALVCH16646 can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the SN74ALVCH16646.

Output-enable (\overline{OE}) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select-control (SAB and SBA) inputs

DGG, DGV, OR DL PACKAGE (TOP VIEW)

can multiplex stored and real-time (transparent mode) data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. DIR determines which bus receives data when \overline{OE} is low. In the isolation mode (\overline{OE} high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, can be driven at a time.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16646 is characterized for operation from -40°C to 85°C.

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, EPIC are trademarks of Texas Instruments.

SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

SCES032F-JULY 1995-REVISED SEPTEMBER 2004

FUNCTION TABLE

		INP	UTS			DATA	A I/Os	ODED ATION OD FUNCTION
ŌĒ	DIR	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	OPERATION OR FUNCTION
Х	Х	↑	Х	Х	Х	Input	Unspecified ⁽¹⁾	Store A, B unspecified ⁽¹⁾
Х	X	Χ	\uparrow	X	X	Unspecified ⁽¹⁾	Input	Store B, A unspecified ⁽¹⁾
Н	X	↑	1	Χ	Χ	Input	Input	Store A and B data
Н	Χ	H or L	H or L	X	X	Input disabled	Input disabled	Isolation, hold storage
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	Χ	H or L	Χ	Н	Output	Input	Stored B data to A bus
L	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
L	Н	H or L	Χ	Н	X	Input	Output	Stored A data to B bus

⁽¹⁾ The data-output functions may be enabled or disabled by various signals at $\overline{\text{OE}}$ and DIR. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

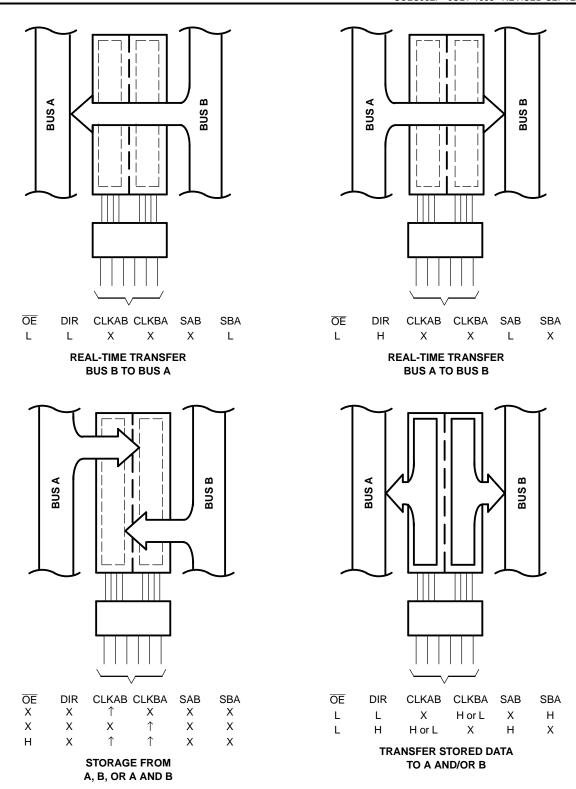
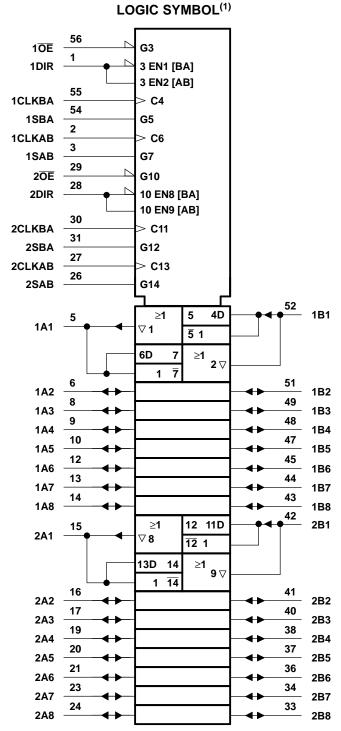
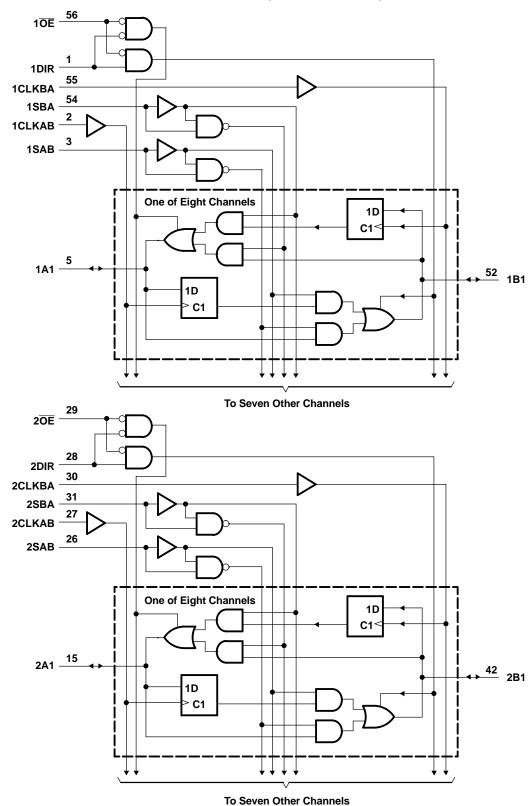



Figure 1. Bus-Management Functions



(1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

LOGIC DIAGRAM (POSITIVE LOGIC)

SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

SCES032F-JULY 1995-REVISED SEPTEMBER 2004

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
.,	lanut voltage ronge	Except I/O ports ⁽²⁾	-0.5	4.6	V
VI	Input voltage range	I/O ports (2) (3)	-0.5	V _{CC} + 0.5	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GN	ND .		±100	mA
		DGG package		81	
θ_{JA}	Package thermal impedance (4)	DGV package		86	°C/W
		DL package		74	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		V _{CC} = 2.7 V to 3.6 V	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V
		V _{CC} = 2.7 V to 3.6 V		0.8	
V_{I}	Input voltage		0	V_{CC}	V
Vo	Output voltage		0	V_{CC}	V
		V _{CC} = 1.65 V		-4	
	High lavel autout avenue	V _{CC} = 2.3 V		-12	A
I _{OH}	High-level output current	V _{CC} = 2.7 V		-12	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
	Law law Law to the start assessed	V _{CC} = 2.3 V		12	4
l _{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate	,		10	ns/V
T _A	Operating free-air temperature		-40	85	°C

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 4.6 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51.

SCES032F-JULY 1995-REVISED SEPTEMBER 2004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

P.F	ARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP(1)	MAX	UNIT
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2			
		I _{OH} = -4 mA	1.65 V	1.2			
		$I_{OH} = -6 \text{ mA}$	2.3 V	2			
V_{OH}			2.3 V	1.7			V
		I _{OH} = -12 mA	2.7 V	2.2			
			3 V	2.4			
		I _{OH} = -24 mA	3 V	2			
		I _{OL} = 100 μA	1.65 V to 3.6 V			0.2	
		I _{OL} = 4 mA	1.65 V			0.45	
\ <u>'</u>		I _{OL} = 6 mA	2.3 V			0.4	V
V _{OL}		12 mA	2.3 V			0.7	V
		I _{OL} = 12 mA	2.7 V			0.4	
		I _{OL} = 24 mA	3 V			0.55	
I _I		V _I = V _{CC} or GND	3.6 V			±5	μΑ
		V _I = 0.58 V	1.65 V	25			
		V _I = 1.07 V	1.65 V	-25			
		V _I = 0.7 V	2.3 V	45			
I _{I(hold)}		V _I = 1.7 V	2.3 V	-45			μΑ
		V _I = 0.8 V	3 V	75			
		V _I = 2 V	3 V	-75			
		V _I = 0 to 3.6 V ⁽²⁾	3.6 V			±500	
I _{OZ} (3)		$V_O = V_{CC}$ or GND	3.6 V			±10	μΑ
I _{CC}		$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V			40	μΑ
ΔI_{CC}		One input at V_{CC} - 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V			750	μΑ
C _i	Control inputs	V _I = V _{CC} or GND	3.3 V		3.5		pF
C _{io}	A or B ports	V _O = V _{CC} or GND	3.3 V		8.5		pF

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to

For I/O ports, the parameter I_{OZ} includes the input leakage current.

SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2 through Figure 4)

			V _{CC} =	1.8 V	V _{CC} = 2 ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 3 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f_{clock}	Clock frequency			(1)		150		150		150	MHz
t _w	Pulse duration	CLKAB or CLKBA high or low	(1)		3.3		3.3		3.3		ns
t _{su}	Setup time	A before CLKAB↑ or B before CLKBA↑	(1)		1.6		1.7		1.4		ns
t _h	Hold time	A after CLKAB↑ or B after CLKBA↑	(1)		0.6		0.4		0.7		ns

⁽¹⁾ This information was not available at the time of publication.

SWITCHING CHARACTERISTICS

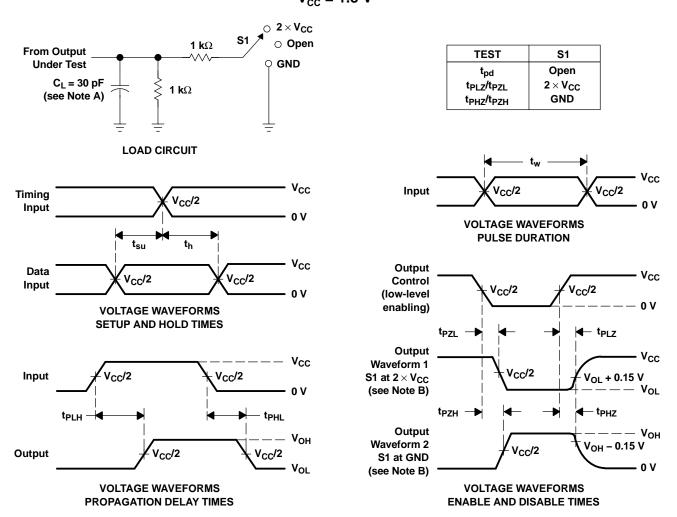
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2 through Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1	.8 V	V_{CC} = 2.5 V \pm 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3 ± 0.3	3.3 V 3 V	UNIT
	(INPUT)	(001701)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			(1)		150		150		150		MHz
	A or B	B or A		(1)	1	4.8		4.5	1	3.9	
t _{pd}	CLKAB or CLKBA	A or B		(1)	1	5.6	·	5.2	1	4.5	ns
	SAB or SBA	AUIB		(1)	1	6.8	·	6.4	1	5.3	
t _{en}	ŌĒ	A or B		(1)	1	6.5	·	6.2	1	5.1	ns
t _{dis}	ŌĒ	A or B		(1)	1.6	5.7	·	5	1.4	4.7	ns
t _{en}	DIR	A or B		(1)	1	7.8	·	6.2	1	5.1	ns
t _{dis}	DIR	A or B		(1)	1.5	6.5	·	6	1.1	5.3	ns

⁽¹⁾ This information was not available at the time of publication.

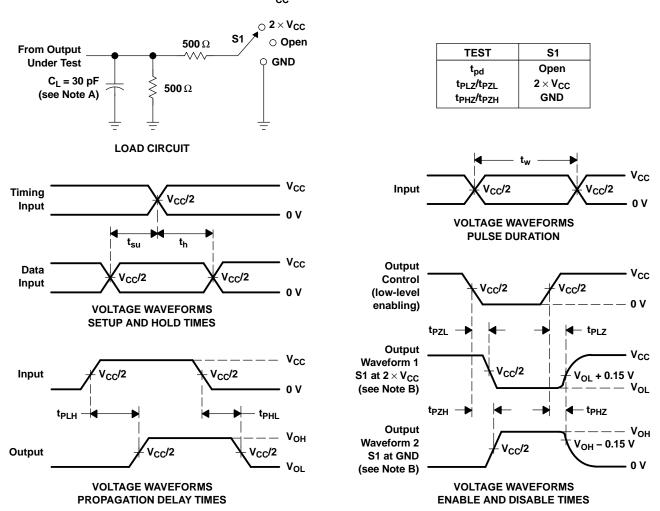
OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$


	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
0	Power dissipation capacitance	Outputs enabled	C - 50 pF f - 10 MHz	(1)	39	43	ρF
C_{pd}	rowei dissipation capacitance	Outputs disabled	$C_L = 50 \text{ pF, f} = 10 \text{ MHz}$	(1)	10	12	рг

⁽¹⁾ This information was not available at the time of publication.

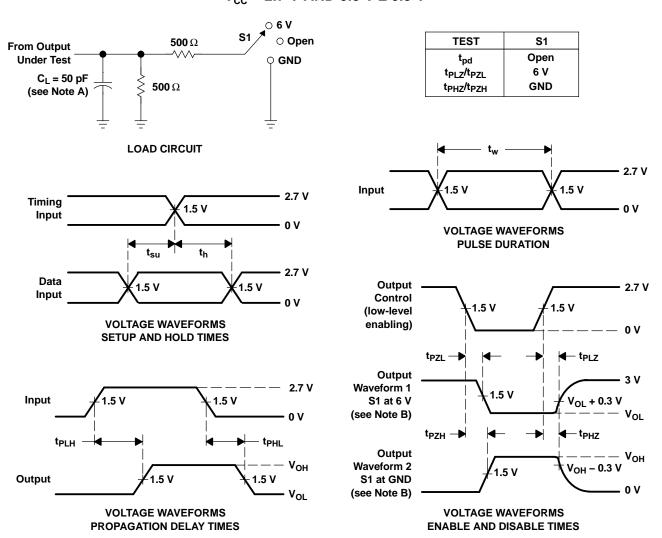
PARAMETER MEASUREMENT INFORMATION $V_{cc} = 1.8 \text{ V}$



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z $_{O}$ = 50 $\Omega,\,t_{f}$ \leq 2 ns. t_{f} \leq 2 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PL7} and t_{PH7} are the same as t_{dis}.
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2V



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 4. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74ALVCH16646DGGRG4	ACTIVE	TSSOP	DGG	56	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16646	Samples
SN74ALVCH16646DGGR	ACTIVE	TSSOP	DGG	56	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16646	Samples
SN74ALVCH16646DGVR	ACTIVE	TVSOP	DGV	56	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VH646	Samples
SN74ALVCH16646DL	ACTIVE	SSOP	DL	56	20	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16646	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

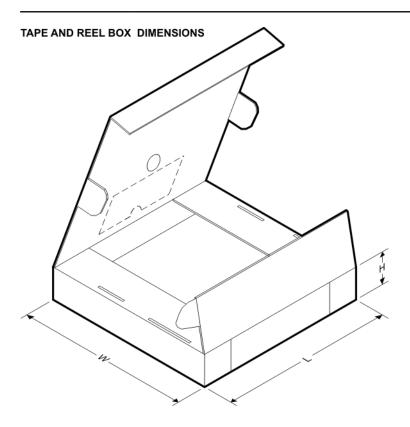
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Aug-2016

TAPE AND REEL INFORMATION

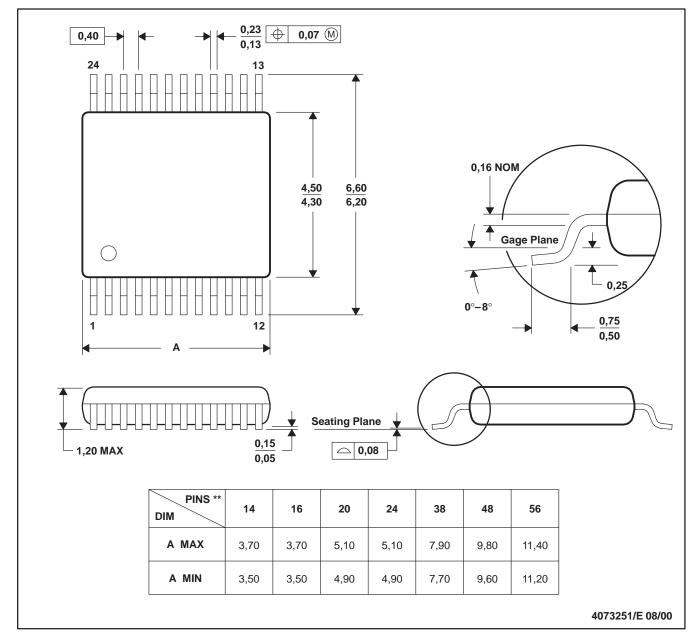
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVCH16646DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN74ALVCH16646DGVR	TVSOP	DGV	56	2000	330.0	24.4	6.8	11.7	1.6	12.0	24.0	Q1

www.ti.com 10-Aug-2016

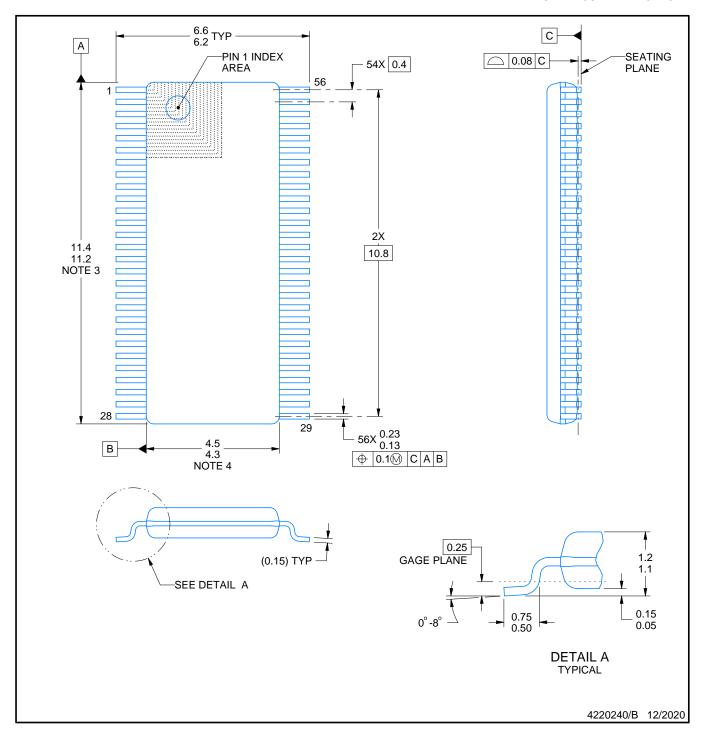

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVCH16646DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0
SN74ALVCH16646DGVR	TVSOP	DGV	56	2000	367.0	367.0	45.0

DGV (R-PDSO-G**)

24 PINS SHOWN

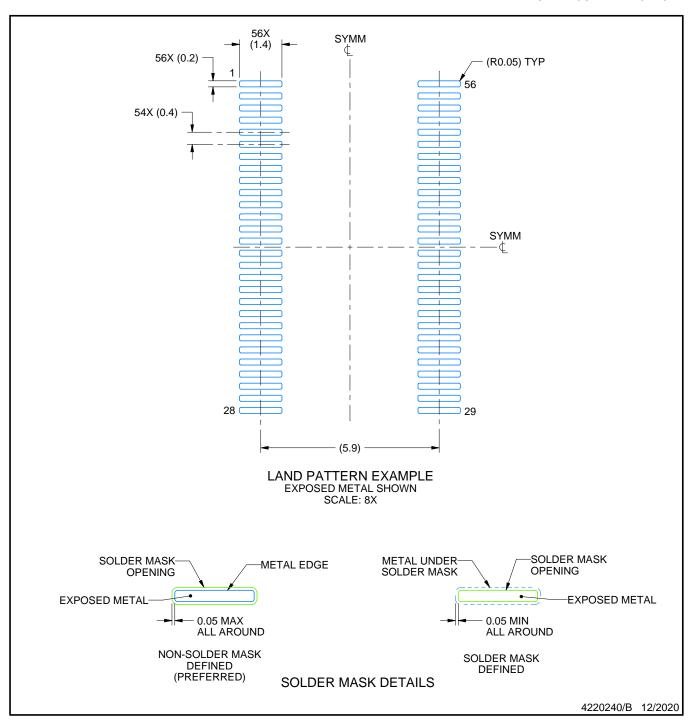
PLASTIC SMALL-OUTLINE


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

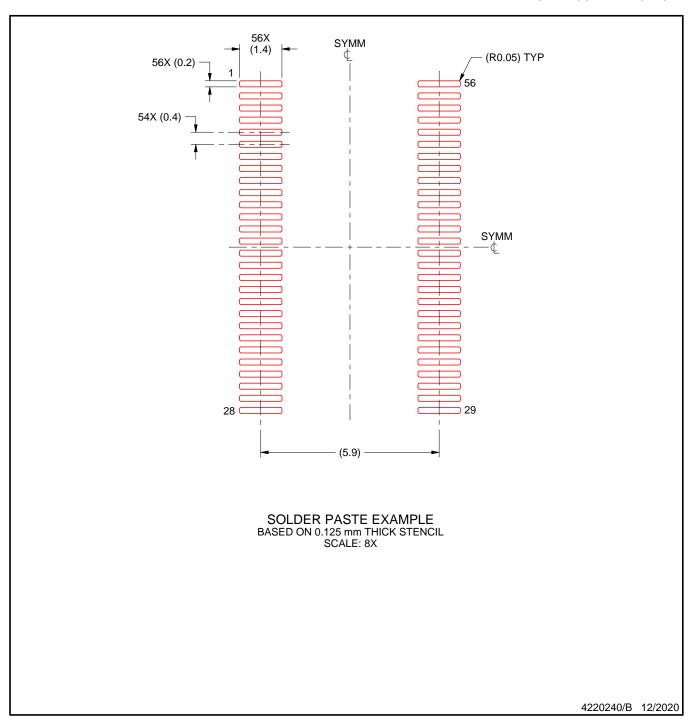
D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

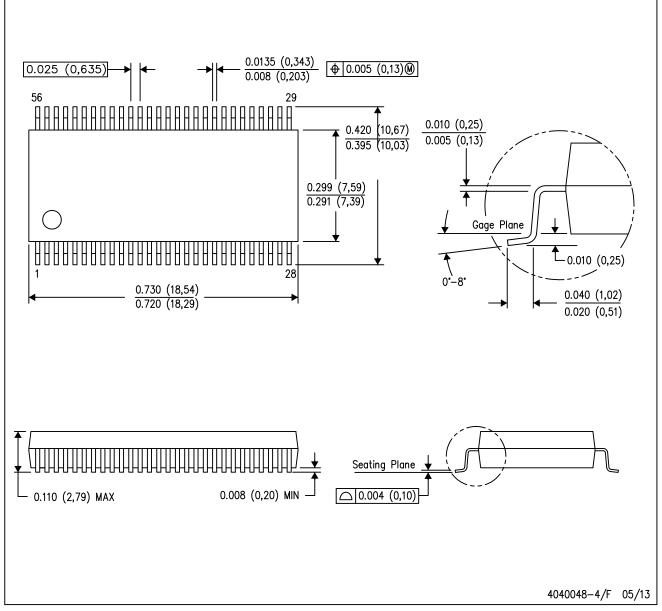
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-194.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

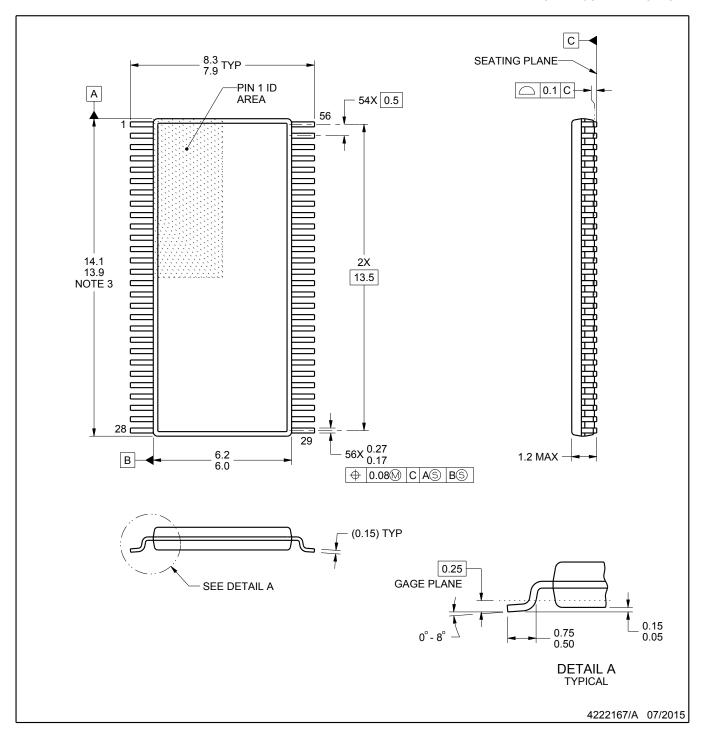
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

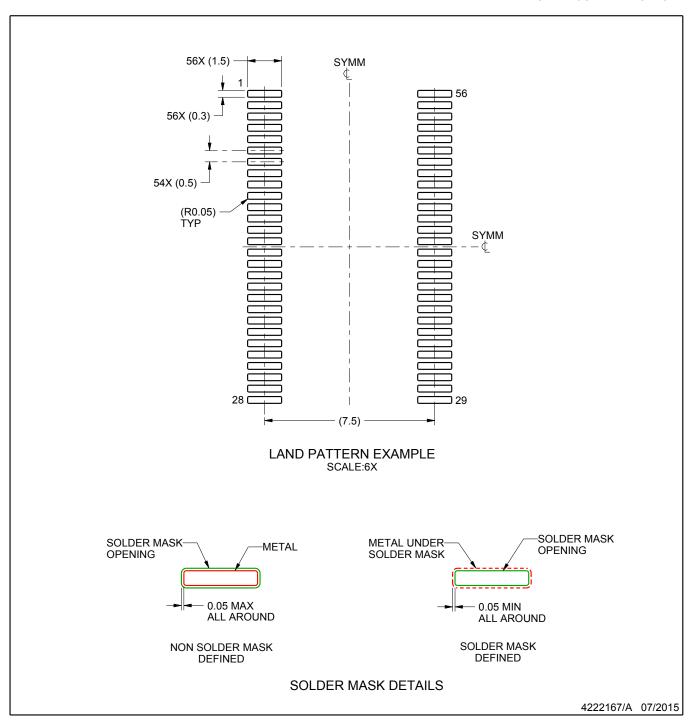
DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

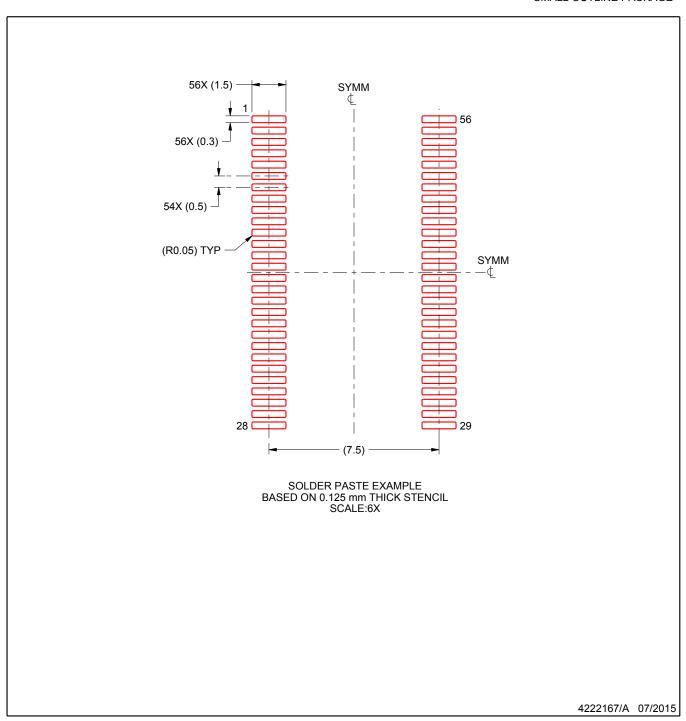
PowerPAD is a trademark of Texas Instruments.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated