THIS SPEC IS OBSOLETE

Spec No: 002-08829

Spec Title: MB39A112 3-CH DC/DC CONVERTER IC

Replaced by: NONE

The MB39A112 is a 3-channel DC/DC converter IC using pulse width modulation (PWM) , and the MB39A112 is suitable for downconversion.
3-channel is built in TSSOP-20P package. Each channel can be controlled and soft-start.
The MB39A112 contains a constant voltage bias circuit for output block, capable of implementing an efficient high-frequency DC/DC converter. It is ideal for built-in power supply such as ADSL modems.

Features

■ Supports for down-conversion (CH 1 to CH 3)

- Power supply voltage range

7 V to 25 V
■ Error amplifier threshold voltage
$1.00 \mathrm{~V} \pm 1 \%(\mathrm{CH} 1)$
$1.23 \mathrm{~V} \pm 1 \%(\mathrm{CH} 2, \mathrm{CH} 3)$

- Oscillation frequency range

250 kHz to 2.6 MHz
■ Built-in soft-start circuit independent of loads
■ Built-in timer-latch short-circuit protection circuit
■ Built-in totem-pole type output for P-channel MOS FET devices
■ Built-in constant voltage (VCCO - 5 V) bias circuit for output block

Package

Contents

Pin Assignment 3
Pin Description 4
Block Diagram 5
Absolute Maximum Ratings 6
Recommended Operating Conditions 6
Electrical Characteristics 7
Typical Characteristics 9
Function 12
DC/DC Converter Function 12
Protective Function 12
Setting The Output Voltage 14
Setting The Triangular Oscillation Frequency. 14
Setting The Soft-start And Discharge Times 15
Treatment Without Using CS Terminal 16Setting Time Constant For Timer-latchShort-circuit Protection Circuit17
Treatment Without Using CSCP Terminal 18
I/O Equivalent Circuit 19
Application Example 20
Parts List 21
Selection Of Components 22
Reference Data 32
Usage Precaution 35
Ordering Information 35
Package Dimension 36
Document History 37
Sales, Solutions, and Legal Information 38

1. Pin Assignment

(TOP VIEW)

2. Pin Description

Pin No.	Symbol	I/O	Descriptions
1	CS1	-	CH1 soft-start setting capacitor connection terminal.
2	- INE1	I	CH1 error amplifer inverted input terminal.
3	FB1	O	CH1 error amplifer output terminal.
4	VCC	-	Control circuit power supply terminal.
5	RT	-	Triangular-wave oscillation frequency setting resistor connection terminal.
6	CT	-	Triangular-wave oscillation frequency setting capacitor connection terminal.
7	GND	-	Ground terminal.
8	FB2	-	CH2 error amplifier output terminal.
9	- INE2	-	CH2 error amplifier inverted input terminal.
10	CS2	-	CH2 soft-start setting capacitor connection terminal.
11	CS3	-	CH3 soft-start setting capacitor connection terminal.
12	- INE3	I	CH3 error amplifier inverted input terminal.
13	FB3	O	CH3 error amplifier output terminal.
14	CSCP	-	Timer-latch short-circuit protection capacitor connection terminal.
15	GNDO	-	Ground terminal.
16	VH	O	Power supply terminal for driving output circuit. (VH = VCCO -5 V) .
17	OUT3	O	CH3 external Pch MOS FET gate driving terminal.
18	OUT2	O	CH2 external Pch MOS FET gate driving terminal.
19	OUT1	O	CH1 external Pch MOS FET gate driving terminal.
20	VCCO	-	Power supply terminal for driving output circuit. (Connect to same potential as VCC terminal).

3. Block Diagram

MB39A112

4. Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating		Unit
			Min	Max	
Power supply voltage	Vcc	VCC, VCCO terminal	-	28	V
Output current	Io	OUT1, OUT2, OUT3 terminal	-	20	mA
Peak output current	lop	Duty ≤ 5 \% ($\mathrm{t}=1 / \mathrm{fosc} \times$ Duty $)$	-	400	mA
Power dissipation	PD	$\mathrm{Ta} \leq+2{ }^{\circ} \mathrm{C}$	-	1280*	mW
Storage temperature	Tstg	-	- 55	+ 125	${ }^{\circ} \mathrm{C}$

*: The package is mounted on the dual-sided epoxy board ($10 \mathrm{~cm} \times 10 \mathrm{~cm}$).
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

5. Recommended Operating Conditions

Parameter	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
Power supply voltage	Vcc	VCC, VCCO terminal	7	12	25	V
Input voltage	VIN	- INE terminal	0	-	Vcc - 1.8	V
Output current	lo	OUT1, OUT2, OUT3 terminal	-15	-	15	mA
	Ive	VH terminal	0	-	30	mA
Oscillation frequency	fosc		250	1200	2600	kHz
Timing capacitor	$\mathrm{C}_{\text {T }}$	-	22	100	1000	pF
Timing resistor	RT		4.7	10	22	$\mathrm{k} \Omega$
VH terminal capacitor	Cvi	VH terminal	-	0.1	1.0	$\mu \mathrm{F}$
Soft-start capacitor	Cs	CS1, CS2, CS3 terminal	-	0.1	1.0	$\mu \mathrm{F}$
Short-circuit detection capacitor	Cscp	CSCP terminal	\square	0.01	1.0	$\mu \mathrm{F}$
Operating ambient temperature	Ta	-	-30	+ 25	+ 85	${ }^{\circ} \mathrm{C}$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their Cypress representatives beforehand.

MB39A112

6. Electrical Characteristics

$$
\left(\mathrm{VCC}=\mathrm{VCCO}=12 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right)
$$

Parameter		Symbol	Pin No.	Conditions	Value			Unit	
		Min			Typ	Max			
Undervoltage Lockout Protection Circuit Block [UVLO]	Threshold voltage		$\mathrm{V}_{\text {TH }}$	4	$\mathrm{VCC}=\mathrm{L}$	6.35	6.55	6.75	V
	Hysteresis width	VhYs	4	-	-	0.15	-	V	
Short-circuit Protection Circuit Block [SCP]	Threshold voltage	$V_{\text {TH }}$	14	-	0.67	0.72	0.77	V	
	Input source current	Icscp	14	-	-1.4	-1.0	-0.6	$\mu \mathrm{A}$	
	Reset voltage	$V_{\text {RSt }}$	4	$V C C=$,	6.2	6.4	6.6	V	
Triangular Wave Oscillator Block [OSC]	Oscillation frequency	fosc	17 to 19	$\begin{aligned} & \mathrm{CT}=100 \mathrm{pF}, \\ & \mathrm{RT}=10 \mathrm{k} \Omega \end{aligned}$	1080	1200	1320	kHz	
$\begin{aligned} & \text { Soft-start Block } \\ & \text { [CS1, CS2, } \\ & \text { CS3] } \end{aligned}$	Charge current	Ics	1, 10, 11	-	-14	-10	-6	$\mu \mathrm{A}$	
Error Amp Block (CH1) [Error Amp1]	Threshold voltage	$V_{\text {TH }}$	2	$\mathrm{FB} 1=2.25 \mathrm{~V}$	0.99	1.00	1.01	V	
	Input bias current	Ів	2	$-\mathrm{INE} 1=0 \mathrm{~V}$	- 250	-63	-	nA	
	Voltage gain	Av	3	DC	60	100	-	dB	
	Frequency band width	Bw	3	$A_{v}=0 \mathrm{~d} \cdot \mathrm{~B}$	-	1.5*	-	MHz	
	Output voltage	Vor	3	-	3.2	3.4	-	V	
	Output volage	Vol	3		-	40	200	mV	
	Output source current	Isource	3	$F B 1=2.25 \mathrm{~V}$	-	-2	-1	mA	
	Output sink current	Isink	3	$F B 1=2.25 \mathrm{~V}$	150	250	-	$\mu \mathrm{A}$	
Error Amp Block (CH2, CH3) [Error Amp2, Error Amp3]	Threshold voltage	$V_{\text {th }}$	9, 12	$F B 2=F B 3=2.25 \mathrm{~V}$	1.218	1.230	1.242	V	
	Input bias current	Ів	9, 12	$-\mathrm{INE} 2=-\mathrm{INE} 3=0 \mathrm{~V}$	-250	-63	-	nA	
	Voltage gain	Av	8, 13	DC	60	100	-	dB	
	Frequency band width	Bw	8, 13	$\mathrm{A}_{\mathrm{v}}=0 \mathrm{~dB}$	-	1.5*	-	MHz	
	Output voltage	Voн	8, 13	-	3.2	3.4	-	V	
	Output volage	Vol	8, 13	-	-	40	200	mV	
	Output source current	Isource	8, 13	$\mathrm{FB} 2=\mathrm{FB} 3=2.25 \mathrm{~V}$	-	-2	-1	mA	
	Output sink current	Isink	8, 13	$\mathrm{FB} 2=\mathrm{FB} 3=2.25 \mathrm{~V}$	150	250	-	$\mu \mathrm{A}$	

* : Standard design value
(Continued)

MB39A112
(Continued)

$$
\left(\mathrm{VCC}=\mathrm{VCCO}=12 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right)
$$

Parameter		Symbol	Pin No.	Conditions	Value			Unit	
		Min			Typ	Max			
PWM Comparator Block [PWM Comp.]	Threshold voltage		$V_{\text {to }}$	17 to 19	Duty cycle $=0 \%$	1.9	2.0	-	V
		$\mathrm{V}_{\text {T100 }}$	17 to 19	Duty cycle $=100 \%$	-	2.5	2.6	V	
Bias Voltage Block [VH]	Output voltage	V H	16	-	Vcco - 5.5	Vcco - 5.0	Vcco - 4.5	V	
Output Block [Drive]	Output source current	Isource	17 to 19	$\begin{aligned} & \text { Duty } \leq 5 \% \\ & \text { OUT1 = OUT2 = OUT3 }= \\ & 7 \mathrm{~V} \end{aligned}$	-	- 150*	-	mA	
	Output sink current	İsink	17 to 19	$\begin{aligned} & \text { Duty } \leq 5 \% \\ & \text { OUT1 = OUT2 = OUT3 }= \\ & 12 \mathrm{~V} \end{aligned}$	-	150*	-	mA	
	Output ON resistor	Rон	17 to 19	OUT1 = OUT2 = OUT3 = $-15 \mathrm{~mA}$	-	13	19.5	Ω	
		RoL	17 to 19	$\begin{aligned} & \text { OUT1 }=\text { OUT2 }=\text { OUT3 }= \\ & 15 \mathrm{~mA} \end{aligned}$	-	10	15	Ω	
General	Power supply current	Icc	4	-	-	6	9	mA	

* : Standard design value

7. Typical Characteristics

Power Supply Current vs. Power Supply Voltage

Error Amp (ERR1)
Threshold Voltage vs. Ambient Temperature

Triangular Wave Oscillation Frequency vs. Timing Resistor

Error Amp (ERR2, ERR3)
Threshold Voltage vs. Ambient Temperature

Triangular Wave Oscillation Frequency vs.
Timing Capacitor

(Continued)

Error Amp (CH2, CH3)

$\begin{array}{llll}1 \mathrm{k} & \begin{array}{c}10 \mathrm{k} \\ \text { Frequency } \mathrm{f}(\mathrm{Hz})\end{array} & 100 \mathrm{M} & 10 \mathrm{M}\end{array}$
Maximum Power Dissipation vs. Ambient Temperature

8. Function

8.1 DC/DC Converter Function

8.1.1 Triangular Wave Oscillator Block (OSC)

The triangular wave oscillator incorporates a timing capacitor and a timing resistor connected respectively to the CT terminl (pin 6) and RT terminl (pin5) to generate triangular oscillation waveform amplitude of 2.0 V to 2.5 V . The triangular waveforms are input to the PWM comparator in the IC.

8.1.2 Error Amplifier Block (Error Amp1, Error Amp2, Error Amp3)

The error amplifier detects the DC/DC converter output voltage and outputs PWM control signals. In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the output terminal to inverted input terminal of the error amplifier, enabling stable phase compensation to the system.
Also, it is possible to prevent rush current at power supply start-up by connecting a soft-start capacitor with the CS1 terminl (pin 1), CS2 terminl (pin10) and CS3 terminl (pin 11) which are the non-inverted input terminal for Error Amp. The use of error Amp for softstart detection makes it possible for a system to operate on a fixed soft-start time that is independent of the output load on the DC/ DC converter.

8.1.3 PWM Comparator Block (PWM Comp.)

The PWM comparator is a voltage-to-pulse width modulator that controls the output duty depending on the input/output voltage.
The comparator keeps output transistor on while the error amplifier output voltage remain higher than the triangular wave voltage.

8.1.4 Output Block

The output blobk is in the totem pole configulation, capable of driving an external P-channel MOS FET.

8.1.5 Bias Voltage Block (VH)

This bias voltage circuit outputs $\mathrm{Vcc}-5 \mathrm{~V}$ (Typ) as minimum potential of the output circuit.

8.2 Protective Function

8.2.1 Timer Latch Short-circuit Protection Circuit (SCP)

Each channel has a short-circuit detection comparator (SCP Comp.) which constantly compares the error Amp. output level to the reference voltage.
While DC/DC converter load conditions are stable on all channels, the short-circuit detection comparator output remains at " L ", and the CSCP terminal is held at " L " level.
If the load condition on a channel changes rapidly due to a short-circuit of the load, causing the output voltage to drop, the output of the short-circuit detection comparator on that channel goes to "H" level. This causes the external short-circuit protection capacitor Cscp connected to the CSCP terminal (pin 14) to be charged.
When the capacitor CscP is charged to the threshold voltage ($\mathrm{VTH} \approx 0.72 \mathrm{~V}$), the latch is set and the external FET is turned off (dead time is set to 100%) . At this point, the latch input is closed and the CSCP terminal is held at "L" level.
The latch applied by the timer-latch short-circuit protection circuit can be reset by recycling the power supply (VCC) (See "Setting Time Constant For Timer-latch Short-circuit Protection Circuit").

MB39A112

8.2.2 Undervoltage Lockout Protection Circuit Block (UVLO)

The transient state or a momentary decrease in supply voltage, which occurs when the power supply is turned on, may cause the IC to malfunction, resulting in breakdown or degradation of the system. To prevent such malfunctions, under voltage lockout protection circuit detects a decrease in internal reference voltage with respect to the power supply voltage, turns off the output transistor, and sets the dead time to 100% while holding the CSCP terminal (pin 14) at the "L" level.
The circuit restores the output transistor to normal when the supply voltage reaches the threshold voltage of the undervoltage lockout protection circuit.

8.2.3 Protection Circuit Operating Function Table

This table refers to output condition when each protection circuit is operating.

| Operating circuit CH1 CH2 CH3
 OUT1 OUT2 OUT3
 Short-circuit protection circuit H H H
 Under-voltage lockout circuit H H H l | |
| :--- | :---: | :---: | :---: |

The latch can be reset as follows after the short-circuit protection circuit is actuated.
Recycling VCC resets the latch whenever the short-circuit protection circuit has been actuated.

9. Setting The Output Voltage

10. Setting The Triangular Oscillation Frequency

The triangular oscillation frequency is determined by the timing capacitor (C_{T}) connected to the C_{\top} terminal (pin 6) and the timing resistor (R_{T}) connected to the R_{T} terminal (pin5).

Triangular oscillation frequency : fosc
fosc $(k H z) \approx \frac{1200000}{C_{T}(p F) \cdot R_{T}(k \Omega)}$

11. Setting The Soft-start And Discharge Times

To prevent rush currents when the IC is turned on, you can set a soft-start by connecting soft-start capacitors (Cs1, Cs2 and Cs3) to the CS1 terminal (pin 1) for channel 1, CS2 terminal (pin 10) for channel 2 and CS3 terminal (pin 11) for channel 3 respectively.
Setting each control terminal ($\overline{\mathrm{CTLX}}$) from " H " to " L " starts charging the external soft-start capacitors (C s1, $\mathrm{C} s 2$ and Cs) connected to the CS1, CS2 and CS3 terminal at about $10 \mu \mathrm{~A}$. The DC/DC converter output voltage rises in proportion to the CS terminal voltage. Also, soft-start time is obtained by the following formulas.

Soft-start time : ts (time to output 100\%)

$$
\begin{array}{lll}
\mathrm{CH} 1 & : & \mathrm{ts} 1[\mathrm{~s}] \approx 0.100 \times \mathrm{Cs}_{1}[\mu \mathrm{~F}] \\
\mathrm{CH} 2 & : & \mathrm{ts}_{2}[\mathrm{~s}] \approx 0.123 \times \mathrm{Cs} 2[\mu \mathrm{~F}] \\
\mathrm{CH} 3 & : & \mathrm{ts} 3[\mathrm{~s}] \approx 0.123 \times \mathrm{Cs}_{3}[\mu \mathrm{~F}]
\end{array}
$$

12. Treatment Without Using CS Terminal

When not using the soft-start function, open the CS1 terminal (pin 1), CS2 terminal (pin 10) and CS3 terminal (pin 11).

- Without setting soft-start tme

MB39A112

13. Setting Time Constant For Timer-latch Short-circuit Protection Circuit

Each channel uses the short-circuit detection comparator (SCP Comp.) to always compare the error amplifier's output level to the reference voltage.
While $D C / D C$ converter load conditions are stable on all channels, the short-circuit detection comparator output remains at " L " level, and the CSCP terminal (pin 14) is held at " L " level.
If the load condition on a channel changes rapidly due to a short-circuit of the load, causing the output voltage to drop, the output of the short-circuit detection comparator goes to "H" level. This causes the extemal short-circuit protection capacitor Cscp connected to the CSCP terminal to be charged at $1 \mu \mathrm{~A}$.

> Short-circuit detection time : tcscp

$$
\operatorname{tcscp}[s] \approx 0.72 \times \operatorname{Cscp}[\mu F]
$$

When the capacitor Cscp is charged to the threshold voltage $\left(\mathrm{V}_{\text {TH }} \approx 0.72 \mathrm{~V}\right)$, the latch is set and the external FET is turned off (dead time is set to 100%). At this time, the latch input is closed and the CSCP terminal (pin 14) is held at "L" level.

If any of CH 1 to CH 3 detects a short circuit, all the channels are stopped.

- Timer-latch short-circuit protection circuit

14. Treatment Without Using CSCP Terminal

When not using the timer-latch short-circuit protection circuit, connect the CSCP terminal (pin 14) to GND with the shortest distance.

- Treatment without using CSCP terminal

15. I/O Equivalent Circuit

16. Application Example

17. Parts List

COMPONENT	ITEM	SPECIFICATION		VENDOR	PARTS No.
$\begin{aligned} & \text { Q1, Q2, } \\ & \text { Q3 } \end{aligned}$	Pch FET Pch FET	$\begin{aligned} & \mathrm{VDS}=-30 \mathrm{~V}, \mathrm{ID}=-2.0 \mathrm{~A} \\ & \mathrm{VDS}=-30 \mathrm{~V}, \mathrm{ID}=-1.0 \mathrm{~A} \end{aligned}$		SANYO SANYO	$\begin{aligned} & \text { MCH3312 } \\ & \text { MCH3308 } \end{aligned}$
$\begin{gathered} \text { D1, D2 } \\ \text { D3 } \end{gathered}$	Diode Diode	$\begin{aligned} & \mathrm{VF}=0.55 \mathrm{~V}(\mathrm{Max}), \text { at } \mathrm{IF}=2 \mathrm{~A} \\ & \mathrm{VF}=0.4 \mathrm{~V}(\mathrm{Max}), \text { at } \mathrm{IF}=0.5 \mathrm{~A} \end{aligned}$		SANYO SANYO	$\begin{aligned} & \text { SBE001 } \\ & \text { SBE005 } \end{aligned}$
$\begin{aligned} & \mathrm{L} 1 \\ & \text { L2 } \\ & \text { L3 } \end{aligned}$	Inductor Inductor Inductor	$2 \mu \mathrm{H}$ $3.3 \mu \mathrm{H}$ $10 \mu \mathrm{H}$	$3 \mathrm{~A}, 16 \mathrm{~m} \Omega$ $2.57 \mathrm{~A}, 21.4 \mathrm{~m} \Omega$ $1.49 \mathrm{~A}, 41.2 \mathrm{~m} \Omega$	$\begin{aligned} & \text { TOKO } \\ & \text { TOKO } \\ & \text { TOKO } \end{aligned}$	A916CY-2R0M A916CY-3R3M A916CY-100M
C1, C3, C5 C2, C4, C6 C7, C9, C12 C8 C10 C11, C14 C13, C16, C17 C15	Ceramics Condenser	$\begin{gathered} 2.2 \mu \mathrm{~F} \\ 4.7 \mu \mathrm{~F} \\ 0.1 \mu \mathrm{~F} \\ 0.022 \mu \mathrm{~F} \\ 100 \mu \mathrm{~F} \\ 0.01 \mu \mathrm{~F} \\ 0.1 \mu \mathrm{~F} \\ 1000 \mathrm{pF} \end{gathered}$	$\begin{aligned} & 25 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 50 \mathrm{~V} \end{aligned}$	TDK TDK TDK TDK TDK TDK TDK TDK	C3216JB1E225K C3216JB1A475M C1608JB1H104K C1608JB1H223K C1608CH1H101J C1608JB1H103K C1608JB1H104K C1608JB1H102K
R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18	Resistor Resistor	$\begin{gathered} 2.2 \mathrm{k} \Omega \\ 18 \mathrm{k} \Omega \\ 100 \mathrm{k} \Omega \\ 820 \Omega \\ 5.1 \mathrm{k} \Omega \\ 4.7 \mathrm{k} \Omega \\ 56 \mathrm{k} \Omega \\ 36 \mathrm{k} \Omega \\ 820 \Omega \\ 680 \Omega \\ 30 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega \\ 1 \mathrm{k} \Omega \end{gathered}$	$\begin{aligned} & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \end{aligned}$	ssm ssm	RR0816P-222-D RR0816P-183-D RR0816P-104-D RR0816P-821-D RR0816P-512-D RR0816P-472-D RR0816P-563-D RR0816P-363-D RR0816P-821-D RR0816P-681-D RR0816P-303-D RR0816P-103-D RR0816P-102-D

Note :

SANYO : SANYO Electric Co., Ltd.
TOKO : TOKO Inc.
TDK : TDK Corporation
ssm : SUSUMU Co., Ltd.

MB39A112

18. Selection Of Components

- Pch MOS FET

The Pch MOS FET for switching use should be rated for at least 20% or more than the maximum input voltage. To minimize continuity loss, use a FET with low Ros (on) between the drain and source. For high input voltage and high frequency operation, on-cycle switching loss will be higher so that power dissipation must be considered. In this application, the SANYO MCH3312 and MCH3308 are used. Continuity loss, on/off-cycle switching loss and total loss are determined by the following formulas. The selection must ensure that peak drain current does not exceed rated values.

Continuity loss: Pc
$\mathrm{Pc}=\quad \mathrm{ID}^{2} \times \operatorname{Rds}(\mathrm{ON}) \times$ Duty

On-cycle switching loss: Ps (ON)
$P_{S_{(O N)}}=\frac{V_{D(\text { Max })} \times \operatorname{ID} \times \operatorname{tr} \times \text { fosc }}{6}$

Off-cycle switching loss : Ps (OfF)
$\mathrm{PS}_{\text {(OFF) }}=\frac{\mathrm{V}_{\mathrm{D} \text { (Max) }} \times \mathrm{ID}_{\mathrm{D} \text { (Max) }} \times \mathrm{tf} \times \mathrm{fos} \mathrm{C}}{6}$

Total loss: P
$\mathrm{P}_{\mathrm{T}}=\mathrm{Pc}_{\mathrm{c}}+\mathrm{Ps}_{\mathrm{s}(\mathrm{ON})}+\mathrm{Ps}_{\text {(OFF) }}$

Example : Using the MCH3312

- CH1

Input voltage $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, output voltage $\mathrm{V}_{\mathrm{o}}=1.2 \mathrm{~V}$, drain current $\mathrm{l}_{\mathrm{D}}=1.5 \mathrm{~A}$, oscillation frequency fosc $=2350 \mathrm{kHz}, \mathrm{L}=2 \mu \mathrm{H}$, drainsource on resistance $\mathrm{Rds}(0 \mathrm{~N})^{\approx} 180 \mathrm{~m} \Omega$, $\mathrm{tr} \approx 2.9 \mathrm{~ns}$, $\mathrm{tf} \approx 8.7 \mathrm{~ns}$.

Drain current (Max) : ld (Max)

$$
\begin{aligned}
\mathrm{ID}_{(\text {Max })} & =\mathrm{Io}+\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{Vo}}{2 \mathrm{~L}} \text { toN } \\
& =1.5+\frac{12-1.2}{2 \times 2.0 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.1 \\
& \approx 1.61 \mathrm{~A}
\end{aligned}
$$

Drain current (Min) : ID (Min)

$$
\begin{aligned}
\mathrm{ID}_{\text {(Min) }} & =\mathrm{Io}-\frac{\mathrm{VIN}-\mathrm{Vo}}{2 \mathrm{~L}} \text { ton } \\
& =1.5-\frac{12-1.2}{2 \times 2.0 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.1 \\
& \approx 1.39 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
P_{C} & =I_{D^{2}} \times R_{\mathrm{DS}(O N)} \times \text { Duty } \\
& =1.5^{2} \times 0.18 \times 0.1 \\
& \approx \underline{0.04} \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
P_{S}(o \mathrm{ON}) & =\frac{V_{D} \times \operatorname{lD} \times \mathrm{tr} \times \text { fosc }}{6} \\
& =\frac{12 \times 1.5 \times 2.9 \times 10^{-9} \times 2350 \times 10^{3}}{6} \\
& \approx 0.02 \mathrm{~W}
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{S}(\mathrm{OFF})}=\frac{\mathrm{V}_{\mathrm{D}} \times \mathrm{ID}(\mathrm{Max}) \times \mathrm{tf} \times \text { fosc }}{6}
$$

$$
=\frac{12 \times 1.61 \times 8.7 \times 10^{-9} \times 2350 \times 10^{3}}{6}
$$

$$
\approx \quad 0.066 \mathrm{~W}
$$

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{Pc}_{\mathrm{C}}+\mathrm{Ps}_{(\text {ON })}+\mathrm{Ps}_{\text {(OFF) }}
$$

$$
\approx 0.04+0.02+0.066
$$

$$
\approx 0.126 \mathrm{~W}
$$

The above power dissipation figures for the MCH3312 are satisfied with ample margin at $1.0 \mathrm{WTa}=+25^{\circ} \mathrm{C}$

- CH2

Input voltage $\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}$, output voltage $\mathrm{V}_{\mathrm{o}}=3.3 \mathrm{~V}$, drain current $\mathrm{l}_{\mathrm{D}}=1.0 \mathrm{~A}$, osciliation frequency fosc $=2350 \mathrm{kHz}, \mathrm{L}=3.3 \mu \mathrm{H}$, drainsource on resistance $\operatorname{Rds(ON)} \approx 180 \mathrm{~m} \Omega$, $\mathrm{tr} \approx 2.9 \mathrm{~ns}, \mathrm{tf} \approx 8.7 \mathrm{~ns}$.

Drain current (Max) : ID (Max)

$$
\begin{aligned}
\mathrm{ID}_{\mathrm{D}(\mathrm{Max})} & =\mathrm{lo}+\frac{\mathrm{V} \text { IN }-\mathrm{Vo}}{2 \mathrm{~L}} \mathrm{ton} \\
& =1+\frac{12-3.3}{2 \times 3.3 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.275 \\
& \approx 1.15 \mathrm{~A}
\end{aligned}
$$

Drain current (Min) : Id (Min)

$$
\begin{aligned}
\mathrm{I}_{\mathrm{D}(\text { Min })} & =\mathrm{lo}-\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{Vo}}{2 \mathrm{~L}} \mathrm{ton} \\
& =1-\frac{12-3.3}{2 \times 3.3 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.275 \\
& \approx \underline{0.85 \mathrm{~A}}
\end{aligned}
$$

$$
\begin{aligned}
P_{C} & ={I D^{2} \times R \operatorname{RS}(O N) \times \text { Duty }} \\
& =1^{2} \times 0.18 \times 0.275 \\
& \approx \underline{0.0495 \mathrm{~W}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Ps}_{(\mathrm{ON})} & =\frac{V_{D} \times \operatorname{lD} \times \operatorname{tr} \times \mathrm{fOSC}}{6} \\
& =\frac{12 \times 1 \times 2.9 \times 10^{-9} \times 2350 \times 10^{3}}{6} \\
& \approx \underline{0.0136 \mathrm{~W}}
\end{aligned}
$$

```
\(\mathrm{Ps}_{(\text {OFF })}=\frac{\mathrm{V}_{\mathrm{D}} \times \mathrm{ID}_{\mathrm{D} \text { (Max) }} \times \mathrm{tf} \times \mathrm{fosC}}{6}\)
    \(=\frac{12 \times 1.15 \times 8.7 \times 10^{-9} \times 2350 \times 10^{3}}{6}\)
```

 \(\approx 0.047 \mathrm{~W}\)
 $\mathrm{P}_{\mathrm{T}}=\mathrm{Pc}_{\mathrm{c}}+\mathrm{Ps}_{\text {(ON) }}+\mathrm{Ps}_{\text {(OFF) }}$
$\approx 0.0495+0.0136+0.047$
$\approx 0.11 \mathrm{~W}$

The above power dissipation figures for the MCH 3312 are satisfied with ample margin at $1.0 \mathrm{~W}\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$.
Example: Using the MCH3308

■ CH3

Input voltage $\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}$, output voltage $\mathrm{Vo}=5.0 \mathrm{~V}$, drain current $\mathrm{I}_{\mathrm{D}}=0.3 \mathrm{~A}$, oscillation frequency fosc $=$ $2350 \mathrm{kHz}, \mathrm{L}=10 \mu \mathrm{H}$, drain-source on resistance $\mathrm{Rds}_{(\mathrm{ON})} \approx 600 \mathrm{~m} \Omega$, $\mathrm{tr} \approx 4 \mathrm{~ns}, \mathrm{tf} \approx 4 \mathrm{~ns}$.

Drain current (Max) : ld (Max)

$$
\begin{aligned}
\mathrm{ID}_{(\text {Max })} & =\mathrm{lo}+\frac{\mathrm{VIN}-\mathrm{Vo}}{2 \mathrm{~L}} \mathrm{ton} \\
& =0.3+\frac{12-5}{2 \times 10 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.417 \\
& \approx 0.36(\mathrm{~A})
\end{aligned}
$$

Drain current (Min) : ID (Min)

$$
\begin{aligned}
\mathrm{I}_{\mathrm{D}(\text { Min })} & =\mathrm{Io}-\frac{\mathrm{VIN}-\mathrm{Vo}}{2 \mathrm{~L}} \mathrm{ton} \\
& =0.3-\frac{12-5}{2 \times 10 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.417 \\
& \approx \underline{0.24}(\mathrm{~A})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Pc}_{\mathrm{C}} & =\mathrm{ID}^{2} \times \operatorname{RDs}(\mathrm{ON}) \times \text { Duty } \\
& =0.3^{2} \times 0.6 \times 0.417 \\
& \approx \underline{0.023 \mathrm{~W}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Ps}_{(\mathrm{ON})} & =\frac{\mathrm{V}_{\mathrm{D}} \times \operatorname{lD} \times \mathrm{tr} \times \mathrm{fosc}}{6} \\
& =\frac{12 \times 0.3 \times 4 \times 10^{-9} \times 2350 \times 10^{3}}{6} \\
& \approx \frac{0.0056 \mathrm{~W}}{\mathrm{~V}_{\mathrm{D}} \times \operatorname{lD}(\mathrm{Max}) \times \mathrm{tf} \times \mathrm{fosc}} \\
\mathrm{PS}_{(\mathrm{OFF})} & =\frac{12 \times 0.36 \times 4 \times 10^{-9} \times 2350 \times 10^{3}}{6} \\
& =\frac{12 \times 2}{6} \\
& \approx \underline{0.0068 \mathrm{~W}}
\end{aligned}
$$

$$
\begin{aligned}
P_{\mathrm{T}} & =P_{\mathrm{c}}+P_{s(O N)}+P_{s(\text { OFF })} \\
& \approx 0.023+0.0056+0.0068 \\
& \approx \underline{0.0354 \mathrm{~W}}
\end{aligned}
$$

The above power dissipation figures for the MCH 3308 are satisfied with ample margin at $0.8 \mathrm{~W}\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$.

MB39A112

Inductors

In selecting inductors, it is of course essential not to apply more current than the rated capacity of the inductor, but also to note that the lower limit for ripple current is a critical point that if reached will cause discontinuous operation and a considerable drop in efficiency. This can be prevented by choosing a higher inductance value, which will enable continuous operation under light loads. Note that if the inductance value is too high, however, direct current resistance (DCR) is increased and this will also reduce efficiency. The inductance must be set at the point where efficiency is greatest.

Note also that the DC superimposition characteristics become worse as the load current value approaches the rated current value of the inductor, so that the inductance value is reduced and ripple current increases, causing loss of efficiency. The selection of rated current value and inductance value will vary depending on where the point of peak efficiency lies with respect to load current.
Inductance values are determined by the following formulas.
The L value for all load current conditions is set so that the peak to peak value of the ripple current is $1 / 2$ the load current or less.

Inductance value : L

$$
L \geq \frac{2\left(V_{\text {IN }}-V_{0}\right)}{\text { Io }} \mathrm{ton}
$$

Example

- CH1

$$
\begin{aligned}
L & \geq \frac{2(\mathrm{Vin}-\mathrm{Vo} 1)}{\mathrm{lo}} \text { ton } \\
& \geq \frac{2 \times(12-1.2)}{1.5} \times \frac{1}{2350 \times 10^{3}} \times 0.1
\end{aligned}
$$

$\geq \quad 0.61 \mu \mathrm{H}$

- CH2

$\geq \frac{2 \times(12-3.3)}{1} \times \frac{1}{2350 \times 10^{3}} \times 0.275$
$\geq \quad 2.04 \mu \mathrm{H}$
- CH3

$$
L \geq \frac{2\left(\mathrm{~V}_{\mathrm{in}}-\mathrm{Vo3}\right)}{\mathrm{lo}} \text { ton }
$$

$$
\geq \frac{2 \times(12-5)}{0.3} \times \frac{1}{2350 \times 10^{3}} \times 0.417
$$

$\geq \quad 8.28 \mu \mathrm{H}$
Inductance values derived from the above formulas are values that provide sufficient margin for continuous operation at maximum load current, but at which continuous operation is not possible at light loads. It is therefore necessary to determine the load level at which continuous operation becomes possible. In this application, the TOKO A916CY-2R0M, A916CY-3R3M and A916CY-100M are used. At $2 \mu \mathrm{H}, 3.3 \mu \mathrm{H}$ and $10 \mu \mathrm{H}$, the load current value under continuous operating conditions is determined by the following formula.

Load current value under continuous operating conditions: lo

$$
\mathrm{lo} \geq \frac{\mathrm{Vo}}{2 \mathrm{~L}} \text { toFF }
$$

Example: Using the A916CY-2R0M
$2 \mu \mathrm{H}$ (allowable tolerance $\pm 20 \%$), rated current $=3 \mathrm{~A}$

- CH 1
$\mathrm{lo} \geq \frac{\mathrm{Vo} 1}{2 \mathrm{~L}}$ toff

$$
\geq \frac{1.2}{2 \times 2 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times(1-0.1)
$$

$\geq \quad \underline{0.11 \mathrm{~A}}$

Example : Using the A916CY-3R3M
$3.3 \mu \mathrm{H}$ (allowable tolerance $\pm 20 \%$), rated current $=2.57 \mathrm{~A}$

- CH2

$$
\begin{aligned}
\mathrm{Io} & \geq \frac{\mathrm{Vo} 2}{2 \mathrm{~L}} \text { toff } \\
& \geq \frac{3.3}{2 \times 3.3 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \\
& \geq \underline{0.15 \mathrm{~A}}
\end{aligned}
$$

Example : Using the A916CY-100M
$10.0 \mu \mathrm{H}$ (allowable tolerance $\pm 20 \%$), rated current $=1.49 \mathrm{~A}$

- CH 3

$$
\begin{aligned}
\mathrm{Io} & \geq \frac{\mathrm{Vo3}}{2 \mathrm{~L}} \text { toff } \\
& \geq \frac{5}{2 \times 10 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times(1-0.417) \\
& \geq \underline{62.0 \mathrm{~mA}}
\end{aligned}
$$

To determine whether the current through the inductor is within rated values, it is necessary to determine the peak value of the ripple current as well as the peak-to-peak values of the ripple current that affect the output ripple voltage. The peak value and peak-to-peak value of the ripple current can be determined by the following formulas.

Peak value: IL
$\mathrm{IL} \geq \mathrm{Io}+\frac{\mathrm{V}_{\text {IN }}-\mathrm{Vo}}{2 \mathrm{~L}}$ ton

Peak-to-peak value : $\Delta \mathrm{L}$

$$
\Delta \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{VO}_{\mathrm{O}}}{\mathrm{~L}} \mathrm{toN}
$$

Example: Using the A916CY-2R0M $2.0 \mu \mathrm{H}$ (allowable tolerance $\pm 20 \%$), rated current $=3.0 \mathrm{~A}$

- CH1

Peak value
$\mathrm{LL} \geq \mathrm{Io}+\frac{\mathrm{V}_{\text {IN }}-\mathrm{Vo1}}{2 \mathrm{~L}}$ ton
$\geq 1.5+\frac{12-1.2}{2 \times 2.0 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.1$
$\geq \quad 1.61 \mathrm{~A}$

Peak-to-peak value

$$
\begin{aligned}
\Delta \mathrm{I}_{\mathrm{L}} & =\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{Vo}_{\mathrm{o}}}{\mathrm{~L}} \mathrm{ton} \\
& =\frac{12-1.2}{2.0 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.1 \\
& \approx 0.23 \mathrm{~A}
\end{aligned}
$$

Example : Using the A916CY-3R3M

$3.3 \mu \mathrm{H}$ (allowable tolerance $\pm 20 \%$), rated current $=2.57 \mathrm{~A}$

■ CH2

Peak value
$\mathrm{IL} \geq \mathrm{Io}+\frac{\mathrm{VIN}-\mathrm{Vo2}}{2 \mathrm{~L}}$ ton
$\geq 1.0+\frac{12-3.3}{2 \times 3.3 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.275$
$\geq \quad 1.15 \mathrm{~A}$

Peak-to-peak value

$$
\begin{aligned}
\Delta \mathrm{I}_{\mathrm{L}} & =\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{VO} 2^{\mathrm{L}} \text { ton }}{} \\
& =\frac{12-3.3}{3.3 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.275 \\
& \approx \underline{0.309 \mathrm{~A}}
\end{aligned}
$$

Example : Using the A916CY-100M $10.0 \mu \mathrm{H}$ (allowable tolerance $\pm 20 \%$) , rated current $=1.49 \mathrm{~A}$

- CH3

Peak value
$\mathrm{IL}_{\mathrm{L}} \geq \mathrm{Io}+\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{Vo3}}{2 \mathrm{~L}} \mathrm{ton}_{\mathrm{N}}$
$\geq 0.3+\frac{12-5}{2 \times 10 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.417$
$\geq \quad 0.36 \mathrm{~A}$
Peak-to-peak value

$$
\begin{aligned}
\Delta \mathrm{I}_{\mathrm{L}} & =\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{VO}_{\mathrm{O}}}{\mathrm{~L}} \text { ton } \\
& =\frac{12-5}{10 \times 10^{-6}} \times \frac{1}{2350 \times 10^{3}} \times 0.417 \\
& \approx \underline{0.124 \mathrm{~A}}
\end{aligned}
$$

■ Flyback diode
The flyback diode is generally used as a Shottky barrier diode (SBD) when the reverse voltage to the diode is less than 40 V . The SBD has the characteristics of higher speed in terms of faster reverse recovery time, and lower forward voltage, and is ideal for archiving high efficiency. As long as the DC reverse voltage is sufficiently higher than the input voltage, the average current flowing through the diode is within the average output current level, and peak current is within peak surge current limits, there is no problem. In this application the SANYO SBE001, SBS005 are used. The diode average current and diode peak current can be calculated by the following formulas.

Diode mean current : lo

$$
\mathrm{I}_{\mathrm{Di}} \geq \mathrm{lo} \times\left(1-\frac{\mathrm{Vo}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{IN}}}\right)
$$

Diode peak current : IDip

$$
\mathrm{I}_{\mathrm{Dip}} \geq \quad\left(\mathrm{IO}+\frac{\mathrm{Vo}}{2 \mathrm{~L}} \mathrm{tofF}\right)
$$

Example : Using the SBE001

$\mathrm{VR}(\mathrm{DC}$ reverse voltage $)=30 \mathrm{~V}$, average output current $=2.0 \mathrm{~A}$, peak surge current $=20 \mathrm{~A}$, $\mathrm{VF}($ forward voltage $)=0.55 \mathrm{~V}$, at $\mathrm{IF}=2.0 \mathrm{~A}$

■ CH1

Diode mean current

$$
\begin{aligned}
I_{\mathrm{Di}} & \geq \mathrm{Io} \times\left(1-\frac{\mathrm{Vo}_{\mathrm{o}}}{\mathrm{VIN}}\right) \\
& \geq 1.5 \times(1-0.1) \\
& \geq 1.35 \mathrm{~A}
\end{aligned}
$$

Diode peak current

$$
\begin{aligned}
\mathrm{I}_{\mathrm{Dip}} & \geq \quad\left(\mathrm{lo}+\frac{\mathrm{Vo} 1}{2 \mathrm{~L}} \text { tofF }\right) \\
& \geq 1.61 \mathrm{~A}
\end{aligned}
$$

- CH2

Diode mean current

$$
\begin{aligned}
\mathrm{I}_{\mathrm{Di}} & \geq \mathrm{Io} \times\left(1-\frac{\mathrm{Vo}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{IN}}}\right) \\
& \geq 1.0 \times(1-0.275) \\
& \geq 0.725 \mathrm{~A}
\end{aligned}
$$

Diode peak current

$$
\begin{aligned}
I_{\text {Dip }} & \geq\left(\mathrm{lo}+\frac{\mathrm{Vo} 2}{2 \mathrm{~L}} \text { tofF }\right) \\
& \geq 1.15 \mathrm{~A}
\end{aligned}
$$

Example : Using the SBS005

$\mathrm{VR}(\mathrm{DC}$ reverse voltage) $=30 \mathrm{~V}$, average output current $=1.0 \mathrm{~A}$, peak surge current $=10 \mathrm{~A}$, $\mathrm{VF}($ forward voltage $)=0.4 \mathrm{~V}$, at $\mathrm{IF}=0.5 \mathrm{~A}$

■ CH3

Diode mean current
$I_{D i} \geq 10 \times\left(1-\frac{V_{0} 3}{V_{i N}}\right)$
$\geq 0.3 \times(1-0.417)$
$\geq \quad 0.175 \mathrm{~A}$

Diode peak current

$$
\begin{aligned}
I_{\text {Dip }} & \geq \quad\left(\mathrm{lo}+\frac{\mathrm{Vo3}}{2 \mathrm{~L}} \text { tofF }\right) \\
& \geq 0.36 \mathrm{~A}
\end{aligned}
$$

19. Reference Data

Conversion Efficiency vs. Load Current Characteristics (CH3)

(Continued)

20. Usage Precaution

■ Printed circuit board ground lines should be set up with consideration for common impedance.

■ Take appropriate static electricity measures.
a Containers for semiconductor materials should have anti-static protection or be made of conductive material.
\square After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
\square Work platforms, tools and instruments should be properly grounded.
a Working personnel should be grounded with resistance of $250 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ between body and ground.
■ Do not apply negative voltages.
\square The use of negative voltages below -0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation.

21. Ordering information

Part number	Package	Remarks
MB39A112PFT	20-pin plastic TSSOP (FPT-20P-M06)	

22. Package Dimension

Document History

Document Title: MB39A112 3-ch DC/DC Converter IC Document Number: 002-08829

Revision	ECN	Orig. of Change	Submission Date	Description of Change
${ }^{* *}$	-	TAOA	$11 / 25 / 2003$	Migrated to Cypress and assigned document number 002-08829. No change to document contents or format.
${ }^{*} \mathrm{~A}$	5491406	TAOA	$10 / 24 / 2016$	Updated to Cypress template.
${ }^{*} \mathrm{~B}$	5904432	MASG	$10 / 02 / 2017$	Adapted Cypress new logo.
${ }^{*} \mathrm{C}$	6459753	SSAS	$01 / 25 / 2019$	Obsoleted.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

[^0]
[^0]: © Cypress Semiconductor Corporation, 2003-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,

 intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress

 (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

 device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,

 liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
 the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

