## PRODUCT CHANGE NOTIFICATION



March 02, 2017 PCN#030217

## Subject: Notification of Change for the LTM4675 and LTM4677 μModule Regulators

Dear Sir/Madam:

Please be advised that Linear Technology Corporation has made enhancements to the electrical specifications of the LTM4675 and LTM4677  $\mu$ Module regulators. The improvements to the electrical specifications are listed below:

- 1) Reduced power up times
- 2) Improved on-chip EEPROM robustness
- 3) Reduced ADC update period
- 4) Reduced TON MIN
- 5) Updated I<sup>2</sup>C PMBus voltage thresholds compatible with bus power supplies as low as 1.8 volts

Table 1- Summary of Improvements to the LTM4675 and LTM4677 μModule Regulators

| Parameters                                                                  | New Version | Old Version |
|-----------------------------------------------------------------------------|-------------|-------------|
| Turn-On Start-Up Time (t <sub>START</sub> )                                 | 35ms        | 60ms        |
| Minimum On-Time (T <sub>ON(MIN)</sub> )                                     | 45ns        | 90ns        |
| NVM Protected by ECC                                                        | Yes         | No          |
| <b>ADC Telemetry Update Period</b>                                          | 90ms        | 100ms       |
| (t <sub>CONVERT-*</sub> )                                                   | 901113      | 1001113     |
| V <sub>IL</sub> Logic Thresholds of the                                     |             |             |
| Following Pins: SCL, SDA,                                                   | 0.8V        | 1.4V        |
| RUN <sub>0</sub> , RUN <sub>1</sub> , GPIO <sub>0</sub> , GPIO <sub>1</sub> |             |             |
| V <sub>IH</sub> Logic Thresholds of the                                     |             |             |
| Following Pins: SCL, SDA,                                                   | 1.35V       | 2.0V        |
| RUN <sub>0</sub> , RUN <sub>1</sub> , GPIO <sub>0</sub> , GPIO <sub>1</sub> |             |             |

- T<sub>INIT</sub>, the time required from application of VIN until the part is ready to start sequencing output rails, is reduced from a typical value of 60ms to 35ms. This change is transparent in all applications that require sequencing of multiple power rails using multiple LTC Power System Management (PSM) parts connected in the recommended manner.
- Error Correcting Code (ECC) is added to the internal non-volatile memory to enhance its
  reliability. This change is transparent to the user and requires no modifications to
  programming files or system firmware. As a consequence of adding ECC, the area in the
  EEPROM available for fault log is reduced to 4 events. The read length of 147 bytes
  remains the same but the fifth and sixth events are a repeat of the fourth event if the part
  is reset. However, when reading the fault log from RAM, all 6 events of cyclical data are
  available.
- The ADC update period, T<sub>CONVERT</sub>, is reduced from 100ms to 90ms, providing more timely telemetry of all monitored parameters.
- TON\_MIN is reduced from nominally 90ns to 45ns to support large step down ratios at relatively high switching frequencies.
- I<sup>2</sup>C thresholds are reduced to support PMBus communication with other ICs using I/O interface supplies as low as 1.8 volts. The V<sub>IL</sub> and V<sub>IH</sub> specifications for the SDA, SCL, RUNO, RUN1, GPIO0 and GPIO1 pins are reduced from 1.4V and 2.0V, respectively, to 0.8V and 1.35V. The LTM4675 and LTM4677 are fully compliant with PMBus 1.2. For more details, please refer to PMBus 1.2 revisions on the PMBus website <a href="http://pmbus.org/Specifications/OlderSpecifications">http://pmbus.org/Specifications/OlderSpecifications</a> and the SMBus Specification Version 2.0 at <a href="http://smbus.org/specs/smbus20.pdf">http://smbus.org/specs/smbus20.pdf</a>.

Changes to the product datasheet electrical characteristics tables are appended to this notice.

The only change to the PWM characteristics is the reduction in TON\_MIN. These die-level changes to the modules' control IC were qualified by performing module-level characterization over the full operating junction temperature range and through rigorous engineering evaluation across a broad range of application conditions. The revised control IC has successfully completed 1000 hours burn-in.

The new devices can be identified with the PMBus MFR\_SPECIAL\_ID command code reporting a value of 0x47XY where 'Y' is a hex value of 0x8-0xF and 'X' is a hex value 0xA for LTM4675 and 0xB for LTM4677. The affected part numbers are listed below.

## **List of affected part numbers:**

LTM4675EY#PBF LTM4675IY#PBF LTM4675IY LTM4677EY#PBF LTM4677IY#PBF LTM4677IY Linear Technology will accept requests for revised samples within 30 days of the date of this notification. If we don't hear back from your company within this 30 day period, we will assume acceptance of this Change Notice by May 02, 2017. After this time, Linear Technology may not be able to accommodate customer requests to receive older product. Samples of the revised module are available now and production product built using the new control IC will be shipped no sooner than May 02, 2017.

Should you have any further questions, please feel free to contact your local Linear Technology sales person or you may contact me at 408-432-1900 ext. 2077, or by E-mail JASON.HU@LINEAR.COM.

Sincerely,

Jason Hu Quality Assurance Engineer **ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RUN_B = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT,B}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| SYMBOL                                                                 | PARAMETER                                                      | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                            |   | MIN            | TYP            | MAX            | UNITS             |
|------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|----------------|----------------|-------------------|
| V <sub>IN</sub>                                                        | Input DC Voltage                                               | Test Circuit 1 Test Circuit 2; VIN_OFF < VIN_ON = 4.25V                                                                                                                                                                                                                                                                                                                               | • | 5.75<br>4.5    |                | 17<br>5.75     | V                 |
| V <sub>OUT</sub> <sub>n</sub>                                          | Range of Output Voltage<br>Regulation                          | V <sub>OUTO</sub> Differentially Sensed on V <sub>OSNSO</sub> <sup>+</sup> /V <sub>OSNSO</sub> <sup>-</sup> Pin-Pair;<br>V <sub>OUT1</sub> Differentially Sensed on V <sub>OSNS1</sub> /SGND Pin-Pair;<br>Commanded by Serial Bus or with Resistors Present at Start-Up on<br>V <sub>OUT,DCFG</sub> and/or V <sub>TRIM,DCFG</sub>                                                     | • | 0.5<br>0.5     |                | 5.5<br>5.5     | V                 |
| Vout <sub>n</sub> (DC)                                                 | Output Voltage, Total<br>Variation with Line and<br>Load       | (Note 5  V <sub>OUT,n</sub> Low Range (MFR_PWM_MODE <sub>n</sub> [1] = 1 <sub>b</sub> ),  FREQUENCY_SWITCH = 425kHz )  Digital Servo Engaged (MFR_PWM_MODE <sub>n</sub> [6] = 1 <sub>b</sub> )  Digital Servo Disengaged (MFR_PWM_MODE <sub>n</sub> [6] = 0 <sub>b</sub> )                                                                                                            | • | 0.995<br>0.985 | 1.000<br>1.000 | 1.005<br>1.015 | V                 |
| Input Specification                                                    | IS                                                             |                                                                                                                                                                                                                                                                                                                                                                                       |   |                |                |                |                   |
| I <sub>INRUSH(VIN)</sub>                                               | Input Inrush Current at<br>Start-Up                            | Test Circuit 1, $V_{OUT,n}$ = 1V, $V_{IN}$ = 12V; No Load Besides Capacitors; TON_RISE_n = 3ms                                                                                                                                                                                                                                                                                        |   |                | 400            |                | mA                |
| IQ(SVIN)                                                               | Input Supply Bias Current                                      | Forced Continuous Mode, MFR_PWM_MODE <sub>n</sub> [0] = 1 <sub>b</sub> RUN <sub>n</sub> = 5V, RUN <sub>1-n</sub> = 0V Shutdown, RUN <sub>0</sub> = RUN <sub>1</sub> = 0V                                                                                                                                                                                                              |   |                | 40<br>20       |                | mA<br>mA          |
| IS(VINn,PSM)                                                           | Input Supply Current in<br>Pulse-Skipping Mode<br>Operation    | Pulse-Skipping Mode, MFR_PWM_MODE <sub><math>n</math></sub> [0] = 0 <sub>b</sub> , $I_{OUTn} = 100$ mA                                                                                                                                                                                                                                                                                |   |                | 20             |                | mA                |
| IS(VINn,FCM)                                                           | Input Supply Current in<br>Forced-Continuous Mode<br>Operation | Forced Continuous Mode, MFR_PWM_MODE <sub>n</sub> [0] = 1 <sub>b</sub> I <sub>OUTn</sub> = 100mA I <sub>OUTn</sub> = 9A                                                                                                                                                                                                                                                               |   |                | 40<br>927      |                | mA<br>mA          |
| I <sub>S(VIN<i>n</i>,SHUTDOWN)</sub>                                   | Input Supply Current in<br>Shutdown                            | Shutdown, RUN <sub>n</sub> = 0V                                                                                                                                                                                                                                                                                                                                                       |   |                | 50             |                | μА                |
| Output Specification                                                   | ons                                                            |                                                                                                                                                                                                                                                                                                                                                                                       |   |                |                |                |                   |
| l <sub>OUTn</sub>                                                      | Output Continuous<br>Current Range                             | (Note 6)                                                                                                                                                                                                                                                                                                                                                                              |   | 0              |                | 9              | А                 |
| VOUTn(LINE)                                                            | Line Regulation Accuracy                                       | Digital Servo Engaged (MFR_PWM_MODE_n[6] = $1_b$ ) Digital Servo Disengaged (MFR_PWM_MODE_n[6] = $0_b$ ) SV <sub>IN</sub> and V <sub>IN</sub> , Electrically Shorted Together and INTV <sub>CC</sub> Open Circuit; $1_{OUT_n} = 0A$ , $5.75V \le V_{IN} \le 17V$ , $V_{OUT}$ Low Range (MFR_PWM_MODE_n[1] = $1_b$ ) FREQUENCY_SWITCH = $425$ kHz (Referenced to $12V_{IN}$ ) (Note 5) | • |                | 0.03<br>0.03   | ±0.2           | %<br>%/V          |
| ΔV <sub>OUT</sub> <sub>n</sub> (LOAD)<br>V <sub>OUT</sub> <sub>n</sub> | Load Regulation<br>Accuracy                                    | Digital Servo Engaged (MFR_PWM_MODE $_n$ [6] = 1 $_b$ ) Digital Servo Disengaged (MFR_PWM_MODE $_n$ [6] = 0 $_b$ ) 0A $\leq$ 10UT $_n \leq$ 9A, VOUT Low Range, (MFR_PWM_MODE $_n$ [1] = 1 $_b$ ) FREQUENCY_SWITCH = 425kHz (Note 5)                                                                                                                                                  | • |                | 0.03<br>0.2    | 0.5            | %<br>%            |
| V <sub>OUT</sub> n(AC)                                                 | Output Voltage Ripple                                          |                                                                                                                                                                                                                                                                                                                                                                                       |   |                | 10             |                | mV <sub>P-P</sub> |
| f <sub>S</sub> (Each Channel)                                          | V <sub>OUT</sub> , Ripple Frequency                            | FREQUENCY_SWITCH Set to 500kHz (0xFBE8)                                                                                                                                                                                                                                                                                                                                               | • | 462.5          | 500            | 537.5          | kHz               |
| ΔV <sub>OUT</sub> (START)                                              | Turn-On Overshoot                                              | TON_RISE <sub>n</sub> = 3ms (Note 12)                                                                                                                                                                                                                                                                                                                                                 |   |                | 8              |                | m۷                |
| t <sub>START</sub>                                                     | Turn-On Start-Up Time                                          | Time from $V_{IN}$ Toggling from 0V to 12V to Rising Edge of $\overline{\text{GPIO}}_{R}$ .  TON_DELAY <sub>R</sub> = 0ms, TON_RISE <sub>R</sub> = 3ms,  MFR_GPIO_PROPAGATE <sub>R</sub> = 0x0100,  MFR_GPIO_RESPONSE <sub>R</sub> = 0x0000                                                                                                                                           | • |                | -60-           | 70-            | ms                |

4675fa



**ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RUN_n = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT,n}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| SYMBOL                            | PARAMETER                                                                | CONDITIONS                                                                                                                                                                                                                                                                                        |     | MIN      | TYP          | MAX                                            | UNITS           |
|-----------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|--------------|------------------------------------------------|-----------------|
| t <sub>DELAY(0ms)</sub>           | Turn-On Delay Time                                                       | Time from First Rising Edge of RUN <sub>n</sub> to Rising Edge of GPIO <sub>n</sub> .  TON_DELAY <sub>n</sub> = 0ms, TON_RISE <sub>n</sub> = 3ms,  MFR_GPIO_PROPAGATE <sub>n</sub> = 0x0100,  MFR_GPIO_RESPONSE <sub>n</sub> = 0x0000.  V <sub>IN</sub> Having Been Established for at Least 70ms | •   | 2.75     | 3.1          | 3.5                                            | ms              |
| ΔV <sub>OUTn(LS)</sub>            | Peak Output Voltage<br>Deviation for Dynamic<br>Load Step                | Load: 0A to 4.5A and 4.5A to 0A at 4.5A/ $\mu$ s, Figure 60 Circuit, $V_{OUT_n} = 1V$ , $V_{IN} = 12V$ (Note 12)                                                                                                                                                                                  | 3   |          | 50           |                                                | mV              |
| tsettle                           | Settling Time for<br>Dynamic Load Step                                   | Load: 0A to 4.5A and 4.5A to 0A at 4.5A/µs, Figure 6 Circuit, V <sub>OUT,n</sub> = 1V, V <sub>IN</sub> = 12V (Note 12)                                                                                                                                                                            | 3   |          | 35           |                                                | μs              |
| IOUT#(OCL_PK)                     | Output Current Limit,<br>Peak                                            | Cycle-by-Cycle Inductor Peak Current Limit Inception                                                                                                                                                                                                                                              | J   |          | 15.8         |                                                | А               |
| OUT#(OCL_AVG)                     | Output Current Limit,<br>Time Averaged                                   | Time-Averaged Output Inductor Current Limit Inception Threshold, Commanded by IOUT_OC_FAULT_LIMIT_n (Note 12)                                                                                                                                                                                     |     | Specifi  | ication (    | e I <sub>O-RB-AC</sub><br>Output C<br>Accuracy | urrent          |
| Control Section                   | •                                                                        |                                                                                                                                                                                                                                                                                                   |     |          |              |                                                |                 |
| V <sub>FBCM0</sub>                | Channel 0 Feedback Input<br>Common Mode Range                            | V <sub>OSNSO</sub> <sup>-</sup> Valid Input Range (Referred to SGND)<br>V <sub>OSNSO</sub> * Valid Input Range (Referred to SGND)                                                                                                                                                                 | •   | -0.1     |              | 0.3<br>5.7                                     | V               |
| V <sub>FBCM1</sub>                | Channel 1 Feedback Input<br>Common Mode Range                            | SGND Valid Input Range (Referred to GND)<br>V <sub>OSNS1</sub> Valid Input Range (Referred to SGND)                                                                                                                                                                                               | •   | -0.3     |              | 0.3<br>5.7                                     | V<br>V          |
| V <sub>OUT-RNGO</sub>             | Full-Scale Command<br>Voltage, Range 0                                   | (Notes 7, 15) $V_{OUT_n}$ Commanded to 5.500V, MFR_PWM_MODE <sub>n</sub> [1] = 0 <sub>b</sub> Resolution LSB Step Size                                                                                                                                                                            |     | 5.422    | 12<br>1.375  | 5.576                                          | V<br>Bits<br>mV |
| Vout-rng1                         | Full-Scale Command<br>Voltage, Range 1                                   | (Notes 7, 15)  V <sub>OUT n</sub> Commanded to 2.750V, MFR_PWM_MODE <sub>n</sub> [1] = 1 <sub>b</sub> Resolution LSB Step Size                                                                                                                                                                    |     | 2.711    | 12<br>0.6875 | 2.788                                          | V<br>Bits<br>mV |
| R <sub>VSENSE0</sub> <sup>+</sup> | V <sub>OSNS0</sub> <sup>+</sup> Impedance to<br>SGND                     | $0.05V \le V_{VOSNS0}^+ - V_{SGND} \le 5.5V$                                                                                                                                                                                                                                                      |     |          | 41           |                                                | kΩ              |
| R <sub>VSENSE1</sub>              | V <sub>OSNS1</sub> Impedance to<br>SGND                                  | 0.05V ≤ V <sub>VOSNS1</sub> − V <sub>SGND</sub> ≤ 5.5V                                                                                                                                                                                                                                            |     |          | 37           |                                                | kΩ              |
| t <sub>ON(MIN)</sub>              | Minimum On-Time                                                          | (Note 8)                                                                                                                                                                                                                                                                                          |     |          | 99-          |                                                | ns              |
| Analog OV/UV (O                   | vervoltage/Undervoltage) Outp                                            | out Voltage Supervisor Comparators (VOUT_OV/UV_FAULT_LIMIT and V                                                                                                                                                                                                                                  | 001 | _0V/UV_  | WARN_        | LIMIT Mo                                       | nitors)         |
| N <sub>OV/UV_COMP</sub>           | Resolution, Output<br>Voltage Supervisors                                | (Note 15)                                                                                                                                                                                                                                                                                         |     |          | 8            |                                                | Bits            |
| Vov-RNG                           | Output OV Comparator<br>Threshold Detection<br>Range                     | (Note 15) High Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 0 <sub>b</sub> Low Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 1 <sub>b</sub>                                                                                                                                                        |     | 1<br>0.5 |              | 5.6<br>2.7                                     | V               |
| V <sub>OU-STP</sub>               | Output OV and UV<br>Comparator Threshold<br>Programming LSB Step<br>Size | (Note 15) High Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 0 <sub>b</sub> Low Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 1 <sub>b</sub>                                                                                                                                                        |     |          | 22<br>11     |                                                | mV<br>mV        |

**TUNEAR** 

4675fa

**ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RUN_{II} = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT,II}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

|                                         |                                                                                             |                                                                                                                                                                                        |      |                               | $\cdots$       |
|-----------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------|----------------|
| SYMBOL                                  | PARAMETER                                                                                   | CONDITIONS                                                                                                                                                                             |      | MIN TYP MAX                   | UNITS          |
| tconvert-vo-rb                          | Output Voltage Readback<br>Update Rate                                                      | MFR_ADC_CONTROL=0x00 (Notes 9, 15)<br>MFR_ADC_CONTROL=0x0D (Notes 9, 15)                                                                                                               |      | <del>-100</del><br>27         | ms<br>ms       |
|                                         |                                                                                             | MFR_ADC_CONTROL=0x05 or 0x09 (Notes 9, 15)                                                                                                                                             |      | 8                             | ms             |
| Input Voltage (SV <sub>I</sub>          | N) Readback (READ_VIN)                                                                      |                                                                                                                                                                                        |      |                               |                |
| N <sub>SVIN-RB</sub>                    | Input Voltage Readback<br>Resolution and LSB Step<br>Size                                   | (Notes 10, 15)                                                                                                                                                                         |      | 10<br>15.625                  | Bits<br>mV     |
| SV <sub>IN-F/S</sub>                    | Input Voltage Full-Scale<br>Digitizable Range                                               | (Notes 11, 15)                                                                                                                                                                         |      | 38.91                         | V              |
| SV <sub>IN-RB-ACC</sub>                 | Input Voltage Readback<br>Accuracy                                                          | READ_VIN, $4.5V \le SV_{IN} \le 17V$                                                                                                                                                   | •    | Within ±2% of Read            | ling 90        |
| tconvert-svin-rb                        | Input Voltage Readback<br>Update Rate                                                       | MFR_ADC_CONTROL=0x00 (Notes 9, 15)<br>MFR_ADC_CONTROL=0x01 (Notes 9, 15)                                                                                                               |      | <del>106</del><br>8           | ms<br>ms       |
| Channels 0 and 1 0                      | utput Current (READ_IOUT_n)                                                                 | Duty Cycle (READ_DUTY_CYCLE_n), and Computed Input Current (MFR_                                                                                                                       | REAL | D_IIN <sub>n</sub> ) Readback |                |
| N <sub>IO-RB</sub>                      | Output Current Readback<br>Resolution and LSB Step<br>Size                                  | (Notes 10, 12)                                                                                                                                                                         |      | 10<br>15.6                    | Bits<br>mA     |
| I <sub>O-F/S</sub> , I <sub>I-F/S</sub> | Output Current Full-Scale<br>Digitizable Range and<br>Input Current Range of<br>Calculation | (Note 12)                                                                                                                                                                              |      | ±40                           | A              |
| IO-RB-ACC                               | Output Current, Readback<br>Accuracy                                                        | READ_IOUT <sub>n</sub> , Channels 0 and 1, $0 \le I_{OUTn} \le 9A$ , Forced-Continuous Mode, MFR_PWM_MODE <sub>n</sub> [1:0] = $10_b$                                                  | •    | Within 225mA of Rea           | ding           |
| IO-RB(9A)                               | Full Load Output Current<br>Readback                                                        | $I_{OUT,n} = 9A$ (Note 12). See Histograms in Typical Performance Characteristics                                                                                                      |      | 9                             | A              |
| N <sub>II-RB</sub>                      | Computed Input Current,<br>Readback Resolution and<br>LSB Step Size                         | (Notes 10, 12)                                                                                                                                                                         |      | 10<br>1.95                    | Bits<br>mA     |
| I <sub>I-RB-ACC</sub>                   | Computed Input Current,<br>Readback Accuracy,<br>Neglecting I <sub>SVIN</sub>               | MFR_READ_IIN <sub>n</sub> , Channels 0 and 1, $0 \le I_{OUT,n} \le 9A$ ,<br>Forced-Continuous Mode, MFR_PWM_MODE <sub>n</sub> [1:0] = $10_b$ ,<br>MFR_IIN_OFFSET <sub>n</sub> = $0$ mA | •    | Within 140mA of Rea           | ding<br>90     |
| tconvert-10-rb                          | Output Current Readback<br>Update Rate                                                      | MFR_ADC_CONTROL=0x00 (Notes 9, 15) MFR_ADC_CONTROL=0x0D (Notes 9, 15) MFR_ADC_CONTROL=0x06 or 0x0A (Notes 9, 15)                                                                       |      | <del>100</del><br>27<br>8     | ms<br>ms<br>ms |
| tconvert-II-rb                          | Computed Input Current,<br>Readback Update Rate                                             | MFR_ADC_CONTROL=0x00 (Notes 9, 15)                                                                                                                                                     | Н    | <del></del>                   | ms             |
| N <sub>DUTY-RB</sub>                    | Resolution, Duty Cycle<br>Readback                                                          | (Notes 10, 15)                                                                                                                                                                         |      | 10                            | Bits           |
| D <sub>RB-ACC</sub>                     | Duty Cycle TUE                                                                              | READ_DUTY_CYCLE <sub>n</sub> , 16.3% Duty Cycle (Note 15)                                                                                                                              | П    | ±3                            | %              |
| tconvert-duty-rb                        | Duty Cycle Readback<br>Update Rate                                                          | MFR_ADC_CONTROL=0x00 (Notes 9, 15)                                                                                                                                                     |      | <del></del>                   | ms             |
| Temperature Read<br>and READ_TEMPE      |                                                                                             | el 1, and Controller (Respectively: READ_TEMPERATURE_1 <sub>0</sub> , READ_                                                                                                            | TEM  | PERATURE_1 <sub>1</sub> ,     |                |
| T <sub>RES-RB</sub>                     | Temperature Readback<br>Resolution                                                          | Channel 0, Channel 1, and Controller (Note 15)                                                                                                                                         |      | 0.0625                        | °C             |
| T <sub>RB-CH-ACC(72mV)</sub>            | Channel Temperature<br>TUE, Switching Action Off                                            | Channels 0 and 1, PWM Inactive, RUN <sub>n</sub> = 0V,<br>$\Delta V_{TSNS,na} = 72mV$                                                                                                  | •    | Within ±3°C of Read           | ling           |



4675fa

**ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RUN_n = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT}$ , commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| SYMBOL                        | PARAMETER                                                                                                               | CONDITIONS                                                                                                                                                                                                                       |   | MIN | TYP                             | MAX          | UNITS                           |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---------------------------------|--------------|---------------------------------|
| T <sub>RB-CH-ACC(ON)</sub>    | Channel Temperature<br>TUE, Switching Action On                                                                         | READ_TEMPERATURE_1 <sub>n</sub> , Channels 0 and 1,<br>PWM Active, RUN <sub>n</sub> = 5V (Note 12)                                                                                                                               |   | Wit | hin ±3°C                        | of Read      | ing                             |
| T <sub>RB</sub> -CTRL-ACC(ON) | Control IC Die<br>Temperature TUE,<br>Switching Action On                                                               | READ_TEMPERATURE_2, PWM Active, RUN <sub>0</sub> = RUN <sub>1</sub> = 5V (Note 12)                                                                                                                                               |   | Wit | hin ±1°C                        | of Read      | ing                             |
| tconvert-temp-rb              | Temperature Readback<br>Update Rate                                                                                     | MFR_ADC_CONTROL=0x00 (Notes 9, 15) MFR_ADC_CONTROL=0x06 or 0x0A (Notes 9, 15)                                                                                                                                                    |   |     | <del></del>                     |              | ms<br>ms                        |
| INTV <sub>CC</sub> Regulator  |                                                                                                                         |                                                                                                                                                                                                                                  |   |     |                                 |              |                                 |
| VINTVCC                       | Internal V <sub>CC</sub> Voltage No<br>Load                                                                             | $6V \le V_{1N} \le 17V$                                                                                                                                                                                                          |   | 4.8 | 5                               | 5.2          | V                               |
| ΔVINTVCC(LOAD)<br>VINTVCC     | INTV <sub>CC</sub> Load Regulation                                                                                      | 0mA ≤ I <sub>INTVCC</sub> ≤ 50mA                                                                                                                                                                                                 |   |     | 0.5                             | ±2           | %                               |
| V <sub>DD33</sub> Regulator   |                                                                                                                         |                                                                                                                                                                                                                                  |   |     |                                 |              |                                 |
| V <sub>VDD33</sub>            | Internal V <sub>DD33</sub> Voltage                                                                                      |                                                                                                                                                                                                                                  |   | 3.2 | 3.3                             | 3.4          | V                               |
| I <sub>LIM(VDD33)</sub>       | V <sub>DD33</sub> Current Limit                                                                                         | V <sub>DD33</sub> Electrically Short-Circuited to GND                                                                                                                                                                            | П |     | 70                              |              | mA                              |
| V <sub>VDD33_OV</sub>         | V <sub>DD33</sub> Overvoltage<br>Threshold                                                                              | (Note 15)                                                                                                                                                                                                                        |   |     | 3.5                             |              | V                               |
| V <sub>VDD33_UV</sub>         | V <sub>DD33</sub> Undervoltage<br>Threshold                                                                             | (Note 15)                                                                                                                                                                                                                        |   |     | 3.1                             |              | V                               |
| V <sub>DD25</sub> Regulator   |                                                                                                                         |                                                                                                                                                                                                                                  |   |     |                                 |              |                                 |
| V <sub>VDD25</sub>            | Internal V <sub>DD25</sub> Voltage                                                                                      |                                                                                                                                                                                                                                  |   |     | 2.5                             |              | V                               |
| I <sub>LIM(VDD25)</sub>       | V <sub>DD25</sub> Current Limit                                                                                         | V <sub>DD25</sub> Electrically Short-Circuited to GND                                                                                                                                                                            |   |     | 50                              |              | mA                              |
| Oscillator and Pha            | ase-Locked Loop (PLL)                                                                                                   |                                                                                                                                                                                                                                  |   |     |                                 |              |                                 |
| fosc                          | Oscillator Frequency<br>Accuracy                                                                                        | FREQUENCY_SWITCH = 500kHz (0xFBE8)<br>250kHz ≤ FREQUENCY_SWITCH ≤ 1MHz (Note 15)                                                                                                                                                 | • |     |                                 | ±7.5<br>±7.5 | %<br>%                          |
| fsync .                       | PLL SYNC Capture Range                                                                                                  | (Note 16)                                                                                                                                                                                                                        | • | 225 |                                 | 1100         | kHz                             |
| V <sub>TH,SYNC</sub>          | SYNC Input Threshold                                                                                                    | V <sub>SYNC</sub> Rising (Note 15)<br>V <sub>SYNC</sub> Falling (Note 15)                                                                                                                                                        |   |     | 1.5<br>1                        |              | V<br>V                          |
| V <sub>OL,SYNC</sub>          | SYNC Low Output<br>Voltage                                                                                              | I <sub>SYNC</sub> = 3mA                                                                                                                                                                                                          | • |     | 0.3                             | 0.4          | V                               |
| ISYNC                         | SYNC Leakage Current in<br>Frequency Slave Mode                                                                         | $0V \le V_{SYNC} \le 3.6V$<br>MFR_CONFIG_ALL[4]=1 <sub>b</sub>                                                                                                                                                                   | • |     |                                 | ±5           | μА                              |
| θ <sub>SYNC</sub> -θ0         | SYNC-to-Channel 0<br>Phase Relationship, Lag<br>from Falling Edge of Sync<br>to Rising Edge of Top<br>MOSFET (MT0) Gate | (Note 15)  MFR_PWM_CONFIG[2:0] = 000 <sub>b</sub> , 01X <sub>b</sub> MFR_PWM_CONFIG[2:0] = 101 <sub>b</sub> MFR_PWM_CONFIG[2:0] = 001 <sub>b</sub> MFR_PWM_CONFIG[2:0] = 1X0 <sub>b</sub>                                        |   |     | 0<br>60<br>90<br>120            |              | Deg<br>Deg<br>Deg<br>Deg        |
| θ <sub>SYNC</sub> -θ1         | SYNC-to-Channel 1<br>Phase Relationship, Lag<br>from Falling Edge of Sync<br>to Rising Edge of Top<br>MOSFET (MT1) Gate | (Note 15)  MFR_PWM_CONFIG[2:0] = 011 <sub>b</sub> MFR_PWM_CONFIG[2:0] = 000 <sub>b</sub> MFR_PWM_CONFIG[2:0] = 010 <sub>b</sub> , 10X <sub>b</sub> MFR_PWM_CONFIG[2:0] = 001 <sub>b</sub> MFR_PWM_CONFIG[2:0] = 110 <sub>b</sub> |   |     | 120<br>180<br>240<br>270<br>300 |              | Deg<br>Deg<br>Deg<br>Deg<br>Deg |

ARTEL.



**ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RUN_n = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUTn}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| SYMBOL                   | PARAMETER                                   | CONDITIONS                                                                                                                                                                                               |   | MIN           | TYP              | MAX        | UNITS          |
|--------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|------------------|------------|----------------|
| EEPROM Charac            | cteristics                                  |                                                                                                                                                                                                          |   |               |                  |            |                |
| Endurance                | (Note 13)                                   | $0^{\circ}C \le T_{J} \le 85^{\circ}C$ During EEPROM Write Operations (Note 3)                                                                                                                           | • | 10,000        |                  |            | Cycles         |
| Retention                | (Note 13)                                   | $T_J < T_{J(MAX)},$ with Most Recent EEPROM Write Operation Having Occurred at $0^{\circ}C < T_J \leq 85^{\circ}C$ (Note 3)                                                                              | • | 10            |                  |            | Years          |
| Mass_Write               | Mass Write Operation<br>Time                | Execution of STORE_USER_ALL Command, $0^{\circ}C \le T_J \le 85^{\circ}C$ (ATE-Tested at $T_J = 25^{\circ}C$ ) (Notes 3, 13)                                                                             |   |               | 440              | 4100       | ms             |
| Digital I/Os             |                                             | کیٹیں۔                                                                                                                                                                                                   |   | $\overline{}$ |                  |            |                |
| V <sub>IH</sub>          | Input High Threshold<br>Voltage             | SCL, SDA, RUN <sub>n</sub> , GPIO <sub>n</sub> (Note 15)  SHARE_CLK, WP (Note 15)                                                                                                                        |   | 2.0<br>1.8    |                  |            | V<br>V         |
| V <sub>IL</sub>          | Input Low Threshold<br>Voltage              | SCL, SDA, RUN <sub>n</sub> , GPIO <sub>n</sub> (Note 15)<br>SHARE_CLK, WP (Note 15)                                                                                                                      |   |               |                  | 7.4<br>0.6 | V<br>V         |
| V <sub>HYST</sub>        | Input Hysteresis                            | SCL, SDA (Note 15)                                                                                                                                                                                       |   |               | 80               |            | mV             |
| V <sub>OL</sub>          | Output Low Voltage                          | SCL, SDA, ĀLĒRT, RUN <sub>P</sub> , GPĪO <sub>D</sub> , SHARE_CLK:<br>I <sub>SINK</sub> = 3mA                                                                                                            | • |               | 0.3              | 0.4        | V              |
| I <sub>OL</sub>          | Input Leakage Current                       | SDA, SCL, $\overline{\text{ALERT}}$ , $\text{RUN}_n$ : $0V \le V_{\text{PIN}} \le 5.5V$<br>$\overline{\text{GPIO}}_n$ and $\text{SHARE\_CLK}$ : $0V \le V_{\text{PIN}} \le 3.6V$                         | • |               |                  | ±5<br>±2   | μΑ<br>Αų       |
| t <sub>FILTER</sub>      | Input Digital Filtering                     | RUN <sub>n</sub> (Note 15)<br>GPIO <sub>n</sub> (Note 15)                                                                                                                                                |   |               | 10<br>3          |            | µs<br>µs       |
| CPIN                     | Input Capacitance                           | SCL, SDA, RUN <sub>II</sub> , GPIO <sub>II</sub> , SHARE_CLK, WP (Note 15)                                                                                                                               |   |               |                  | 10         | pF             |
| PMBus Interface          | Timing Characteristics                      |                                                                                                                                                                                                          |   |               |                  |            |                |
| f <sub>SMB</sub>         | Serial Bus Operating<br>Frequency           | (Note 15)                                                                                                                                                                                                |   | 10            |                  | 400        | kHz            |
| t <sub>BUF</sub>         | Bus Free Time Between<br>Stop and Start     | (Note 15)                                                                                                                                                                                                |   | 1.3           |                  |            | μs             |
| t <sub>HD,STA</sub>      | Hold Time After Repeated<br>Start Condition | Time Period After Which First Clock Is Generated (Note 15)                                                                                                                                               |   | 0.6           |                  |            | μs             |
| tsu,sta                  | Repeated Start Condition<br>Setup Time      | (Note 15)                                                                                                                                                                                                |   | 0.6           |                  |            | μs             |
| t <sub>SU,STO</sub>      | Stop Condition Setup<br>Time                | (Note 15)                                                                                                                                                                                                |   | 0.6           |                  |            | μs             |
| t <sub>HD,DAT</sub>      | Data Hold Time                              | Receiving Data (Note 15)<br>Transmitting Data (Note 15)                                                                                                                                                  |   | 0<br>0.3      |                  | 0.9        | µs<br>µs       |
| t <sub>SU,DAT</sub>      | Data Setup Time                             | Receiving Data (Note 15)                                                                                                                                                                                 |   | 0.1           |                  |            | μs             |
| t <sub>TIMEOUT_SMB</sub> | Stuck PMBus Timer<br>Timeout                | Measured from the Last PMBus Start Event: Block Reads, MFR_CONFIG_ALL[3]=0 <sub>b</sub> (Note 15) Non-Block Reads, MFR_CONFIG_ALL[3]=0 <sub>b</sub> (Note 15) MFR_CONFIG_ALL[3]=1 <sub>b</sub> (Note 15) |   |               | 150<br>32<br>250 |            | ms<br>ms<br>ms |
| tLOW                     | Serial Clock Low Period                     | (Note 15)                                                                                                                                                                                                |   | 1.3           |                  | 10000      | μs             |
| t <sub>HIGH</sub>        | Serial Clock High Period                    | (Note 15)                                                                                                                                                                                                |   | 0.6           |                  |            | μs             |



**ELECTRICAL CHARACTERISTICS** The  $\bullet$  denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RIN_n = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT,n}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| SYMBOL                                                                 | PARAMETER                                                      | CONDITIONS                                                                                                                                                                                                                                                                                                                                                   |   | MIN            | TYP            | MAX            | UNITS             |
|------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|----------------|----------------|-------------------|
| V <sub>IN</sub>                                                        | Input DC Voltage                                               | Test Circuit 1 Test Circuit 2; VIN_OFF < VIN_ON = 4.25V                                                                                                                                                                                                                                                                                                      | • | 5.75<br>4.5    |                | 16<br>5.75     | V                 |
| V <sub>OUT</sub> <sub>n</sub>                                          | Range of Output Voltage<br>Regulation                          | V <sub>OUTO</sub> Differentially Sensed on V <sub>OSNSO</sub> <sup>+</sup> /V <sub>OSNSO</sub> <sup>-</sup> Pin-Pair;<br>V <sub>OUT1</sub> Differentially Sensed on V <sub>OSNS1</sub> /SGND Pin-Pair;<br>Commanded by Serial Bus or with Resistors Present at Start-Up on<br>V <sub>OUTnCFG</sub> and/or V <sub>TRIMnCFG</sub>                              | • | 0.5<br>0.5     |                | 1.8<br>1.8     | V                 |
| V <sub>OUT</sub> <sub>n(DC)</sub>                                      | Output Voltage, Total<br>Variation with Line and<br>Load       | Digital Servo Engaged (MFR_PWM_MODE <sub>n</sub> [6] = $1_b$ )<br>Digital Servo Disengaged (MFR_PWM_MODE <sub>n</sub> [6] = $0_b$ )<br>$V_{OUTn}$ Commanded to 1.000V, $V_{OUTn}$ Low Range<br>(MFR_PWM_MODE <sub>n</sub> [1] = $1_b$ ) (Note 5)                                                                                                             | • | 0.995<br>0.985 | 1.000<br>1.000 | 1.005<br>1.015 | V                 |
| Input Specification                                                    | IS .                                                           |                                                                                                                                                                                                                                                                                                                                                              |   |                |                |                |                   |
| INRUSH(VIN)                                                            | Input Inrush Current at<br>Start-Up                            | Test Circuit 1, $V_{OUT,n}$ =1V, $V_{IN}$ = 12V; No Load Besides Capacitors; TON_RISE <sub>n</sub> = 3ms                                                                                                                                                                                                                                                     |   |                | 400            |                | mA                |
| I <sub>Q</sub> (SVIN)                                                  | Input Supply Bias Current                                      | Forced Continuous Mode, MFR_PWM_MODE <sub>nl</sub> [0] = $1_b$<br>RUN <sub>n</sub> = $5V$ , RUN <sub>1-n</sub> = $0V$<br>Shutdown, RUN <sub>0</sub> = RUN <sub>1</sub> = $0V$                                                                                                                                                                                |   |                | 40<br>20       |                | mA<br>mA          |
| Is(VINn,PSM)                                                           | Input Supply Current in<br>Pulse-Skipping Mode<br>Operation    | Pulse-Skipping Mode, MFR_PWM_MODE <sub><math>n</math></sub> [0] = 0 <sub>b</sub> , I <sub>OUT<math>n</math></sub> = 100mA                                                                                                                                                                                                                                    |   |                | 20             |                | mA                |
| S(VINn,FCM)                                                            | Input Supply Current in<br>Forced-Continuous Mode<br>Operation | Forced Continuous Mode, MFR_PWM_MODE <sub>nl</sub> [0] = 1 <sub>b</sub> I <sub>OUT,n</sub> = 100mA I <sub>OUT,n</sub> = 18A                                                                                                                                                                                                                                  |   |                | 35<br>1.9      |                | mA<br>A           |
| I <sub>S(VINn,SHUTDOWN)</sub>                                          | Input Supply Current in<br>Shutdown                            | Shutdown, RUN <sub>n</sub> = 0V                                                                                                                                                                                                                                                                                                                              |   |                | 50             |                | μА                |
| Output Specification                                                   | ons                                                            |                                                                                                                                                                                                                                                                                                                                                              |   |                |                |                |                   |
| loutn                                                                  | Output Continuous<br>Current Range                             | (Note 6)                                                                                                                                                                                                                                                                                                                                                     |   | 0              |                | 18             | А                 |
| AVOUTA(LINE) VOUTA                                                     | Line Regulation Accuracy                                       | Digital Servo Engaged (MFR_PWM_MODE_n[6] = $1_b$ ) Digital Servo Disengaged (MFR_PWM_MODE_n[6] = $0_b$ ) SV <sub>IN</sub> and V <sub>INP</sub> , Electrically Shorted Together and INTV <sub>CC</sub> Open Circuit; $1_{INP} = 0A$ , $5.75V \le V_{IN} \le 16V$ , $V_{OUT}$ Low Range (MFR_PWM_MODE_n[1] = $1_b$ ), FREQUENCY_SWITCH = $350$ kHz (Note $5$ ) | • |                | 0.03<br>0.03   | ±0.2           | %/V<br>%/V        |
| ΔV <sub>OUT</sub> <sub>n</sub> (LOAD)<br>V <sub>OUT</sub> <sub>n</sub> | Load Regulation<br>Accuracy                                    | Digital Servo Engaged (MFR_PWM_MODE $_n[6] = 1_b$ ) Digital Servo Disengaged (MFR_PWM_MODE $_n[6] = 0_b$ ) $0A \le I_{OUT}_n \le 18A$ , $V_{OUT}$ Low Range, (MFR_PWM_MODE $_n[1] = 1_b$ ) (Note 5)                                                                                                                                                          | • |                | 0.03<br>0.2    | 0.5            | %<br>%            |
| V <sub>OUT</sub> (AC)                                                  | Output Voltage Ripple                                          |                                                                                                                                                                                                                                                                                                                                                              |   |                | 10             |                | mV <sub>P-P</sub> |
| f <sub>S</sub> (Each Channel)                                          | V <sub>OUT</sub> , Ripple Frequency                            | FREQUENCY_SWITCH Set to 500kHz (0xFBE8)                                                                                                                                                                                                                                                                                                                      | • | 462.5          | 500            | 537.5          | kHz               |
| ΔV <sub>OUT</sub> <sub>n</sub> (START)                                 | Turn-On Overshoot                                              | TON_RISE <sub>n</sub> = 3ms (Note 12)                                                                                                                                                                                                                                                                                                                        |   |                | 8              |                | m۷                |
| t <sub>START</sub>                                                     | Turn-On Start-Up Time                                          | Time from $V_{IN}$ Toggling from 0V to 12V to Rising Edge of $\overline{\text{GPIO}}_{n}$ .  TON_DELAY <sub>n</sub> = 0ms, TON_RISE <sub>n</sub> = 3ms,  MFR_GPI0_PROPAGATE <sub>n</sub> = 0x0100,  MFR_GPI0_RESPONSE <sub>n</sub> = 0x0000                                                                                                                  | • |                | <del></del>    | 70             | ms                |



46771

**ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RIN_n = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT,n}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| SYMBOL                            | PARAMETER                                                                | CONDITIONS                                                                                                                                                                                                                                                                     |     | MIN      | TYP          | MAX                                         | UNITS           |
|-----------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|--------------|---------------------------------------------|-----------------|
| t <sub>DELAY(0ms)</sub>           | Turn-On Delay Time                                                       | Time from First Rising Edge of RUN $_n$ to Rising Edge of $\overline{\text{GPIO}}_n$ .  TON_DELAY $_n$ = 0ms, TON_RISE $_n$ = 3ms,  MFR_GPI0_PROPAGATE $_n$ = 0x0100,  MFR_GPI0_RESPONSE $_n$ = 0x0000.  V <sub>IN</sub> Having Been Established for at Least 7 <del>0ms</del> | •   | 2.75     | 3.1          | 3.5                                         | ms              |
| ΔV <sub>OUTn(LS)</sub>            | Peak Output Voltage<br>Deviation for Dynamic<br>Load Step                | Load: 0A to 9A and 9A to 0A at 9A/ $\mu$ s, Figure 56 Circuit, $V_{OUT_n} = 1V$ , $V_{IN} = 12V$ (Note 12)                                                                                                                                                                     |     |          | 50           |                                             | mV              |
| tsettle                           | Settling Time for<br>Dynamic Load Step                                   | Load: 0A to 9A and 9A to 0A at 9A/µs, Figure 56 Circuit, V <sub>OUT,n</sub> = 1V, V <sub>IN</sub> = 12V (Note 12)                                                                                                                                                              |     |          | 35           |                                             | μs              |
| IOUT#(OCL_PK)                     | Output Current Limit,<br>Peak                                            | Cycle-by-Cycle Inductor Peak Current Limit Inception                                                                                                                                                                                                                           |     |          | 25           |                                             | А               |
| OUT#(OCL_AVG)                     | Output Current Limit,<br>Time Averaged                                   | Time-Averaged Output Inductor Current Limit Inception Threshold, Commanded by IOUT_OC_FAULT_LIMIT, (Note 12)                                                                                                                                                                   |     | Specifi  | cation (     | l <sub>O-RB-AC</sub><br>Output C<br>Accurac | urrent          |
| <b>Control Section</b>            |                                                                          |                                                                                                                                                                                                                                                                                |     |          |              |                                             |                 |
| V <sub>FBCM0</sub>                | Channel 0 Feedback Input<br>Common Mode Range                            | V <sub>OSNSO</sub> <sup>-</sup> Valid Input Range (Referred to SGND)<br>V <sub>OSNSO</sub> <sup>+</sup> Valid Input Range (Referred to SGND)                                                                                                                                   | •   | -0.1     |              | 0.3<br>2.1                                  | V               |
| V <sub>FBCM1</sub>                | Channel 1 Feedback Input<br>Common Mode Range                            | SGND Valid Input Range (Referred to GND)<br>V <sub>OSNS1</sub> Valid Input Range (Referred to SGND)                                                                                                                                                                            | •   | -0.3     |              | 0.3<br>2.1                                  | V               |
| Vout-rng1                         | Full-Scale Command<br>Voltage, Range 1                                   | (Notes 7, 15)  V <sub>OUTn</sub> Commanded to 2.750V, MFR_PWM_MODE <sub>n</sub> [1] = 1 <sub>b</sub> Resolution LSB Step Size                                                                                                                                                  |     | 2.711    | 12<br>0.6875 | 2.788                                       | V<br>Bits<br>mV |
| R <sub>VSENSE0</sub> <sup>+</sup> | V <sub>OSNS0</sub> <sup>+</sup> Impedance to<br>SGND                     | $0.05V \le V_{VOSNS0}^+ - V_{SGND} \le 1.8V$                                                                                                                                                                                                                                   |     |          | 41           |                                             | kΩ              |
| R <sub>VSENSE1</sub>              | V <sub>OSNS1</sub> Impedance to<br>SGND                                  | 0.05V ≤ V <sub>VOSNS1</sub> − V <sub>SGND</sub> ≤ 1.8V                                                                                                                                                                                                                         |     |          | 37           |                                             | kΩ              |
| t <sub>ON(MIN)</sub>              | Minimum On-Time                                                          | (Note 8)                                                                                                                                                                                                                                                                       |     |          | 99-          |                                             | ns              |
| Analog OV/UV (O                   | vervoltage/Undervoltage) Outp                                            | out Voltage Supervisor Comparators (VOUT_OV/UV_FAULT_LIMIT and V                                                                                                                                                                                                               | OUT | 0V/UV_   | WARN_        | LIMIT Mo                                    | onitors)        |
| N <sub>OV/UV_COMP</sub>           | Resolution, Output<br>Voltage Supervisors                                | (Note 15)                                                                                                                                                                                                                                                                      |     |          | 8            |                                             | Bits            |
| Vov-rng                           | Output OV Comparator<br>Threshold Detection<br>Range                     | (Note 15) High Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 0 <sub>b</sub> Low Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 1 <sub>b</sub>                                                                                                                                     |     | 1<br>0.5 |              | 5.6<br>2.7                                  | V               |
| V <sub>OU-STP</sub>               | Output OV and UV<br>Comparator Threshold<br>Programming LSB Step<br>Size | (Note 15) High Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 0 <sub>b</sub> Low Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 1 <sub>b</sub>                                                                                                                                     |     |          | 22<br>11     |                                             | mV<br>mV        |

46775



**ELECTRICAL CHARACTERISTICS** The  $\bullet$  denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RIN_{IR} = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT,IR}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| SYMBOL                          | PARAMETER                                                                                           | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | MIN                        | TYP       | MAX                    | UNITS              |
|---------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|-----------|------------------------|--------------------|
| Vov-acc                         | Output OV Comparator<br>Threshold Accuracy                                                          | $ \begin{array}{ll} (\text{See Note 14}) & 1 \text{V} \leq \text{V}_{VOSNS0}^+ - \text{V}_{VOSNS0}^- \leq 1.8 \text{V}, \text{MFR\_PWM\_MODE}_0[1] = 1_b \\ 0.5 \text{V} \leq \text{V}_{VOSNS0}^+ - \text{V}_{VOSNS0}^- < 1 \text{V}, \text{MFR\_PWM\_MODE}_0[1] = 1_b \\ 1.5 \text{V} \leq \text{V}_{VSENSE1} - \text{V}_{SGND} \leq 1.8 \text{V}, \text{MFR\_PWM\_MODE}_1[1] = 1_b \\ 0.5 \text{V} \leq \text{V}_{VSENSE1} - \text{V}_{SGND} < 1.5 \text{V}, \text{MFR\_PWM\_MODE}_1[1] = 1_b \\ \end{array} $ | • • • |                            |           | ±2<br>±20<br>±2<br>±30 | %<br>m\<br>%<br>m\ |
| Vuv-rng                         | Output UV Comparator<br>Threshold Detection<br>Range                                                | (Note 15) High Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 0 <sub>b</sub> Low Range Scale, MFR_PWM_MODE <sub>n</sub> [1] = 1 <sub>b</sub>                                                                                                                                                                                                                                                                                                                                                                       |       | 1<br>0.5                   |           | 5.4<br>2.7             | ١                  |
| Vuv-acc                         | Output UV Comparator<br>Threshold Accuracy                                                          | $ \begin{array}{l} (\text{See Note 14}) \\ 1 V \leq V_{VSENSE0}^+ - V_{VSENSE0}^- \leq 1.8 V, \ \text{MFR\_PWM\_MODE}_0[1] = 1_b \\ 0.5 V \leq V_{VSENSE0}^+ - V_{VSENSE0}^- < 1 V, \ \text{MFR\_PWM\_MODE}_0[1] = 1_b \\ 1.5 V \leq V_{VOSNS1} - V_{SGND} \leq 1.8 V, \ \text{MFR\_PWM\_MODE}_1[1] = 1_b \\ 0.5 V \leq V_{VOSNS1} - V_{SGND} < 1.5 V, \ \text{MFR\_PWM\_MODE}_1[1] = 1_b \\ \end{array} $                                                                                                       | •••   |                            |           | ±2<br>±20<br>±2<br>±30 | %<br>m\<br>%<br>m\ |
| t <sub>PROP-OV</sub>            | Output OV Comparator<br>Response Times                                                              | Overdrive to 10% Above Programmed Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                            |           | 35                     | μз                 |
| t <sub>PROP-UV</sub>            | Output UV Comparator<br>Response Times                                                              | Underdrive to 10% Below Programmed Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                            |           | 50                     | με                 |
| Analog OV/UV SV <sub>I</sub>    | Input Voltage Supervisor                                                                            | Comparators (Threshold Detectors for VIN_ON and VIN_OFF)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                            |           |                        |                    |
| Nsvin-ov/uv-comp                | SV <sub>IN</sub> OV/UV Comparator<br>Threshold-Programming<br>Resolution                            | (Note 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                            | 8         |                        | Bits               |
| SV <sub>IN-OU-RANGE</sub>       | SV <sub>IN</sub> OV/UV Comparator<br>Threshold-Programming<br>Range                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •     | 4.5                        |           | 18                     | ٧                  |
| SV <sub>IN-OU-STP</sub>         | SV <sub>IN</sub> OV/UV Comparator<br>Threshold-Programming<br>LSB Step Size                         | (Note 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                            | 82        |                        | mV                 |
| SV <sub>IN-OU-ACC</sub>         | SV <sub>IN</sub> OV/UV Comparator<br>Threshold Accuracy                                             | $9V < SV_{IN} \le 16V$<br>$4.5V \le SV_{IN} \le 9V$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •     |                            |           | ±2.5<br>±225           | %<br>mV            |
| t <sub>PROP-SVIN-HIGH-VIN</sub> | SV <sub>IN</sub> OV/UV Comparator<br>Response Time, High V <sub>IN</sub><br>Operating Configuration | Test Circuit 1, and:<br>VIN_ON = 9V; SV <sub>IN</sub> Driven from 8.775V to 9.225V<br>VIN_OFF = 9V; SV <sub>IN</sub> Driven from 9.225V to 8.775V                                                                                                                                                                                                                                                                                                                                                                | •     |                            |           | 35<br>35               | μs<br>μs           |
| tprop-svin-low-vin              | SV <sub>IN</sub> OV/UV Comparator<br>Response Time, Low V <sub>IN</sub><br>Operating Configuration  | Test Circuit 2, and:<br>VIN_ON = 4.5V; SV <sub>IN</sub> Driven from 4.225V to 4.725V<br>VIN_OFF = 4.5V; SV <sub>IN</sub> Driven from 4.725V to 4.225V                                                                                                                                                                                                                                                                                                                                                            | •     |                            |           | 35<br>35               | μs<br>μs           |
| Channels 0 and 1 (              | Output Voltage Readback (                                                                           | READ_VOUT <sub>n</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                            |           |                        |                    |
| N <sub>VO-RB</sub>              | Output Voltage Readback<br>Resolution and LSB Step<br>Size                                          | (Note 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                            | 16<br>244 |                        | Bits<br>µV         |
| V <sub>0-F/S</sub>              | Output Voltage Full-Scale<br>Digitizable Range                                                      | V <sub>RUNn</sub> = 0V (Notes 7, 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                            | 8         |                        | ٧                  |
| V <sub>0-RB-ACC</sub>           | Output Voltage Readback<br>Accuracy                                                                 | Channel 0: 1V ≤ V <sub>VOSNS0</sub> <sup>+</sup> − V <sub>VOSNS0</sub> <sup>-</sup> ≤ 1.8V<br>Channel 0: 0.6V ≤ V <sub>VOSNS0</sub> <sup>+</sup> − V <sub>VOSNS0</sub> <sup>-</sup> < 1V<br>Channel 1: 1V ≤ V <sub>VOSNS1</sub> − V <sub>SGND</sub> ≤ 1.8V<br>Channel 1: 0.6V ≤ V <sub>VOSNS1</sub> − V <sub>SGND</sub> < 1V                                                                                                                                                                                     | • • • | Tribini 20.070 orriodaning |           |                        |                    |
| tconvert-vo-rb                  | Output Voltage Readback<br>Update Rate                                                              | MFR_ADC_CONTROL = 0x00 (Notes 9, 15) MFR_ADC_CONTROL = 0x00 (Notes 9, 15) MFR_ADC_CONTROL = 0x05 or 0x09 (Notes 9, 15)                                                                                                                                                                                                                                                                                                                                                                                           |       | ſ                          | 27<br>8   |                        | ms<br>ms<br>ms     |
|                                 |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 690                        | }         |                        | 4677†              |



For more information www.linear.com/LTM4677

**ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RUN_{JI} = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT,II}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| PARAMETER                                                                                   | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MIN TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N) Readback (READ_VIN)                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Input Voltage Readback<br>Resolution and LSB Step<br>Size                                   | (Notes 10, 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>15.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bits<br>mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Input Voltage Full-Scale<br>Digitizable Range                                               | (Notes 11, 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Input Voltage Readback<br>Accuracy                                                          | READ_VIN, $4.5V \le SV_{IN} \le 16V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Within ±2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of Readi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Input Voltage Readback<br>Update Rate                                                       | MFR_ADC_CONTROL = 0×00 (Notes 9, 15)<br>MFR_ADC_CONTROL = 0×01 (Notes 9, 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>108</del><br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ms<br>ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| utput Current (READ_IOUT,)                                                                  | , Duty Cycle (READ_DUTY_CYCLE <sub>n</sub> ), and Computed Input Current (MFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AD_IIN,) Readbac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Output Current Readback<br>Resolution and LSB Step<br>Size                                  | (Notes 10, 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bits<br>mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Output Current Full-Scale<br>Digitizable Range and<br>Input Current Range of<br>Calculation | (Note 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Output Current, Readback<br>Accuracy                                                        | READ_IOUT_p, Channels 0 and 1, $0 \le I_{OUT,p} \le 10A$ , Forced-Continuous Mode, MFR_PWM_MODE_p[1:0] = $10_b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Within 250m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Full Load Output Current<br>Readback                                                        | I <sub>OUT n</sub> = 18A (Note 12). See Histograms in Typical Performance<br>Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Computed Input Current,<br>Readback Resolution and<br>LSB Step Size                         | (Notes 10, 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bits<br>mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Computed Input Current,<br>Readback Accuracy,<br>Neglecting I <sub>SVIN</sub>               | MFR_READ_IIN <sub>n</sub> , Channels 0 and 1, $0 \le I_{OUT,n} \le 10A$ ,<br>Forced-Continuous Mode, MFR_PWM_MODE <sub>n</sub> [1:0] = $10_b$ ,<br>MFR_IIN_OFFSET <sub>n</sub> = $0$ mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Within 150m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A of Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fing<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Output Current Readback<br>Update Rate                                                      | MFR_ADC_CONTROL = 0×00 (Notes 9, 15) MFR_ADC_CONTROL = 0×00 (Notes 9, 15) MFR_ADC_CONTROL = 0×05 or 0×09 (Notes 9, 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106<br>27<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ms<br>ms<br>ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Computed Input Current,<br>Readback Update Rate                                             | (Notes 9, 15)<br>MFR_ADC_CONTROL = 0×00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Resolution, Duty Cycle<br>Readback                                                          | (Notes 10, 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Duty Cycle TUE                                                                              | READ_DUTY-CYCLE <sub>n</sub> , 16.3% Duty Cycle (Note 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Duty Cycle Readback<br>Update Rate                                                          | (Notes 9, 15)<br>MFR_ADC_CONTROL = 0×00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| dback for Channel 0, Channel RATURE_2)                                                      | el 1, and Controller (Respectively: READ_TEMPERATURE_1 <sub>0</sub> , READ_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERATURE_1 <sub>1</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Temperature Readback<br>Resolution                                                          | Channel 0, Channel 1, and Controller (Note 15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Channel Temperature<br>TUE, Switching Action Off                                            | Channels 0 and 1, PWM Inactive, RUN <sub>R</sub> = 0V, $\Delta V_{TSNSna}$ = 72mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Within ±3°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Channel Temperature<br>TUE, Switching Action On                                             | READ_TEMPERATURE_1 <sub>n</sub> , Channels 0 and 1,<br>PWM Active, RUN <sub>n</sub> = 5V (Note 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Within ±3°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                             | Input Voltage Readback Resolution and LSB Step Size  Input Voltage Readback Accuracy  Input Voltage Readback Accuracy  Input Voltage Readback Accuracy  Input Voltage Readback Update Rate  utput Current (READ_IOUT_n)  Output Current Readback Resolution and LSB Step Size  Output Current Range and Input Current Range of Calculation  Output Current, Readback Accuracy  Full Load Output Current Readback Resolution and LSB Step Size  Computed Input Current, Readback Accuracy  Full Load Output Current, Readback Resolution and LSB Step Size  Computed Input Current, Readback Accuracy, Neglecting IsyIN  Output Current Readback Update Rate  Computed Input Current, Readback Update Rate  Resolution, Duty Cycle Readback  Duty Cycle TUE  Duty Cycle Readback Update Rate  Iback for Channel O, Channer RATURE_2)  Temperature Readback Resolution  Channel Temperature  TUE, Switching Action Off  Channel Temperature | Input Voltage Readback Resolution and LSB Step Size  Input Voltage Full-Scale Digitizable Range  Input Voltage Readback Accuracy  Input Voltage Readback Input Controller (READ_CONTROL = 0x00 (Notes 9, 15)  Input Voltage Readback Input Current (READ_IOUT_n), Duty Cycle (READ_DUTY_CYCLE_n), and Computed Input Current (MFR Resolution and LSB Step Size  Output Current Full-Scale Digitizable Range and Input Current Range of Calculation  Output Current Readback Resolution and LSB Step Size  Output Current, Readback Resolution and LSB Step Size  Computed Input Current, Readback Resolution and LSB Step Size  Computed Input Current, Readback Resolution and LSB Step Size  Computed Input Current, MFR_READ_IN_n, Channels 0 and 1, 0 < I_OUT_n < 10A, Forced-Continuous Mode, MFR_PWM_MODE_n[1:0] = 10_b, MFR_BCC_CONTROL = 0x00 (Notes 9, 15)  Input Current Readback Mcurrent, MFR_READ_IN_n, Channels 0 and 1, 0 < I_OUT_n < 10A, Forced-Continuous Mode, MFR_PWM_MODE_n[1:0] = 10_b, MFR_BCC_CONTROL = 0x00 (Notes 9, 15)  Input Current Readback Mcurrent, MFR_BCC_CONTROL = 0x00 (Notes 9, 15)  Input Current Readback Mcurent, MFR_BCC_CONTROL = 0x00 (Notes 9, 15)  Input Current Readback Mcurrent, MFR_ADC_CONTROL = 0x00 (Notes 9, 15)  Input Current Readback Mcurrent, Mclose 9, 15)  Input Current Readback Mcurrent, MrR_ADC_CONTROL = 0x00 (Notes 9, 15)  Input Current Readback Mcurrent, MrR_ADC_CONTROL = 0x00 (Notes 9, 15)  Input Current Readback Mcurrent, MrR_ADC_CONTROL = 0x00  Input Current Readback Mcurrent, Mclose 9, 15)  Input Current Readback Mcurrent, MrR_ADC_CONTROL = 0x00  Input Current Readback Mcurrent, Mclose 9, 15)  Input Current Readback Mcurrent, Mclose 9, 15)  Input Current Readback Mcurrent, Mclose 9, 15  Input Current, Mclose 9, 15  Input Current | Input Voltage Readback Resolution and LSB Step Size  Input Voltage Full-Scale Digitizable Range  Input Voltage Readback Accuracy  Input Voltage Readback MFR_ADC_CONTROL = 0x00 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 10, 12)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Current Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback MFR_ADC_CONTROL = 0x01 (Notes 9, 15)  Input Voltage Readback M | Input Voltage Readback (Notes 10, 15)  Input Voltage Readback (Notes 11, 15)  Input Voltage Readback (Notes 12, 15)  Input Voltage Readback (Notes 10, 12)  Input Voltage Readback (Notes 10, 15)  Input Voltage Read | Input Voltage Readback   (Notes 10, 15)   10   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   15,625   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000   16,000 |

4677f



**ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}\text{C}$ ,  $V_{IN} = 12V$ ,  $RUN_{II} = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT,II}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| SYMBOL                       | PARAMETER                                                                                                               | CONDITIONS                                                                                                                                                                                                                       |                | MIN | TYP                             | MAX          | UNITS                           |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|---------------------------------|--------------|---------------------------------|
| TRB-CTRL-ACC(ON)             | Control IC Die<br>Temperature TUE,<br>Switching Action On                                                               | READ_TEMPERATURE_2, PWM Active, RUN <sub>0</sub> = RUN <sub>1</sub> = 5V (Note 12)                                                                                                                                               |                | Wit | hin ±1°C                        | of Read      | ling                            |
| tconvert-temp-rb             | Temperature Readback<br>Update Rate                                                                                     | MFR_ADC_CONTROL = 0×00 (Notes 9, 15) MFR_ADC_CONTROL = 0×06 or 0×0A (Notes 9, 15)                                                                                                                                                | $\blacksquare$ |     | <del></del>                     |              | ms<br>ms                        |
| INTV <sub>CC</sub> Regulator |                                                                                                                         |                                                                                                                                                                                                                                  |                |     |                                 |              |                                 |
| VINTVCC                      | Internal V <sub>CC</sub> Voltage No<br>Load                                                                             | $6V \le V_{1N} \le 16V$                                                                                                                                                                                                          |                | 4.8 | 5                               | 5.2          | V                               |
| VINTVCC(LOAD)                | INTV <sub>CC</sub> Load Regulation                                                                                      | 0mA ≤ I <sub>INTVCC</sub> ≤ 50mA                                                                                                                                                                                                 |                |     | 0.5                             | ±2           | %                               |
| V <sub>DD33</sub> Regulator  | •                                                                                                                       | •                                                                                                                                                                                                                                |                |     |                                 |              |                                 |
| V <sub>VDD33</sub>           | Internal V <sub>DD33</sub> Voltage                                                                                      |                                                                                                                                                                                                                                  |                | 3.2 | 3.3                             | 3.4          | V                               |
| ILIM(VDD33)                  | V <sub>DD33</sub> Current Limit                                                                                         | V <sub>DD33</sub> Electrically Short-Circuited to GND                                                                                                                                                                            | П              |     | 70                              |              | mA                              |
| V <sub>VDD33_OV</sub>        | V <sub>DD33</sub> Overvoltage<br>Threshold                                                                              | (Note 15)                                                                                                                                                                                                                        |                |     | 3.5                             |              | ٧                               |
| V <sub>VDD33_UV</sub>        | V <sub>DD33</sub> Undervoltage<br>Threshold                                                                             | (Note 15)                                                                                                                                                                                                                        |                |     | 3.1                             |              | V                               |
| V <sub>DD25</sub> Regulator  |                                                                                                                         |                                                                                                                                                                                                                                  |                |     |                                 |              |                                 |
| V <sub>VDD25</sub>           | Internal V <sub>DD25</sub> Voltage                                                                                      |                                                                                                                                                                                                                                  |                |     | 2.5                             |              | V                               |
| I <sub>LIM(VDD25)</sub>      | V <sub>DD25</sub> Current Limit                                                                                         | V <sub>DD25</sub> Electrically Short-Circuited to GND                                                                                                                                                                            |                |     | 50                              |              | mA                              |
| Oscillator and Pha           | ase-Locked Loop (PLL)                                                                                                   |                                                                                                                                                                                                                                  |                |     |                                 |              |                                 |
| fosc                         | Oscillator Frequency<br>Accuracy                                                                                        | FREQUENCY_SWITCH = 500kHz (0xFBE8)<br>250kHz < FREQUENCY_SWITCH < 750kHz (Note 15)                                                                                                                                               | •              |     |                                 | ±7.5<br>±7.5 | %<br>%                          |
| f <sub>SYNC</sub>            | PLL SYNC Capture Range                                                                                                  | FREQUENCY_SWITCH Set to Frequency Slave Mode (0x0000);<br>SYNC Driven by External Clock; 1.8V <sub>OUT</sub>                                                                                                                     | •              | 225 |                                 | 800          | kHz                             |
| V <sub>TH</sub> ,sync        | SYNC Input Threshold                                                                                                    | V <sub>SYNC</sub> Rising (Note 15)<br>V <sub>SYNC</sub> Falling (Note 15)                                                                                                                                                        |                |     | 1.5<br>1                        |              | V<br>V                          |
| V <sub>OL,SYNC</sub>         | SYNC Low Output<br>Voltage                                                                                              | I <sub>SYNC</sub> = 3mA                                                                                                                                                                                                          | •              |     | 0.3                             | 0.4          | V                               |
| ISYNC                        | SYNC Leakage Current in<br>Frequency Slave Mode                                                                         | $0V \le V_{SYNC} \le 3.6V$<br>MFR_CONFIG_ALL[4]=1 <sub>b</sub>                                                                                                                                                                   | •              |     |                                 | ±5           | μА                              |
| e <sub>SYNC</sub> -e0        | SYNC-to-Channel 0<br>Phase Relationship, Lag<br>from Falling Edge of Sync<br>to Rising Edge of Top<br>MOSFET (MT0) Gate | (Note 15)<br>MFR_PWM_CONFIG[2:0] = 000 <sub>b</sub> , 01X <sub>b</sub><br>MFR_PWM_CONFIG[2:0] = 101 <sub>b</sub><br>MFR_PWM_CONFIG[2:0] = 001 <sub>b</sub><br>MFR_PWM_CONFIG[2:0] = 1X0 <sub>b</sub>                             |                |     | 0<br>60<br>90<br>120            |              | Deg<br>Deg<br>Deg<br>Deg        |
| e <sub>SYNC</sub> -e1        | SYNC-to-Channel 1<br>Phase Relationship, Lag<br>from Falling Edge of Sync<br>to Rising Edge of Top<br>MOSFET (MT1) Gate | (Note 15)  MFR_PWM_CONFIG[2:0] = 011 <sub>b</sub> MFR_PWM_CONFIG[2:0] = 000 <sub>b</sub> MFR_PWM_CONFIG[2:0] = 010 <sub>b</sub> , 10X <sub>b</sub> MFR_PWM_CONFIG[2:0] = 001 <sub>b</sub> MFR_PWM_CONFIG[2:0] = 110 <sub>b</sub> |                |     | 120<br>180<br>240<br>270<br>300 |              | Deg<br>Deg<br>Deg<br>Deg<br>Deg |



**ELECTRICAL CHARACTERISTICS** The  $\bullet$  denotes the specifications which apply over the specified internal operating temperature range (Note 2). Specified as each individual output channel (Note 4).  $T_A = 25^{\circ}C$ ,  $V_{IN} = 12V$ ,  $RUN_n = 5V$ , FREQUENCY\_SWITCH = 500kHz and  $V_{OUT,n}$  commanded to 1.000V unless otherwise noted. Configured with factory-default EEPROM settings and per Test Circuit 1, unless otherwise noted.

| SYMBOL              | PARAMETER                                   | CONDITIONS                                                                                                                                                                                                   |   | MIN           | TYP              | MAX        | UNITS          |
|---------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|------------------|------------|----------------|
| EEPROM Charac       | cteristics                                  |                                                                                                                                                                                                              |   |               |                  |            |                |
| Endurance           | (Note 13)                                   | $0^{\circ}\text{C} \le \text{T}_{J} \le 85^{\circ}\text{C}$ During EEPROM Write Operations (Note 3)                                                                                                          | • | 10,000        |                  |            | Cycles         |
| Retention           | (Note 13)                                   | $T_J < T_{J(MAX)}$ , with Most Recent EEPROM Write Operation Having Occurred at $0^{\circ}C \le T_J \le 85^{\circ}C$ (Note 3)                                                                                | • | 10            |                  |            | Years          |
| Mass_Write          | Mass Write Operation<br>Time                | Execution of STORE_USER_ALL Command, $0^{\circ}C \le T_J \le 85^{\circ}C$ (ATE-Tested at $T_J = \overline{25^{\circ}C}$ ) (Notes 3, 13)                                                                      |   |               | 440              | 4100       | ms             |
| Digital I/Os        |                                             | thin-                                                                                                                                                                                                        |   | $\overline{}$ |                  |            |                |
| V <sub>IH</sub>     | Input High Threshold<br>Voltage             | SCL, SDA, RUN <i>n</i> , GPIO <sub>n</sub> (Note 15)<br>SHARE_CLK, WP (Note 15)                                                                                                                              |   | 2.0<br>1.8    |                  |            | V<br>V         |
| V <sub>IL</sub>     | Input Low Threshold<br>Voltage              | SCL, SDA, RUN <i>n</i> , GPIO <sub>n</sub> (Note 15)<br>SHARE_CLK, WP (Note 15)                                                                                                                              |   |               |                  | 7.4<br>0.6 | V<br>V         |
| V <sub>HYST</sub>   | Input Hysteresis                            | SCL, SDA (Note 15)                                                                                                                                                                                           |   |               | 80               |            | mV             |
| V <sub>OL</sub>     | Output Low Voltage                          | SCL, SDA, ALERT, RUN <sub>P</sub> , GPIO <sub>P</sub> , SHARE_CLK:<br>I <sub>SINK</sub> = 3mA                                                                                                                | • |               | 0.3              | 0.4        | V              |
| loL                 | Input Leakage Current                       | SDA, SCL, ĀLĒRĪ, RUN $_B$ : $0V \le V_{PIN} \le 5.5V$<br>$\overline{GPIO}_B$ and $SHARE\_CLK$ : $0V \le V_{PIN} \le 3.6V$                                                                                    | • |               |                  | ±5<br>±2   | μΑ<br>Αų       |
| t <sub>FILTER</sub> | Input Digital Filtering                     | RUN <sub>n</sub> (Note 15)<br>GPIO <sub>n</sub> (Note 15)                                                                                                                                                    |   |               | 10<br>3          |            | μs<br>μs       |
| CPIN                | Input Capacitance                           | SCL, SDA, RUN <sub>II</sub> , GPIO <sub>II</sub> , SHARE_CLK, WP (Note 15)                                                                                                                                   |   |               |                  | 10         | pF             |
| PMBus Interface     | e Timing Characteristics                    |                                                                                                                                                                                                              |   |               |                  |            |                |
| f <sub>SMB</sub>    | Serial Bus Operating<br>Frequency           | (Note 15)                                                                                                                                                                                                    |   | 10            |                  | 400        | kHz            |
| t <sub>BUF</sub>    | Bus Free Time Between<br>Stop and Start     | (Note 15)                                                                                                                                                                                                    |   | 1.3           |                  |            | μs             |
| t <sub>HD,STA</sub> | Hold Time After Repeated<br>Start Condition | Time Period After Which First Clock Is Generated (Note 15)                                                                                                                                                   |   | 0.6           |                  |            | μs             |
| tsu,sta             | Repeated Start Condition<br>Setup Time      | (Note 15)                                                                                                                                                                                                    |   | 0.6           |                  |            | μs             |
| t <sub>SU,STO</sub> | Stop Condition Setup<br>Time                | (Note 15)                                                                                                                                                                                                    |   | 0.6           |                  |            | μs             |
| t <sub>HD,DAT</sub> | Data Hold Time                              | Receiving Data (Note 15)<br>Transmitting Data (Note 15)                                                                                                                                                      |   | 0<br>0.3      |                  | 0.9        | µs<br>µs       |
| tsu,dat             | Data Setup Time                             | Receiving Data (Note 15)                                                                                                                                                                                     |   | 0.1           |                  |            | μs             |
| TIMEOUT_SMB         | Stuck PMBus Timer<br>Timeout                | Measured from the Last PMBus Start Event: Block Reads MFR_CONFIG_ALL[3] = 0 <sub>b</sub> (Note 15) Non-Block Reads MFR_CONFIG_ALL[3] = 0 <sub>b</sub> (Note 15) MFR_CONFIG_ALL[3] = 1 <sub>b</sub> (Note 15) |   |               | 150<br>32<br>250 |            | ms<br>ms<br>ms |
| t <sub>LOW</sub>    | Serial Clock Low Period                     | (Note 15)                                                                                                                                                                                                    |   | 1.3           |                  | 10000      | μs             |
| thigh               | Serial Clock High Period                    | (Note 15)                                                                                                                                                                                                    |   | 0.6           |                  |            | μs             |

Note 1: Stresses beyond those listing under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating conditions for extended periods may affect device reliability and lifetime.

Note 2: The LTM4677 is tested under pulsed-load conditions such that  $T_J = T_A.$  The LTM4677E is guaranteed to meet performance specifications over the  $0^{\circ}\text{C}$  to 125°C internal operating temperature range. Specifications

over the -40°C to 125°C internal operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4677I is guaranteed to meet specifications over the full -40°C to 125°C internal operating temperature range. Note that the maximum ambient temperature consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated package thermal resistance and other environmental factors.

4677f

10

For more information www.linear.com/LTM4677

END.