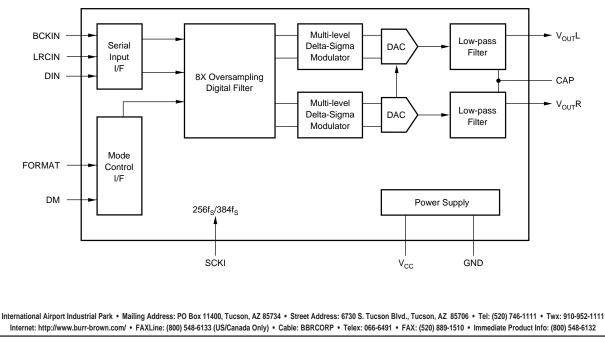


PCM1725

Sound DIGITAL-TO-ANALOG CONVERTER 16 Bits, 96kHz Sampling

FEATURES


- COMPLETE STEREO DAC: Includes Digital Filter and Output Amp
- DYNAMIC RANGE: 95dB
- MULTIPLE SAMPLING FREQUENCIES: 16kHz to 96kHz
- 8X OVERSAMPLING DIGITAL FILTER
- SYSTEM CLOCK: 256f_s/384f_s
- NORMAL OR I²S DATA INPUT FORMATS
- SMALL 14-PIN SOIC PACKAGE

DESCRIPTION

The PCM1725 is a complete low cost stereo audio digital-to-analog converter (DAC), operating off of a 256 f_s or 384 f_s system clock. The DAC contains a 3rd-order $\Delta\Sigma$ modulator, a digital interpolation filter, and an analog output amplifier. The PCM1725 accepts 16-bit input data in either normal or I²S formats.

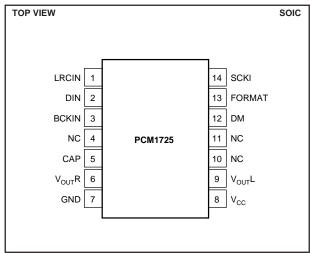
The digital filter performs an 8X interpolation function and includes de-emphasis at 44.1kHz. The PCM1725 can accept digital audio sampling frequencies from 16kHz to 96kHz, always at 8X oversampling.

The PCM1725 is ideal for low-cost, CD-quality consumer audio applications.

© 1997 Burr-Brown Corporation

SPECIFICATIONS

All specifications at +25°C, +V_{CC} = +5V, f_S = 44.1kHz, and 16-bit input data, SYSCLK = 384 f_S , unless otherwise noted.


			PCM1725					
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS			
RESOLUTION			16		Bits			
DATA FORMAT Audio Data Interface Format Audio Data Format Sampling Frequency (f _S) Internal System Clock Frequency		Bina 16	Standard/l ² S ry Two's Comple 256f _S /384f _S	ement 96	kHz			
DIGITAL INPUT/OUTPUT								
Logic Level Input Logic Level $V_{IH}^{(1)}$ $V_{IL}^{(1)}$ Input Logic Current: $I_{IN}^{(1)}$		2.0	TTL	0.8 ±0.8	VDC VDC μA			
DYNAMIC PERFORMANCE ⁽²⁾	f = 991kHz							
THD+N at FS (0dB) THD+N at –60dB Dynamic Range Signal-to-Noise Ratio Channel Separation	A-weighted A-weighted	90 90 88	-83 -32 95 97 95	-78	dB dB dB dB dB			
DC ACCURACY								
Gain Error Gain Mismatch, Channel-to-Channel Bipolar Zero Error	V _{OUT} = V _{CO} /2 at BPZ		±1.0 ±1.0 ±20	±5.0 ±5.0 ±50	% of FSF % of FSF mV			
ANALOG OUTPUT								
Output Voltage Center Voltage Load Impedance	Full Scale (0dB) AC Load	10	0.62 x V _{CC} V _{CC} /2		Vp-p VDC kΩ			
DIGITAL FILTER PERFORMANCE								
Passband Stopband Passband Ripple Stopband Attenuation Delay Time		0.555 35	11.125/f _S	0.445 ±0.17	f _S f _S dB dB sec			
INTERNAL ANALOG FILTER 3dB Bandwidth Passband Response	f = 20kHz		100 0.16		kHz dB			
POWER SUPPLY REQUIREMENTS Voltage Range Supply Current Power Dissipation		4.5	5 13 65	5.5 18 90	VDC mA mW			
TEMPERATURE RANGE Operation Storage		25 55		+85 +125	℃ ℃			

NOTES: (1) Pins 1, 2, 3, 12, 13: LRCIN, DIN, BCKIN, DM, FORMAT (Schmitt Trigger Input); Pin 14: SCKI. (2) Dynamic performance specs are tested with 20kHz low pass filter and THD+N specs are tested with 30kHz LPF, 400Hz HPF, Average-Mode.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

PACKAGE INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
PCM1725U	14 Pin SOIC	235

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	
+V _{CC} to +V _{DD} Difference	±0.1V
Input Logic Voltage	
Power Dissipation	
Operating Temperature Range	–25°C to +85°C
Storage Temperature	–55°C to +125°C
Lead Temperature (soldering, 5s)	+260°C
Thermal Resistance, θ_{JA}	+90°C/W

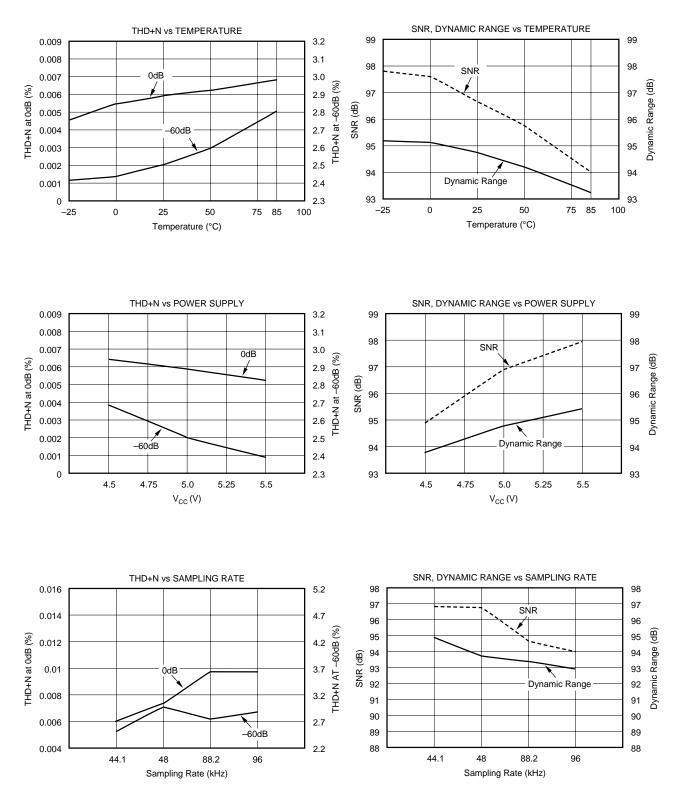
PIN ASSIGNMENTS

PIN	NAME	I/O	FUNCTION				
1(1)	LRCIN	IN	Sample Rate Clock Input				
2(1)	DIN	IN	Audio Data Input				
3(1)	BCKIN	IN	Bit Clock Input for Audio Data.				
4	NC	—	No Connection				
5	CAP	—	Common Pin of Analog Output Amp				
6	V _{OUT} R	OUT	Right-Channel Analog Output				
7	GND	—	Ground				
8	V _{CC}	—	Power Supply				
9	V _{OUT} L	OUT	Left-Channel Analog Output				
10	NC	—	No Connection				
11	NC	—	No Connection				
12 ⁽²⁾	DM	IN	De-emphasis Control HIGH: De-emphasis ON LOW: De-emphasis OFF				
13 ⁽²⁾	FORMAT	—	Audio Data Format Select HIGH: I ² S Data Format LOW: Standard Data Format				
14	SCKI	IN	System Clock Input (256f _S or 384f _S)				
	NOTES: (1) Schmitt Trigger input. (2) Schmitt Trigger input with internal pull-up.						

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

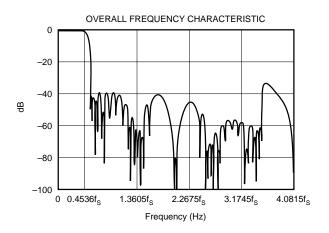


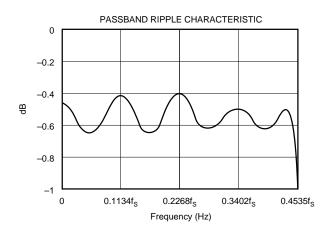
PCM1725

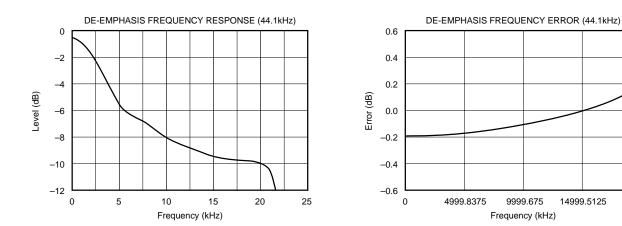
TYPICAL PERFORMANCE CURVES

At $T_A = +25^{\circ}C$, $+V_{CC} = +5V$, $f_S = 44.1 \text{kHz}$, SYSCLK = 256 f_S , unless otherwise noted.

DYNAMIC PERFORMANCE






TYPICAL PERFORMANCE CURVES

At $T_A = +25^{\circ}C$, $+V_{CC} = +V_{DD} = +5V$, $f_S = 44.1$ kHz, and 16-bit input data, SYSCLK = $384f_S$, unless otherwise noted.

DIGITAL FILTER

19999.35

FIGURE 1. "Normal" Data Input Timing.

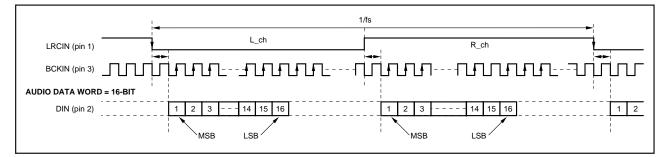


FIGURE 2. "I²S" Data Input Timing.

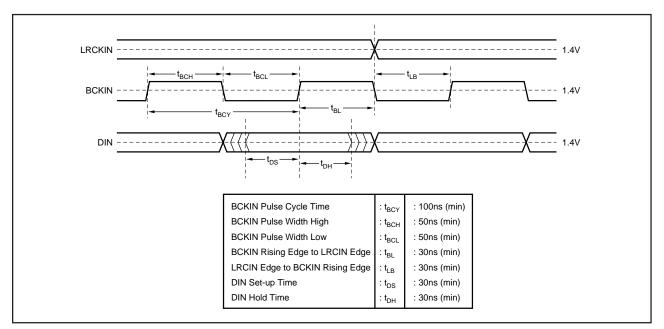


FIGURE 3. Audio Data Input Timing.

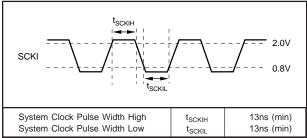


FIGURE 4. System Clock Timing Requirements.

SYSTEM CLOCK

The system clock for PCM1725 must be either 256fs or $384f_S$, where f_S is the audio sampling frequency (LRCIN), typically 32kHz, 44.1kHz or 48kHz. The system clock is used to operate the digital filter and the noise shaper. The system clock input (SCKI) is at pin 14. Timing conditions for SCKI are shown in Figure 4.

PCM1725 has a system clock detection circuit which automatically detects the frequency, either 256f_S or $384f_S$. The system clock should be synchronized with LRCIN (pin 1), but PCM1725 can compensate for phase differences. If the phase difference between LRCIN and system clock is greater than ± 6 bit clocks (BCKIN), the synchronization is performed automatically. The analog outputs are forced to a bipolar zero state ($V_{CC}/2$) during the synchronization function. Table I shows the typical system clock frequency inputs for the PCM1725.

SAMPLING	SYSTEM CLOCK FREQUENCY (MHz)				
RATE (LRCIN)	256f _S	384f _S			
32kHz	8.192	12.288			
44.1kHz	11.2896	16.9340			
48kHz	12.288	18.432			

TABLE I. System Clock Frequencies vs Sampling Rate.

TYPICAL CONNECTION DIAGRAM

Figure 5 illustrates the typical connection diagram for PCM1725 used in a stand-alone application.

INPUT DATA FORMAT

PCM1725 can accept input data in either normal (MSB-first, right-justified) or I^2S formats. When pin 13 (FORMAT) is LOW, normal data format is selected; a HIGH on pin 13 selects I^2S format.

FORMAT	
0	Normal Format (MSB-first, right-justified)
1	I ² S Format (Philips serial data protocol)

TABLE II. Input Format Selection.

RESET

PCM1725 has an internal power-on reset circuit. The internal power-on reset initializes (resets) when the supply voltage $V_{CC} > 2.2V$ (typ). The power-on reset has an initialization period equal to 1024 system clock periods after $V_{CC} > 2.2V$. During the initialization period, the outputs of the DAC are invalid, and the analog outputs are forced to $V_{CC}/2$. Figure 6 illustrates the power-on reset and reset-pin reset timing.

DE-EMPHASIS CONTROL

Pin 12 (DM) enables PCM1725's de-emphasis function. Deemphasis operates only at 44.1kHz.

DM	
0	DEM OFF
1	DEM ON (44.1kHz)

TABLE III. De-Emphasis Control Selection.

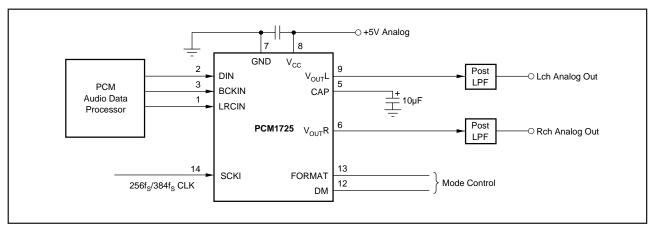


FIGURE 5. Typical Connection Diagram.

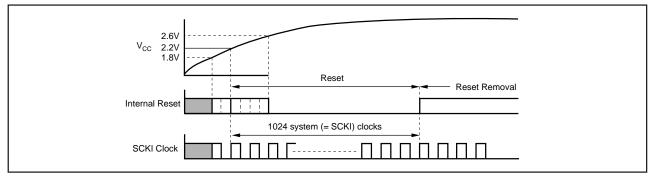


FIGURE 6. Internal Power-On Reset Timing.

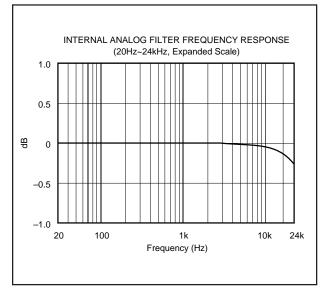


FIGURE 7. Low Pass Filter Frequency Response.

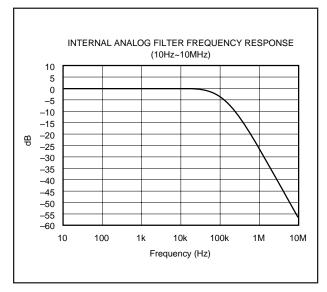


FIGURE 8. Low Pass Filter Wideband Frequency Response.

APPLICATION CONSIDERATIONS

DELAY TIME

There is a finite delay time in delta-sigma converters. In A/D converters, this is commonly referred to as latency. For a delta-sigma D/A converter, delay time is determined by the order number of the FIR filter stage, and the chosen sampling rate. The following equation expresses the delay time of PCM1725:

$$T_{D} = 11.125 \ x \ 1/f_{S}$$

For $f_s = 44.1 \text{kHz}$, $T_D = 11.125/44.1 \text{kHz} = 251.4 \mu \text{s}$

Applications using data from a disc or tape source, such as CD audio, CD-Interactive, Video CD, DAT, Minidisc, etc., generally are not affected by delay time. For some professional applications such as broadcast audio for studios, it is important for total delay time to be less than 2ms.

OUTPUT FILTERING

For testing purposes all dynamic tests are done on the PCM1725 using a 20kHz low pass filter. This filter limits the measured bandwidth for THD+N, etc. to 20kHz. Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the specifications. The low pass filter removes out of band noise. Although it is not audible, it may affect dynamic specification numbers.

The performance of the internal low pass filter from DC to 24kHz is shown in Figure 7. The higher frequency rolloff of the filter is shown in Figure 8. If the user's application has the PCM1725 driving a wideband amplifier, it is recommended to use an external low pass filter. A simple 3rd-order filter is shown in Figure 9. For some applications, a passive RC filter or 2nd-order filter may be adequate.

BYPASSING POWER SUPPLIES

The power supplies should be bypassed as close as possible to the unit. It is also recommended to include a 0.1μ F ceramic capacitor in parallel with the 10μ F tantalum bypass capacitor.

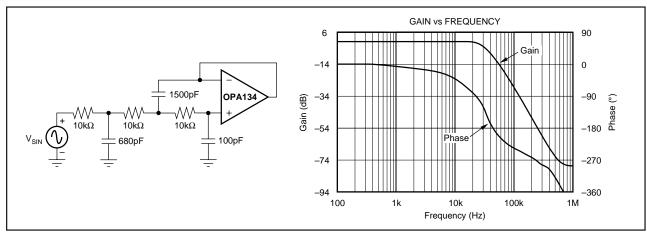


FIGURE 9. 3rd-Order LPF.

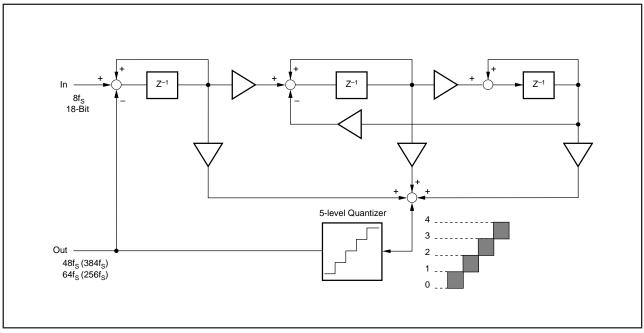


FIGURE 10. 5-Level $\Delta\Sigma$ Modulator Block Diagram.

THEORY OF OPERATION

The delta-sigma section of PCM1725 is based on a 5-level amplitude quantizer and a 3rd-order noise shaper. This section converts the oversampled input data to 5-level deltasigma format. A block diagram of the 5-level delta-sigma modulator is shown in Figure 10. This 5-level delta-sigma modulator has the advantage of stability and clock jitter over the typical one-bit (2-level) delta-sigma modulator.

The combined oversampling rate of the delta-sigma modulator and the internal 8X interpolation filter is $96f_S$ for a $384f_S$ system clock, and $64f_S$ for a $256f_S$ system clock. The theoretical quantization noise performance of the 5-level delta-sigma modulator is shown in Figure 11.

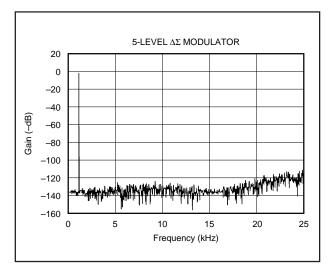


FIGURE 11. Quantization Noise Spectrum.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(.)		•			(-)	(6)	(-)		()	
PCM1725D	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		PCM1725	Samples
PCM1725DR	ACTIVE	SOIC	D	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		PCM1725	Samples
PCM1725U	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		PCM1725U	Samples
PCM1725U/2K	ACTIVE	SOIC	D	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		PCM1725U	Samples
PCM1725U/2KG4	ACTIVE	SOIC	D	14	2000	TBD	Call TI	Call TI			Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

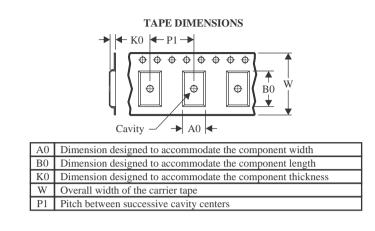
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

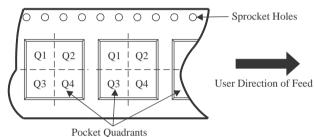
PACKAGE OPTION ADDENDUM

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

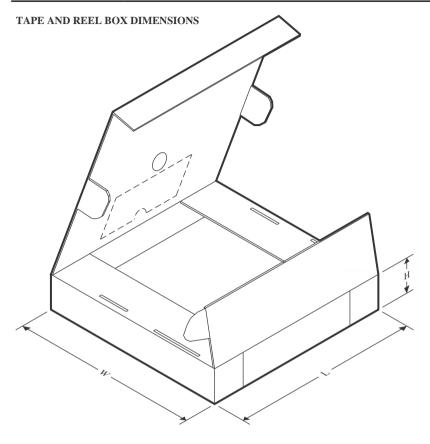


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

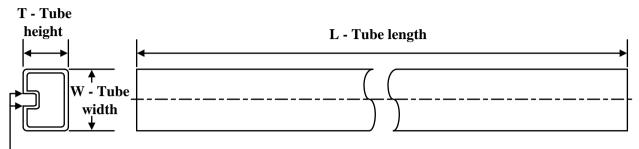

*All	dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	PCM1725DR	SOIC	D	14	2000	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
	PCM1725U/2K	SOIC	D	14	2000	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Jun-2022

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCM1725DR	SOIC	D	14	2000	356.0	356.0	35.0
PCM1725U/2K	SOIC	D	14	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

3-Jun-2022

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
PCM1725D	D	SOIC	14	50	506.6	8	3940	4.32
PCM1725U	D	SOIC	14	50	506.6	8	3940	4.32

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated