Precision 8-Ch/Dual 4-Ch/Triple 2-Ch Low Voltage Analog Switches/Multiplexers

DESCRIPTION

The DG9051, DG9052, DG9053 are low-voltage monolithic CMOS analog switches and multiplexers. DG9051 is an 8 -channel multiplexer; DG9052 is a dual 4 channel multiplexer; and DG9053 is a triple single-pole/double throw (SPDT) switch.
They are designed to operate from $\mathrm{a}+2.7 \mathrm{~V}$ to +12 V single supply or $\pm 2.7 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ dual power supplies. All control logic inputs have guaranteed 2 V logic high/0.8 V logic low when operating from a single 5 V or dual $\pm 5 \mathrm{~V}$ supplies, and 2.4 V logic high/ 0.8 V logic low when $\mathrm{V}+=12 \mathrm{~V}$.

Built on Vishay Siliconix's proprietary high-density process, the DG9051, DG9052, DG9053 offer the advantage of bi-directional signal, rail to rail analog signal handling.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the Lead (Pb)-Free device terminations. For analog switching products manufactured with 100% matte tin device termination, the Lead (Pb)-free "-E3"suffix is being used as a de-signator.

FEATURES

- Halogen-free according to IEC 61249-2-21 Definition
- 2.7 V to 12 V single supply or $\pm 2.7 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ dual aupply operation

RoHS

- Guaranteed R R_{ON} matching
- Low Voltage CMOS Logic Compatible
- Compliant to RoHS Directive 2002/95/EC

BENEFITS

- Wide operation voltage range
- Pin compatible with $74 \mathrm{HC} 4051 / 2 / 5$
- Guaranteed low leakage

APPLICATIONS

- Battery powered equipment
- Test process equipment
- Communication systems
- A / V and mixed signal routing
- Automotive

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

ORDERING INFORMATION

Temp. Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TSSOP-16	DG9051DQ-T1-E3
		DG9052DQ-T1-E3
		DG9053DQ-T1-E3

The information shown here is a preliminary product proposal, not a commercial product data sheet. Siliconix is not committed to produce this or any similiar product. This information should not be used for design purposes, nor construed as an offer to furnish or sell such products.

Vishay Siliconix

UTH 1						
Enable Input	Select Inputs			On Switches		
	C*	B	A	DG9051	DG9052	DG9053
H	X	X	X	All switches open	All switches open	All switches open
L	L	L	L	X - X0	$\begin{aligned} & X-X 0 \\ & Y-Y 0 \end{aligned}$	$\begin{aligned} & \mathrm{X} \text { - XO, } \\ & \mathrm{Y}-\mathrm{YO} \\ & \mathrm{Z}-\mathrm{ZO} \end{aligned}$
L	L	L	H	X - X1	$\begin{aligned} & \mathrm{X}-\mathrm{X} 1, \\ & \mathrm{Y}-\mathrm{Y} 1 \end{aligned}$	$\begin{aligned} & \mathrm{X}-\mathrm{X} 1, \\ & \mathrm{Y}-\mathrm{YO}, \\ & \mathrm{Z}-\mathrm{ZO} \end{aligned}$
L	L	H	L	X - X2	$\begin{aligned} & \mathrm{X}-\mathrm{X} 2, \\ & \mathrm{Y}-\mathrm{Y} 2 \end{aligned}$	$\begin{aligned} & \mathrm{X}-\mathrm{X0}, \\ & \mathrm{Y}-\mathrm{Y} 1, \\ & \mathrm{Z}-\mathrm{ZO} \end{aligned}$
L	L	H	H	X - X3	$\begin{aligned} & \mathrm{X} \text { - X3, } \\ & \mathrm{Y}-\mathrm{Y} 3 \end{aligned}$	$\begin{aligned} & \mathrm{X}-\mathrm{X} 1, \\ & \mathrm{Y}-\mathrm{Y} 1, \\ & \mathrm{Z}-\mathrm{ZO} \end{aligned}$
L	H	L	L	X - X4	$\begin{aligned} & \mathrm{X}-\mathrm{XO}, \\ & \mathrm{Y}-\mathrm{YO} \end{aligned}$	$\begin{aligned} & \mathrm{X}-\mathrm{X0}, \\ & \mathrm{Y}-\mathrm{Y0} \\ & \mathrm{Z}-\mathrm{Z} 1 \end{aligned}$
L	H	L	H	X - X5	$\begin{aligned} & \mathrm{X}-\mathrm{X} 1, \\ & \mathrm{Y}-\mathrm{Y} 1 \end{aligned}$	$\begin{aligned} & \mathrm{X}-\mathrm{X} 1, \\ & \mathrm{Y}-\mathrm{Y0}, \\ & \mathrm{Z}-\mathrm{Z} 1 \end{aligned}$
L	H	H	L	X - X6	$\begin{aligned} & \mathrm{X} \text { - X2, } \\ & \mathrm{Y}-\mathrm{Y} 2 \end{aligned}$	$\begin{aligned} & \mathrm{X}-\mathrm{X} 0, \\ & \mathrm{Y}-\mathrm{Y} 1, \\ & \mathrm{Z}-\mathrm{Z} 1 \end{aligned}$
L	H	H	H	X - X7	$\begin{aligned} & \mathrm{X}-\mathrm{X} 3, \\ & \mathrm{Y}-\mathrm{Y} 3 \end{aligned}$	$\begin{aligned} & \mathrm{X}-\mathrm{X} 1, \\ & \mathrm{Y}-\mathrm{Y} 1, \\ & \mathrm{Z}-\mathrm{Z} 1 \end{aligned}$

X = Don't care

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)			
Parameter		Limit	Unit
Voltage Referenced to V-	V +	13.5	V
	GND	7	
Digital Inputs ${ }^{\text {a }}$	$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$	(V-) - 0.3 to (V+)+0.3	
Current (Any Terminal Except S or D)		30	mA
Continuous Current, S or D		100	
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10$ \% Duty Cycle Max.)		200	
Package Solder Reflow Conditions ${ }^{\text {b }}$	IR/Convection	260	${ }^{\circ} \mathrm{C}$
Storage Temperature		- 65 to 150	
Power Dissipation (Packages) ${ }^{\text {c }}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{TSSOP}-16^{\text {d }}$	925	mW

SPECIFICATIONS (Single Supply 12 V)							
Parameter	Symbol	Test Condition Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \pm 10 \%, \dot{\mathrm{~V}}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}, \mathrm{~V}_{\overline{\mathrm{EN}}}=0.8 \mathrm{~V} \text { or } 2.4 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {d }}$	Max. ${ }^{\text {c }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0		12	V
On-Resistance	R_{ON}	$\mathrm{V}_{\mathrm{D}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$ Sequence Each Switch On	Room Full		30	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	Ω
$\mathrm{R}_{\text {ON }}$ Match Between Channels ${ }^{\text {g }}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}_{\mathrm{D}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room			5	
Switch Off Leakage Current	$\mathrm{I}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=11 \mathrm{~V}$ or $1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}$ or 11 V	Room Full	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$		1 20	nA
	$I_{\text {(off) }}$		Room Full	$\begin{gathered} -1 \\ -20 \end{gathered}$		$\begin{gathered} \hline 1 \\ 20 \end{gathered}$	
Channel On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\overline{\mathrm{EN}}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 11 V	Room Full	$\begin{gathered} -2 \\ -10 \end{gathered}$		$\begin{gathered} 2 \\ 10 \end{gathered}$	
Digital Control							
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Current	I_{N}	$\mathrm{V}_{\mathrm{AX}}=\mathrm{V}_{\text {EN }}=2.4 \mathrm{~V}$ or 0.8 V	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Transition Time	${ }^{\text {tran }}$ ($\begin{gathered} \mathrm{V}_{\mathrm{NO}} / \mathrm{V}_{\mathrm{NC}}=8 \mathrm{~V} / 0 \mathrm{~V}, 0 \mathrm{~V} / 8 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room Full		26	$\begin{aligned} & 35 \\ & 55 \end{aligned}$	ns
Break-Before-Make Time	$\mathrm{t}_{\text {BBM }}$	$\begin{gathered} \mathrm{V}_{\mathrm{X}, \mathrm{Y}, \mathrm{Z}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=306 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room Full	3	10		
Enable Turn-On Time	$\mathrm{t}_{\mathrm{ON}(\mathrm{EN})}$		Room Full		20	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	
Enable Turn-Off Time	$t_{\text {OFF (EN) }}$		Room Full		16	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		38		pC
Off-Isolation ${ }^{\text {e,h }}$	OIRR	$f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	Room		-78		dB
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room		-83		
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=2.4 \mathrm{~V}$	Room		4		pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=2.4 \mathrm{~V}$	Room		8		
Drain On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$	Room		15		
Power Supply							
Power Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ or V_{+}	Room			1	$\mu \mathrm{A}$

SPECIFICATIONS (Dual Supply V + = 5 V, V - = - 5 V)							
Parameter	Symbol	Test Condition Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \% \\ \mathrm{~V}_{\mathrm{A}}, \mathrm{~V}_{\overline{\mathrm{EN}}}=0.8 \mathrm{~V} \text { or } 2 \mathrm{~V}^{f} \end{gathered}$	Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {d }}$	Max. ${ }^{\text {c }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-5		5	V
On-Resistance	R_{ON}	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$ Sequence Each Switch On	Room Full		35	$\begin{aligned} & 55 \\ & 60 \end{aligned}$	
$\mathrm{R}_{\text {ON }}$ Match Between Channels ${ }^{\text {g }}$	$\Delta \mathrm{R}_{\mathrm{ON}}$		Room			5	Ω
On-Resistance Flatness ${ }^{\text {i }}$	R_{ON} Flatness	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room		7	10	
Switch Off Leakage Current ${ }^{\text {a }}$	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \\ \hline \end{gathered}$		$\begin{gathered} 1 \\ 20 \\ \hline \end{gathered}$	
	$I_{\text {(off) }}$		Room Full	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$		$\begin{gathered} \hline 1 \\ 20 \end{gathered}$	nA
Channel On Leakage Current ${ }^{\text {a }}$	$I_{\text {(on) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -2 \\ -10 \end{gathered}$		$\begin{gathered} 2 \\ 10 \end{gathered}$	
Digital Control							
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			V
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Current ${ }^{\text {a }}$	1 N	$\mathrm{V}_{\mathrm{AX}}=\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}$ or 0.8 V	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Transition Time ${ }^{\text {e }}$	${ }^{\text {t }}$ TRANS	$\begin{gathered} \hline \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}= \pm 3 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room Full		35	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	ns
Break-Before-Make Time ${ }^{\text {e }}$	$t_{\text {BBM }}$	$\begin{gathered} V_{X, Y, Z}=+/-3 \mathrm{~V}, V_{S}=0 \mathrm{~V}, \\ R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \end{gathered}$	Room Full	5	12		
Enable Turn-On Time ${ }^{\text {e }}$	$\mathrm{t}_{\mathrm{ON}(\mathrm{EN})}$		Room Full		38	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	
Enable Turn-Off Time ${ }^{\text {e }}$	$\mathrm{t}_{\text {OFF(EN) }}$		Room Full		22	$\begin{aligned} & \hline 35 \\ & 50 \end{aligned}$	
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}$	Room		5		pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {D(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}$	Room		9		
Drain On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$	Room		13		
Power Supply							
Power Supply Current	I+	$V_{\overline{E N}}=V_{A}=0 V \text { or } V+$	Room			1	$\mu \mathrm{A}$
	I-		Room	-1			

SPECIFICATIONS (Single Supply 5 V)							
Parameter	Symbol	Test Condition Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}, \mathrm{~V}_{\overline{\mathrm{EN}}}=0.8 \mathrm{~V} \text { or } 2 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {d }}$	Max. ${ }^{\text {c }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0		5	V
On-Resistance	R_{ON}	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}$ or $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ or $3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room Full		80	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	Ω
$\mathrm{R}_{\text {ON }}$ Match Between Channels ${ }^{9}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room			8	
Switch Off Leakage Current ${ }^{\text {a }}$	$I_{\text {S(off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{EN}}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} \text { or } 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -1 \\ -20 \end{gathered}$		1 20	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	$\begin{gathered} -1 \\ -20 \end{gathered}$		$\begin{gathered} 1 \\ 20 \end{gathered}$	
Channel On Leakage Current ${ }^{\text {a }}$	$I_{\text {(on) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{EN}}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$	Room Full	$\begin{gathered} -2 \\ -10 \end{gathered}$		$\begin{gathered} \hline 2 \\ 10 \\ \hline \end{gathered}$	
Digital Control							
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			V
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Current ${ }^{\text {a }}$	I_{N}	$\mathrm{V}_{\mathrm{AX}}=\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}$ or 0.8 V	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Transition Time	${ }^{\text {t }}$ TRans	$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} /} / \mathrm{NC}=3 \mathrm{~V} / 0 \mathrm{~V} \\ 0 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \hline \end{gathered}$	Room		40		ns
Break-Before-Make Time	$\mathrm{t}_{\text {BBM }}$	$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}, \mathrm{Y}, \mathrm{Z}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room		15		
Enable Turn-On Time	$\mathrm{t}_{\mathrm{ON}(\mathrm{EN})}$		Room		40		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF (EN) }}$		Room		20		
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		20		pC
Off-Isolation ${ }^{\text {e, }}$	OIRR	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	Room		-79		dB
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room		-83		
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$	Room		4		pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=2 \mathrm{~V}$	Room		8		
Drain On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$	Room		15		
Power Supply							
Power Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ or $\mathrm{V}+$	Room			1	$\mu \mathrm{A}$

DG9051, DG9052, DG9053

VISHAY.
Vishay Siliconix

SPECIFICATIONS (Single Supply 3 V)							
Parameter	Symbol	Test Condition Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EN}}=0.4 \mathrm{~V} \text { or } 2 \mathrm{~V} \end{gathered}$	Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {d }}$	Max. ${ }^{\text {c }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0		3	V
On-Resistance	$\mathrm{R}_{\text {ON }}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA}$	Room		130		
$\mathrm{R}_{\text {ON }}$ Match Between Channels ${ }^{\text {g }}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA}$	Room			12	Ω
Switch Off Leakage Current ${ }^{\text {a }}$	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\overline{\mathrm{EN}}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=3 \text { or } 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.3 \text { or } 3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$		$\begin{gathered} \hline 1 \\ 20 \end{gathered}$	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	$\begin{gathered} -1 \\ -20 \end{gathered}$		$\begin{gathered} 1 \\ 20 \end{gathered}$	
Channel On Leakage Current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=3 \text { or } 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.3 \text { or } 3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & \hline-2 \\ & -10 \end{aligned}$		$\begin{gathered} 2 \\ 10 \end{gathered}$	
Digital Control							
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Current ${ }^{\text {a }}$	IN	$\mathrm{V}_{\mathrm{AX}}=\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}$ or 0.4 V	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Transition Time	${ }^{\text {t trans }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} / \mathrm{NC}}=1.5 \mathrm{~V} / 0 \mathrm{~V}, 0 \mathrm{~V} / 1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room		80		ns
Break-Before-Make Time	$t_{\text {BBM }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}, \mathrm{Y}, \mathrm{Z}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room Full	5	25		
Enable Turn-On Time	$\mathrm{t}_{\mathrm{ON}(\mathrm{EN})}$		Room		90		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF(EN) }}$		Room		30		
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		9		pC
Off-Isolatione ${ }^{\text {e, }}$	OIRR	$f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	Room		-78		dB
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room		-83		
Source Off Capacitance ${ }^{\mathrm{e}}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=1.8 \mathrm{~V}$	Room		5		pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=1.8 \mathrm{~V}$	Room		10		
Drain On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {D(on) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$	Room		15		
Power Supply							
Power Supply Current	I+	$\mathrm{V}_{\overline{\mathrm{EN}}}=\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ or $\mathrm{V}+$	Room			1	$\mu \mathrm{A}$

Notes:
a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
g. $\Delta \mathrm{R}_{\text {DON }}=\mathrm{R}_{\mathrm{DON}} \operatorname{Max}-\mathrm{R}_{\mathrm{DON}}$ Min.
h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.
i. $R_{\text {DON }}$ flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

$R_{\text {ON }}$ vs. $\mathrm{V}_{\text {COM }}$ and Supply Voltage

\mathbf{R}_{ON} vs. Analog Voltage and Temperature

Leakage Current vs. Analog Voltage

R_{ON} vs. Analog Voltage and Temperature

Supply Current vs. Temperature

Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Leakage Current vs. Temperature

Insertion Loss, Off-Isolation Crosstalk vs. Frequency

Switching Threshold vs. Supply Voltage

Charge Injection vs. Analog Voltage

Supply Current vs. Input Switching Frequency

TEST CIRCUITS

Return to Specifications:
Single Supply 12 V
Dual Supply V+ $=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$
Single Supply 5 V
Single Supply 3 V

Figure 1. Transition Time

Figure 2. Enable Switching Time

TEST CIRCUITS

Return to Specifications:
Single Supply 12 V
Dual Supply V+ $=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$
Single Supply 5 V
Single Supply 3 V
Figure 3. Break-Before-Make Interval

Figure 4. Charge Injection

Figure 5. Off Isolation

Figure 6. Crosstalk

TEST CIRCUITS

Figure 7. Insertion Loss

Figure 8. Source Drain Capacitance

TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

www.vishay.com

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads
Dimensions in inches (mm)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

