NSR30CM3

Schottky Barrier Diodes, Dual Common Cathode

These Schottky barrier diodes are designed for high speed switching applications, circuit protection, and voltage clamping. Extremely low forward voltage reduces conduction loss. Miniature surface mount package is excellent for hand-held and portable applications where space is limited.

Features

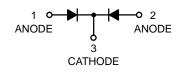
- Extremely Fast Switching Speed
- Low Forward Voltage -0.35 V (Typ) @ $I_F = 10 \text{ mA}$
- NSVR Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- This is a Pb-Free Device

MAXIMUM RATINGS (T_{.1} = 125°C unless otherwise noted)

Rating	Symbol	Value	Unit
Reverse Voltage	V_R	30	Volts
Forward Power Dissipation @ T _A = 25°C Derate above 25°C	P _F	190 1.9	mW mW/°C
Forward Current (DC)	I _F	200 Max	mA
Junction Temperature	T_J	125 Max	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Thermal Resistance Junction–to–Ambient (Note 1)	$R_{\theta JA}$	525	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 board with minimum mounting pad.


ON Semiconductor®

www.onsemi.com

30 VOLTS DUAL COMMON CATHODE SCHOTTKY BARRIER DIODES

SOT-723 CASE 631AA STYLE 3

MARKING DIAGRAM

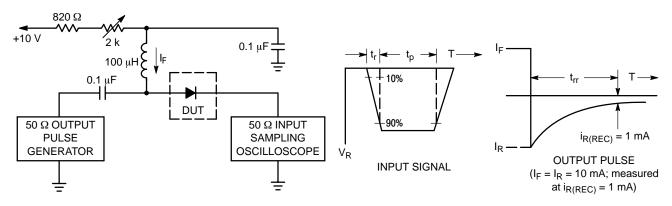
5C = Specific Device Code

D = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NSR30CM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel
NSVR30CM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


NSR30CM3

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted) (EACH DIODE)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage ($I_R = 10 \mu A$)	$V_{(BR)R}$	30	-	-	V
Total Capacitance (V _R = 1.0 V, f = 1.0 MHz)	C _T	-	7.6	10	pF
Reverse Leakage (V _R = 25 V)	I _R	-	0.5	2.0	μΑ
Forward Voltage $(I_F = 0.1 \text{ mA})$ $(I_F = 1.0 \text{ mA})$ $(I_F = 10 \text{ mA})$ $(I_F = 30 \text{ mA})$ $(I_F = 30 \text{ mA})$ $(I_F = 100 \text{ mA})$	V _F	- - - -	0.22 0.29 0.35 0.41 0.52	0.24 0.32 0.40 0.50 0.80	V
Reverse Recovery Time $(I_F = I_R = 10 \text{ mA}, I_{R(REC)} = 1.0 \text{ mA}, Figure 1)$	t _{rr}	-	-	5.0	ns
Forward Current (DC)	I _F	-	-	200	mA
Repetitive Peak Forward Current	I _{FRM}	_	-	300	mA
Non-Repetitive Peak Forward Current (t < 1.0 s)	I _{FSM}	_	_	600	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NSR30CM3

Notes: 1. A 2.0 $k\Omega$ variable resistor adjusted for a Forward Current (I_F) of 10 mA.

- 2. Input pulse is adjusted so I_{R(peak)} is equal to 10 mA.
- 3. t_p » t_{rr}

Figure 1. Recovery Time Equivalent Test Circuit

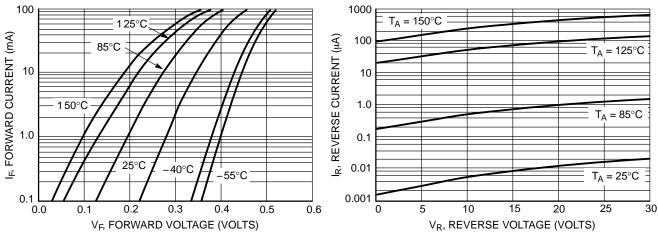


Figure 2. Forward Voltage

Figure 3. Leakage Current

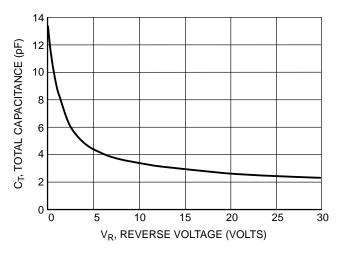


Figure 4. Total Capacitance

SOT-723 CASE 631AA-01 ISSUE D

DATE 10 AUG 2009

NOTES:

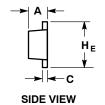
- NOTES.

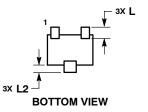
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
- FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
b	0.15	0.21	0.27	
b1	0.25	0.31	0.37	
С	0.07	0.12	0.17	
D	1.15	1.20	1.25	
E	0.75	0.80	0.85	
е	0.40 BSC			
ΗE	1.15	1.20	1.25	
L	0.29 REF			
12	0.15	0.20	0.25	

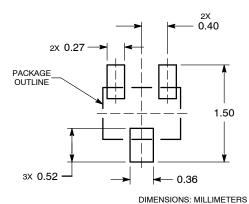

L2 0.15 0.20 0.25 **GENERIC** MARKING DIAGRAM*



= Specific Device Code XX Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

-X-2X b ⊕ 0.08 X Y **TOP VIEW**



STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON12989D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-723		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales