

MOSFET – P-Channel, POWERTRENCH®

-150 V, -22 A, 53 m Ω

FDMS86263P

General Description

This P-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH technology. This very high density process is especially tailored to minimize on-state resistance and optimized for superior switching performance.

Features

- Max $r_{DS(on)} = 53 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$, $I_D = -4.4 \text{ A}$
- Max $r_{DS(on)} = 64 \text{ m}\Omega$ at $V_{GS} = -6 \text{ V}$, $I_D = -4 \text{ A}$
- Very Low Rds-on in Mid-Voltage P-Channel Silicon Technology Optimized for Low Qg
- This Product is Optimised for Fast Switching Applications as Well as Load Switch Applications
- 100% Uil Tested
- This Device is Pb-Free and is RoHS Compliant

Applications

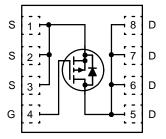
- Active Clamp Switch
- Load Switch

V _{DS}	r _{DS(on)} MAX	I _D MAX
–150 V	53 mΩ @ –10 V	–22 A
	64 mΩ @ –6 V	

MARKING DIAGRAM

Y = Logo

1


&Z = Assembly Plant Code

&2 = 2–Digit Date Code Format

&K = 2-Digits Lot Run Traceability Code

FDMS86263P = Specific Device Code

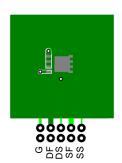
PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter			Ratings	Unit
V _{DS}	Drain to Source Voltage			-150	V
V_{GS}	Gate to Source Voltage			±25	V
I _D	Drain Current	Continuous	T _C = 25°C	-22	Α
		Continuous (Note 2a)	T _A = 25°C	-4.4	
		Pulsed		-70	
E _{AS}	Single Pulse Avalanche Energy (Note	1)		384	mJ
P_{D}	Power Dissipation		T _C = 25°C	104	W
	Power Dissipation (Note 2a)		T _A = 25°C	2.5	
T _J , T _{STG}	Operating and Storage Junction Temp	erature Range	•	-55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Starting $T_J = 25^{\circ}C$; P-ch: L = 3 mH, $I_{AS} = -16$ A, $V_{DD} = -150$ V, $V_{GS} = -10$ V. 100% test at L = 0.1 mH, $I_{AS} = -52$ A.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
R _θ JC	Thermal Resistance, Junction to Case	1.2	°C/W
RθJA	Thermal Resistance, Junction to Ambient (Note 2a)	50	

2. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 50°C/W when mounted on a 1 in² pad of 2 oz copper

b. 125°C/W when mounted on a minimum pad of 2 oz copper

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-150	_	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25°C	-	-116	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -120 \text{ V}, V_{GS} = 0 \text{ V}$	-	_	– 1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$	ı	_	±100	nA
ON CHARA	ACTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \mu A$	-2	-2.9	-4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = -250 μA, referenced to 25°C	-	7	_	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = -10 \text{ V}, I_D = -4.4 \text{ A}$	_	42	53	mΩ
		V _{GS} = -6 V, I _D = -4 A	_	45	64	1
		$V_{GS} = -10 \text{ V}, I_D = -4.4 \text{ A}, T_J = 125^{\circ}\text{C}$	_	71	94	
9FS	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_D = -4.4 \text{ A}$	-	19	_	S
DYNAMIC (CHARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -75 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	2935	3905	pF
C _{oss}	Output Capacitance		-	238	315	pF
C _{rss}	Reverse Transfer Capacitance		-	11	20	pF
Rg	Gate Resistance	1		2.7	5.4	Ω
SWITCHING	G CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -75 \text{ V}, I_D = -4.4 \text{ A}, V_{GS} = -10 \text{ V},$	-	17	31	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	-	10	21	ns
t _{d(off)}	Turn-Off Delay Time		_	37	59	ns
t _f	Fall Time		_	14	25	ns
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to } -10 \text{ V}, V_{DD} = -75 \text{ V}, I_D = -4.4 \text{ A}$	-	45	63	nC
Qg	Total Gate Charge	$V_{GS} = 0 \text{ V to } -6 \text{ V}, V_{DD} = -75 \text{ V}, I_D = -4.4 \text{ A}$	-	29	40	nC
Q _{gs}	Gate to Source Charge	V _{DD} = -75 V, I _D = -4.4 A	_	11.3	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	1	_	8.9	-	nC
	URCE DIODE CHARACTERISTICS			-	-	-
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V, } I_S = -4.4 \text{ A (Note 3)}$	-	-0.79	-1.3	V
		V _{GS} = 0 V, I _S = -2 A (Note 3)	_	-0.75	-1.2	
t _{rr}	Reverse Recovery Time	I _F = -4.4 A, di/dt = 100 A/μs	-	91	146	ns
Q _{rr}	Reverse Recovery Charge	1	_	287	460	nC
	L Total Control Contro	1				

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width < 300 µs, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

4

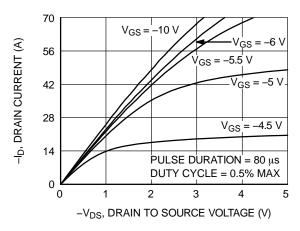
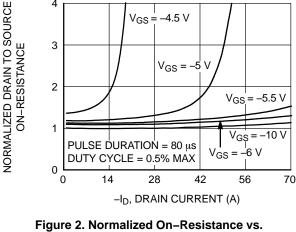



Figure 1. On Region Characteristics

Drain Current and Gate Voltage

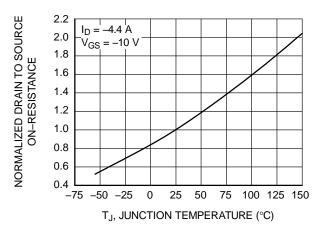


Figure 3. Normalized On-Resistance vs. **Junction Temperature**

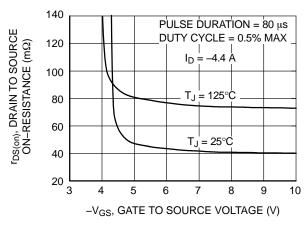


Figure 4. On-Resistance vs. Gate to Source Voltage

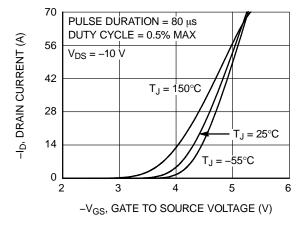


Figure 5. Transfer Characteristics

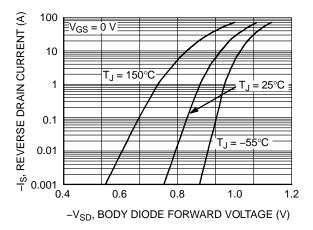


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Figure 7. Gate Charge Characteristics

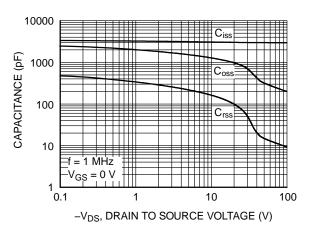


Figure 8. Capacitance vs. Drain to Source Voltage

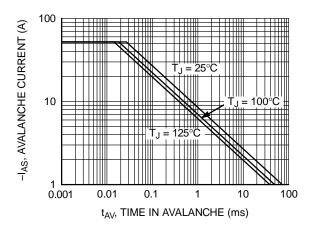


Figure 9. Unclamped Inductive Switching Capability

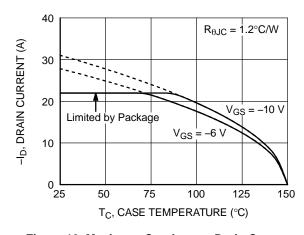


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

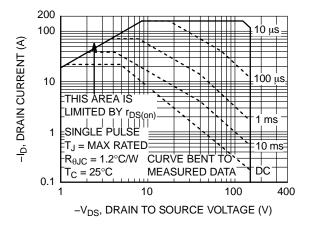


Figure 11. Forward Bias Safe Operating Area

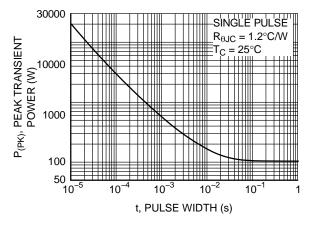


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

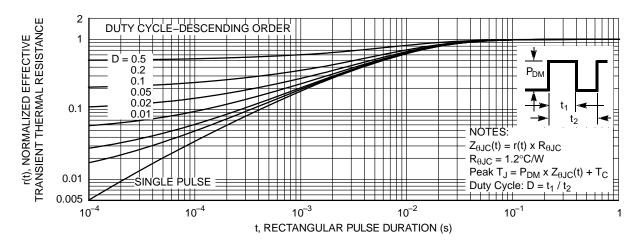
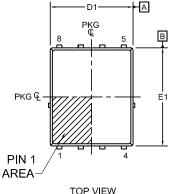
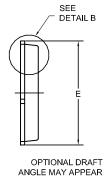


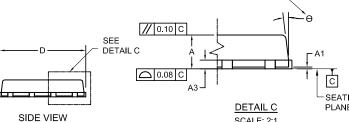
Figure 13. Junction-to-Ambient Transient Thermal Response Curve

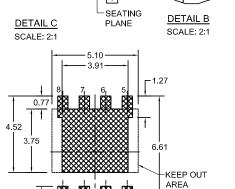
PACKAGE MARKING AND ORDERING INFORMATION


Device	Device Marking	Package	Reel Size	Tape Width	Shipping [†]
FDMS86263P	FDMS86263P	PQFN8 5X6, 1.27P Power 56 (Pb-Free)	13"	12 mm	3000 / Tape & Reel


[†]For Information On Tape And Reel Specifications, Including Part Orientation And Tape Sizes, Please Refer To Our Tape And Reel Packaging Specifications Brochure, Brd8011/D.

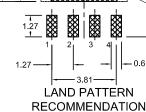
DATE 21 JAN 2022




ON FOUR SIDES

OF THE PACKAGE

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- 6. IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

0.61 (8X)

ل 22

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DIM	MILLIMETERS			
Diivi	MIN.	NOM.	MAX.	
Α	0.90	1.00	1.10	
A1	0.00	-	0.05	
b	0.21	0.31	0.41	
b1	0.31	0.41	0.51	
А3	0.15	0.25	0.35	
D	4.90	5.00	5.20	
D1	4.80	4.90	5.00	
D2	3.61	3.82	3.96	
E	5.90	6.15	6.25	
E1	5.70	5.80	5.90	
E2	3.38	3.48	3.78	
E3	(0.30 REF		
E4	Ü).52 REF		
е	`	1.27 BSC	;	
e/2	C	0.635 BS	С	
e1	* *	3.81 BSC	;	
e2	0.50 REF			
L	0.51	0.66	0.76	
L2	0.05	0.18	0.30	
L4	0.34	0.44	0,54	
z	0.34 REF			
А	٥°	_	12°	

MILLIMETEDS

(z) (4X) — — — — — — — — — — — — — — — — — — —	В
(E3) (E3) (2X) b (8X) D2	
BOTTOM VIEW	

DOCUMENT NUMBER:	98AON13655G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P	•	PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales